Nonlinear Functional Analysis

Practicals

13th May 2020

Recap

Theorem 3.24. Let $A : X \to X^*$ be a strictly monotone, coercive, potential operator, which satisfies condition (S); i.e.,

$$[w_n \rightharpoonup w, \langle Aw_n - Aw, w_n - w \rangle \rightarrow 0] \implies w_n \rightarrow w.$$

Then, Au = f has a unique solution for each right hand side $f \in X^*$, to which the Ritz approximation $u_n \in X_n$ converges.

Theorem 3.25. Let X be a real, separable, reflexive Banach space such that X and X^* are strictly convex. Suppose that the operator A satisfies the following properties:

- 1. A is strictly monotone, coercive, potential operator, satisfying condition (S).
- 2. A is bounded Lipschitz continuous; i.e., there exists an increasing function $M: R_+ \to R_+$ such that

$$||Au - Av|| \le M(R)||u - v||, \qquad R = \max(||u||, ||v||), \qquad \forall u, v \in X.$$

Furthermore, $M(R) \to +\infty$ as $R \to +\infty$.

Choose a > 0. For any $v_0 \in X$ construct the sequence $\{v_i\}$ defined by

$$v_{i+1} = v_i - t_i z_i, \qquad \mathcal{U} z_i = A v_i - b, \qquad i = 0, 1, \dots,$$

where

$$t_i = \min\left\{1, \frac{2}{a + M(\|v_i\| + \|Av_i - b\|)}\right\}.$$

Then, the sequence $\{v_i\}$ converges to the solution of the equation Au = b.

Theorem 3.26. Let the assumptions of Theorem 3.25 be fulfilled. Choose any initial guess w_0 and positive number a. Construct the sequence $\{w_n\}$ by

$$w_{n+1} = w_n - t_n z_n, \qquad \mathcal{U}_{n+1} z_n = A_{n+1} w_n - b_{n+1}, \qquad n = 0, 1, \dots,$$

where

$$t_i = \min\left\{1, \frac{2}{a + M(\|w_n\| + \|Aw_n - b\|}\right\}.$$

Then, the sequence $\{w_n\}$ converges to the solution of the equation Au = b.

Exercises

1. Prove Theorem 3.24.

Hint. Use the equivalence of the Ritz and Galerkin approximations, and apply Theorem 3.23.

2. Assume that in Theorem 3.25 the operator A is Lipschitz continuous; i.e. there exists a constant L for any $x, y \in X$ such that

$$\langle Ax - Ay, x - y \rangle \le L \|x - y\|.$$

Show that in the iterative method we can select

$$t_i = \frac{2}{a+L} \qquad \forall i.$$

Hint. Look at step 1 of the proof of Theorem 3.25.

- 3. Assume that A is a bounded Lipschitz continuous, uniformly monotone, potential operator. Show that Theorem 3.25 holds.
- 4. Prove Theorem 3.26.

Hint. In a similar manner to the proof of Theorem 3.25 prove the following steps:

(a)
$$G(w_n) \ge G(w_{n+1})$$
 and $G(w_n) - G(w_{n+1}) \to 0$.

- (b) $G(w_0) \ge G(w_n) \ge ||w_n|| \left(\frac{1}{2} \left(\frac{||w_n||}{2}\right) \left||b \frac{1}{2}A0||\right)\right).$
- (c) There exists $+\infty > R > 0$ such that $||w_n|| \le R$ for $n = 0, 1, \ldots$
- (d) $z_n \to 0$ as $n \to +\infty$.
- (e) $w_n \to u$. Use the fact that as the sequence $\{w_n\}$ is bounded there exists a weakly convergent subsequence w_{n_k} which weakly converges to w. Then, for an arbitrary $x \in X$ construct the sequence $\{x_i\}$ such that $x_i \to x$. Then show that

$$\langle b - Ax, w - x \rangle \ge 0.$$

Hence, as all monotone potential operators are demicontinuous by Lemma 2.7 (4) Aw = b and, hence, w = u. Therefore, as all weakly convergent subsequences converge to u the whole sequence weakly converges to u.

(f) $\langle Aw_n - Au, w_n - u \rangle \to 0$. Use Lemma 2.7 to show that the sequence $\{Aw_n\}$ is bounded; i.e., there exists a constant $R_2 < \infty$ such that $||Aw_n|| \le R_2$. To do this, prove that

$$\langle Aw_n, w_n \rangle = \langle \mathcal{U}z_n + b, w_n \rangle \le R_1 \le \infty, \qquad R_1 = R(\|z_n\| + \|b\|).$$

Let u_n be the *n*th Ritz approximation; then,

$$\langle Aw_n - Au, w_n - u \rangle = \langle Aw_n - Au, w_n - u_n \rangle + \langle Aw_n - Au, u_n - u \rangle$$

= $\langle \mathcal{U}z_n, w_n - u_n \rangle + \langle Aw_n - b, u_n - u \rangle$
 $\leq 2R \|z_n\| + (R_2 + \|b\|) \|u_n - u\| \to 0.$

(g) Apply (S) to show that $w_n \to u$.