Nonlinear Functional Analysis

Practicals

13th May 2020

Dual Functionals

We shall look at the construction of a few dual functionals.
Example 1. Let $F \in X^{*}$. Then,

$$
F^{*}\left(x^{*}\right)=\sup _{x \in X}\left\langle x^{*}-F, x\right\rangle .
$$

It is known from (linear) functional analysis that there exists a $x_{0},\left\|x_{0}\right\|=1$ such that $\left\langle x^{*}-F, x_{0}\right\rangle=$ $\left\|x^{*}-F\right\|$. Then, for $x_{1}=c x_{0}, c>0, x^{*} \neq F$,

$$
F^{*}\left(x^{*}\right) \geq\left\langle x^{*}-F, x_{1}\right\rangle=c\left\|x^{*}-F\right\| \rightarrow \infty \text { as } c \rightarrow \infty
$$

and, thus,

$$
F^{*}\left(x^{*}\right)= \begin{cases}+\infty & \text { if } x^{*} \neq F \\ F^{*}\left(x^{*}\right)=0 & \text { if } x^{*}=F\end{cases}
$$

Example 2. Choose $\alpha>1$ and $F(x)=\|x\|^{\alpha}$. Then,

$$
F^{*}\left(x^{*}\right)=c\left\|x^{*}\right\|^{\alpha /(\alpha-1)}, \quad c=(1-\alpha) \alpha^{-\alpha /(\alpha-1)}
$$

Proof.

$$
F^{*}\left(x^{*}\right) \leq \sup _{x \in X}\left(\left\|x^{*}\right\|\|x\|-\|x\|^{\alpha}\right)
$$

For $t \geq 0$ we define the function:

$$
f(t)=\left\|x^{*}\right\| t-t^{\alpha} .
$$

Since $f(0)=0$ and $f(t) \rightarrow-\infty$ as $t \rightarrow+\infty$ then the function f achieves its maximum at the point t_{0} :

$$
t_{0}=\left(\frac{1}{\alpha}\left\|x^{*}\right\|\right)^{1 /(\alpha-1)}, \quad f\left(t_{0}\right)=c\left\|x^{*}\right\|^{\alpha /(\alpha-1)}, \quad c=(\alpha-1) \alpha^{-\alpha /(\alpha-1)}
$$

and, thus,

$$
F^{*}\left(x^{*}\right) \leq c\left\|x^{*}\right\|^{\alpha /(\alpha-1)}
$$

We have proven that $F^{*}\left(x^{*}\right)$ is less than or equal to the desired definition, so we just need to show it is also greater than or equal to the definition. Construct $x_{0} \in X,\left\|x_{0}\right\|=1$ such that

$$
\left\langle x^{*}, x_{0}\right\rangle=\left\|x^{*}\right\|
$$

and define

$$
x_{1}=k x_{0}, \quad k=\left\|x^{*}\right\|^{1 /(\alpha-1)}\left(\frac{1}{\alpha}\right)^{1 /(\alpha-1)} ;
$$

then,

$$
F\left(x^{*}\right) \geq\left\langle x^{*}, x_{1}\right\rangle-\left\|x_{1}\right\|^{\alpha}=c\left\|x^{*}\right\|^{\alpha /(\alpha-1)}, \quad c=(\alpha-1) \alpha^{-\alpha /(\alpha-1)} .
$$

We state the following two theorems for potential operators.
Theorem 3.20. Let $A: X \rightarrow X^{*}$ be a strictly monotone, coercive, potential operator. Then, there exists an inverse operator A^{-1}, which is a strictly monotone potential operator. The functional F,

$$
F(x)=\int_{0}^{1}\langle A t x, x\rangle \mathrm{d} t, \quad x \in X
$$

is the potential of A and for any $x \in X$ and $x^{*} \in X$

$$
\begin{aligned}
F^{*}\left(x^{*}\right) & =F^{*}(0)+\int_{0}^{1}\left\langle x^{*}, A^{-1} t x^{x}\right\rangle \mathrm{d} t, \quad F^{*}(0)=-F\left(A^{-1} 0\right) \\
0 & \leq F(x)+F^{*}\left(x^{*}\right)-\left\langle x^{*}, x\right\rangle \\
0 & =F(x)+F^{*}(A x)-\langle A x, x\rangle
\end{aligned}
$$

where F^{*} is the potential of A^{-1}.
Lemma 3.21. Let $A: X \rightarrow X^{*}$ be a strictly monotone, coercive, potential operator with potential F. For any $f \in X^{*}$ there exists a unique solution $u \in X$ of $A u=f$ which minimises the potential of the problem $G=F-f$ and

$$
\begin{aligned}
G(u) & \equiv F(u)-\langle f, u\rangle \\
& =\min _{v \in X}\left(\int_{0}^{1}\langle A t v, v\rangle \mathrm{d} t-\langle f, v\rangle\right) \\
& =-\int_{0}^{1}\left\langle f, A^{-1} t f\right\rangle \mathrm{d} t+\int_{0}^{1}\left\langle A t A^{-1} 0, A^{-1} 0\right\rangle \mathrm{d} t .
\end{aligned}
$$

Exercises

1. Choose $F(x)=\|x\|$. Show that

$$
F^{*}\left(x^{*}\right)= \begin{cases}0, & \left\|x^{*}\right\| \leq 1 \\ +\infty, & \left\|x^{*}\right\|>1\end{cases}
$$

Hint. Use the estimate that

$$
F^{*}\left(x^{*}\right) \leq \sup _{x \in X}\left(\left\|x^{*}\right\|-1\right)\|x\|
$$

2. Prove Theorem 3.20 and Corollary 3.21 .
