Partial differential equations 1 – 2021/2022

Homework 1 Deadline: 6.10.2021, 11:30

Laplace equation on \mathbb{R}^d

We will consider the Laplace equation in the whole space

$$\Delta u = 0 \quad \text{in } \mathbb{R}^d.$$

Recall that the definition of the fundamental solution of the Laplace equation is

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log |x| & \text{if } d = 2, \\ \frac{1}{d(d-2)\alpha_d} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3, \end{cases} \quad x \in \mathbb{R}^d \setminus \{0\}, \end{cases}$$

where α_d is the volume of the unit ball in \mathbb{R}^d .

Recall also the definition of the space of distributions $\mathcal{D}'(\mathbb{R}^d)$:

We say that $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$ if it is a linear functional $\Lambda \colon \mathcal{C}^{\infty}_c(\mathbb{R}^d) \to \mathbb{R}$, continuous with respect to some topology¹. The topology is not so important for us, we only need to know that any function $g \in L^1_{\text{loc}}(\mathbb{R}^d)$ can be understood as a distribution $\lambda_g \in \mathcal{D}'(\mathbb{R}^d)$, defined as

$$\lambda_g(\varphi) = \int_{\mathbb{R}^d} g(x)\varphi(x) \,\mathrm{d}x, \quad \varphi \in \mathcal{C}^\infty_c(\mathbb{R}^d),$$

and that δ_0 defined below is also a distribution. For a distribution $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$ we define its *(i-th partial) distributional derivative*² $\frac{\partial \Lambda}{\partial x_i} \in \mathcal{D}'(\mathbb{R}^d)$ as (note the minus sign)

$$\frac{\partial \Lambda}{\partial x_i}(\varphi) = -\Lambda\left(\frac{\partial \varphi}{\partial x_i}\right), \quad \varphi \in \mathcal{C}^\infty_c(\mathbb{R}^d).$$

For higher derivatives we proceed inductively, i.e. $\frac{\partial^2 \Lambda}{\partial x_j \partial x_i}(\varphi) = \Lambda \left(\frac{\partial^2 \varphi}{\partial x_j \partial x_i}\right)$ etc.

1. Show that Φ defined above deserves the name "fundamental solution". That is, prove that Φ satisfies the equation

$$-\Delta \Phi = \delta_0$$

in the sense of distributions on \mathbb{R}^d , where $\delta_0 \in \mathcal{D}'(\mathbb{R}^d)$ is the Dirac distribution at 0, that is $\delta_0(\varphi) = \varphi(0), \ \varphi \in \mathcal{C}^{\infty}_c(\mathbb{R}^d)$. (Here " Φ " is understood as the distribution Λ_{Φ} and " Δ " is the corresponding distributional derivative.)

2. Further, let³ $f \in \mathcal{C}^2_c(\mathbb{R}^d)$. Prove that the function $u = \Phi * f$, that is,

$$u(x) = \Phi * f(x) = \int_{\mathbb{R}^d} \Phi(y) f(x - y) \, \mathrm{d}y, \quad x \in \mathbb{R}^d$$

is a solution to the nonhomogeneous problem (also called the *Poisson equation*)

$$-\Delta u = f$$
 in \mathbb{R}^d

in the classical sense.

¹This topology on $\mathcal{C}_{c}^{\infty}(\mathbb{R}^{d})$ is given, for instance, by the metric $\rho(\varphi, \psi) = \sum_{N=0}^{\infty} \frac{1}{2^{N}} \min\left\{ \|\varphi - \psi\|_{\mathcal{C}^{N}(\mathbb{R}^{d})}, 1 \right\}.$

²Sometimes this is denoted as $D_i\Lambda$ to emphasize the fact that this is not the classical derivative.

³The condition on f is rather restrictive and can be relaxed in various ways. We assume C_c^2 for simplicity.

Hints

Remember that two distributions are equal if they attain the same value on every $\varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$.

The essential step of the proof is to isolate the singularity of Φ at 0. That is, split the integral to the ball $B(0,\varepsilon)$ and $\mathbb{R}^d \setminus B(0,\varepsilon)$. Then you can integrate by parts (twice) in the second one, where Φ behaves nicely. Finally, pass with $\varepsilon \to 0$.

(You should have already seen this in the course on the classical theory of PDEs.)