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Gâteaux Derivatives

We are going to recap some properties of Gâteaux derivatives, without proof.

Definition 1. Let X and Y be normed linear spaces and A : X → Y is a generally nonlinear
operator. Let x ∈ X; then, if there exists the limit

lim
t→0

1

t
(A(x+ th)−Ax) ≡ V A(x, h), ∀h ∈ X,

we say that A is weakly (Gâteaux) differentiable at the point x. In this case V A(x, h) is called the
variation or Gâtaeux differential of the operator A at the point x in the direction h.

From this definition it immediately follows that V A(x, h) is homogeneous with respect to h;
i.e.,

V A(x, αh) = αV A(x, h).

However, it may not be a linear functional in h, i.e.,

V A(x, h+ `) = V A(x, h) + V A(c, `)

may not hold. If it is does, we denote the variation as DA(x, h). In addition if this operator is
continuous in h then it is called a weak derivative or Gâteaux derivative of the operator A at the
point x in the direction h. In this case we denote the operator as A′; clearly,

A′ : X → L(X,Y ).

Theorem 2. Suppose that the functional f is Gâteaux differentiable at each point in the convex
subset Ω of the linear space X. Then, for any points x, x+h ∈ Ω there exists a τ ∈ [0, 1] such that

f(x+ h)− f(x) = Df(x+ τh, h).

Corollary 3. Let X be a normed space and the functional f have at each point x ∈ X the Gâteaux
derivative f ′(x) ∈ X∗. Then,

f(x+ h)− f(x) = 〈f ′(x+ τh), h〉 ∀x, h ∈ X,

for 0 < τ < 1.

Definition 4. Let f be a nonlinear functional defined on a normed linear space X. If there exists
a Gâteaux derivative f ′ at the point x, then we can call this the gradient of the functional f ; i.e.,
grad f(x) ≡ f ′(x). This is a continuous linear functional over X: f ′(x) ∈ X∗.
Lemma 5. Suppose that the norm in a real normed space X is Gâteaux-differentiable at every
non-zero point x ∈ X and D(‖·‖, h) is a linear functional in h for every x 6= 0. Then,

1. The Gâteaux differential D(‖·‖, h) is a continuous linear functional with respect to the vari-
able h and, thus, is a Gâteaux derivative (the gradient of the norm); i.e, D(‖x‖, h) = grad‖x‖
for x 6= 0.

2. For each x 6= 0 and α 6= 0

‖grad‖x‖‖ = 1, 〈grad‖x‖, x〉 = ‖x‖, grad‖αx‖ = signα grad‖x‖.
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Recap

Lemma 3.3. Let X be a reflexive Banach space and the operator A : X → X∗ be demicontinuous.
Then the following statements are equivalent:

a) A is a potential operator.

b) For any x, y ∈ X∫ 1

0

〈Atx, x〉dt−
∫ 1

0

〈Aty, y〉dt =

∫ 1

0

〈A(y + t(x− y)), x− y〉dt.

c) For any x, y ∈ X and any continuously differentiable function u : [0, 1] → X, such that
u(0) = x and u(1) = y,∫ 1

0

〈Atx, x〉dt−
∫ 1

0

〈Aty, y〉dt =

∫ 1

0

〈Au(t), u′(t)〉dt.

Definition 6. The mapping U : X → X∗, where X is a Banach (or normed) space, is called a
dualisation if for any element x ∈ X

‖U(x)‖ = ‖x‖, 〈U(x), x〉 = ‖U(x)‖‖x‖ = ‖x‖2.

Exercises

1. Let X be a real Hilbert space and A ∈ L(X). Calculate the first and second Gateaux
derivative of the functionals

f1(x) = (Ax, x) and f2(x) = (Ax− z,Ax− z), z ∈ X.

Show that it applies that

f ′1(x) = (A+A∗)(x), f ′′1 (x) = A+A∗, f ′2(x) = A∗(Ax− z), f ′′2 (x) = AA∗,

where A∗ is a dual operator; i.e.,

f ′1(x) = ((A+A∗)(x), h), f ′′1 (x)hg = ((A+A∗)h, g) = f ′′1 (x)gh,

f ′2(x) = (A∗(Ax− z), h), f ′′2 (x)hg = (AA∗h, g) = f ′′2 (x)gh.

2. Show that a) and b) of Lemma 3.3 are equivalent if the operator A : X → X∗ is radially
continuous instead of demicontinuous.

3. Let X be a real Hilbert space with operator A ∈ L(X). Prove that this operator is a potential
operator if it is self-adjoint. Construct the matching potential.

Hint. Use the criteria in Lemma 3.3 and Lemma 3.4, plus Exercise 1. To construct the
potential use Lemma 3.2 and the continuity of the operator A. Show that the potential F
of this operator (see Exercise 1) is of the form F (x) = 1

2 (Ax, x) for all x ∈ X.

4. Let the space X∗ be strictly convex, where X is a Banach space. Then, there exists a
dualisation U (see Definition 6). If the space X is additionally reflexive, then the dualisa-
tion U : X → X∗ is strictly monotone, coercive, and demicontinuous (and, thus, radially
continuous and hemicontinuous). Show that the operator U is a potential operator with
potential

F (x) =
1

2
‖x‖2, x ∈ X.
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Hint. Show that
〈Uy, y − x〉 ≥ 〈Ux, y − x〉;

then, substitute y := x + th, h ∈ X into this inequality, use radially continuous property,
and take the limit.

5. Let X be a real normed space. Assume that the norm ‖·‖ is Gâteaux differentiable at every
non-zero point x ∈ X. Then, define

F (x) = ‖x‖α+1, x ∈ X,

and show that
Ax ≡ gradF (x), x ∈ X,

is a potential operator with potential F . Furthermore, show that A is monotone and coercive.

Hint. Use Lemma 5 to define Ax.

3


