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Recap

Theorem 2.16 (Lax-Milgram). Let H be a real Hilbert space, and a(u, v) a continuous and
coercive bilinear form defined on H; i.e, there exists constants c1 > 0 and c2 > 0 such that for all
u, v ∈ H

|a(u, v)| ≤ c1‖u‖‖v‖ and a(u, v) ≥ c2‖u‖2.

Then, for any F ∈ H∗, there exists u ∈ H such that

a(u, v) = F (v) for all v ∈ H. (1)

Moreover, if a(·, ·) is symmetric, then for any u satisfying (1) above

1

2
a(u, u)− F (u) = min

v∈H

{
1

2
a(v, v)− F (v)

}
. (2)

We can also consider a generalisation of Lax-Milgram:

Theorem 2.17 (Stampacchia). Let H be a real Hilbert space, a(u, v) a continuous and coercive
bilinear form defined on H, and K a non-empty, closed, convex set in H Then, for any F ∈ H∗,
there exists u ∈ H such that

a(u, v − u) ≥ F (v − u) for all v ∈ H. (3)

Moreover, if a(·, ·) is symmetric, then for any u satisfying (3) above

1

2
a(u, u)− F (u) = min

v∈H

{
1

2
a(v, v)− F (v)

}
. (4)

Lemma 2.20. Let H be a real Hilbert space, M ⊂ H a non-empty, bounded and closed subset,
and let A : M →M be a non-expansive operator. Then, there exists at least one fixed point of the
operator A. Moreover, the set of all fixed points is convex.

This theory holds on Hilbert spaces, we can show that it does not necessarily hold if we weaken
to Banach spaces.

Theorem 2.22. Let B be a closed unit ball in a Hilbert space H and the operator A : B → H be
monotone and continuous on B ∩M , where M is an arbitrary finite dimensional subspace of H.
Then,

1. there exists x0 ∈ B such that

(Ax0, y − x0) ≥ 0 for all y ∈ B.

Moreover, the set of points satisfying this condition is convex.
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2. If ‖x0‖ < 1 then Ax0 = 0. If ‖x0‖ = 1 and, for each x ∈ ζ := {u ∈ H : ‖u‖ = 1},

x+ λAx 6= 0 for all λ ≥ 0

holds. Then,
Ax0 = 0.

Theorem 2.23. Let B(w, r) be a closed ball in a Hilbert space H with centre at the point w ∈ H
and radius r > 0, and let T : B(w, r) → H be monotone and continuous on B(w, r) ∩M , where
M is an arbitrary finite dimensional subspace of H.

If, for each z ∈ S(w, r) := {u ∈ H : ‖u− w‖ = r},

z − w + λTz 6= 0, for all λ ≥ 0,

then, there exists z0 ∈ B(w, r) such that Tz0 = 0.

Exercises

1. Show that Lax-Milgram (Theorem 2.17) can be proven by using Stampacchia (Theorem
2.17)

Hint. Select K := H and in the inequality (3) select v = ±w + u, where w ∈ H, to get the
equality

a(u,w) = F (w) for w ∈ H.

2. Prove Theorem 2.17 (Stampacchia).

Instructions. As in the proof of Lax-Milgram first construct a continuous linear operator
A : H → H such that

a(u, v) = (Au, v) for each v ∈ H.

Then,
‖Au‖ ≤ c1‖u‖ and (Au, u) ≥ c2‖u‖2.

Let f be the representation of a continuous linear functional F ∈ H∗; i.e., F (v) = (v, f) for
all v ∈ H. Construct a projection PK from H to K defined by

‖PKw − w‖ = min
v∈K
‖w − v‖, w ∈ H.

From convex set theory it follows this projecction is well defined for closed convex sets, where
PK has the properties

(w − PKw, v − PKw) ≤ 0 for v ∈ K and ‖PKw1 − PKw2‖ ≤ ‖w1 − w2‖.

If K is a closed subspace, then PK is a linear continuous operator for which

(PKw − w, v) = 0 for v ∈ K.

Show, for any positive α > 0, that the following are equivalent:

• α(Au, v − u) ≥ α(f, v − u) for v ∈ K,

• (αf − αAu, v − u) ≤ 0 for v ∈ K,

• u = PK(αf − αAu+ u).

2



Consider the mapping S : K → K defined by

Sv = PK(αf − αAv + v), v ∈ K.

Prove, that for any x, y ∈ K that

‖Sx− Sy‖2 ≤ k2‖x− y‖2, k2 = 1− 2αc2 + α2c21.

Choose α such that αc21 < 2c2. Then, 0 < k < 1, so S is strongly contractive on K and,
hence, Banach’s fixed point theorem can be applied. Then, the above equivalence gives (3).

If the bilinear form a(u, v) is symmetric, then similarly to the proof of Lax-Milgram, a(u, v)
represents an inner product with norm ‖u‖a, which you should show is equivalent to the
standard norm in H. As from Riesz-Frechét there exists a g such that

F (v) = a(g, v), for all v ∈ H,

show that
a(g − u, v − u) ≤ 0, for all v ∈ K.

Using Proposition 1.5 show that

a(g − u, g − u) = min
v∈K

a(g − v, g − v),

and from there show that (4) holds.

3. By counterexample, show that Lemma 2.20 does not hold on all Banach spaces, assuming
the other assumptions hold.

Hint. Select X := c0; i.e., the space of numerical sequences converging to 0 with maximum
norm:

c0 := {x = {xi} : xi → 0 for i→∞}, ‖x‖ = max
i
|xi|.

Define M as the unit sphere in X and define the operator A as

Ax = {1, x1, x2, . . . }, x = {x1, x2, . . . } ∈M.

Clearly M is non-empty, bounded and closed. Show that A : M →M is non-expansive and,
by contradiction, that a fixed point does not exist in M for the operator A.

4. Prove Theorem 2.23.

Hint. Define the operator T : B → H as Ax = T (xr + w), x ∈ B and use Theorem 2.22.
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