Nonlinear Differential Equations

Practical Exercises 2

Due: 6th March 2024

1. Prove the following theorem:

Theorem 1.14. Let X be a finite-dimensional normed linear space and f a continuous mapping defined on a closed, convex, and bounded subset $K \subset X$ mapping K to itself; i.e., $f(x) \in K$ for all $x \in K$. Then, there exists a fixed point of f in K; i.e., $\exists x \in K$ such that

$$\overline{x} = f(\overline{x}).$$

Hint. Define

$$x = \sum_{i=1}^{n} \alpha_i x_i,$$

where x_1, \ldots, x_n form a basis for X (dim X = n), and $\boldsymbol{\alpha} = \{\alpha_i\}_i^n \in \mathbb{R}^n$. Then, define a linear, continuous operator $T: X \to \mathbb{R}^n$ as $T(x) = \boldsymbol{\alpha}$ (which has a continuous inverse T^{-1}). Defining $K_1 = T(K)$ and $g(\boldsymbol{\alpha}) = T(f(T^{-1}(\boldsymbol{\alpha})))$, show that g has a fixed point, and hence, that f has a fixed point.

2. Prove the following theorem:

Theorem 1 (Krasnoselskii Fixed Point Theorem). Let X be a Banach space, and $M \subset X$ be closed, bounded, and convex. Furthermore, consider the mappings $T_1, T_2 : M \to X$ such that

- $T_1(x) + T_2(x) \in M$ for all $x, y \in M$,
- T_1 is strongly contractive, and
- T_2 is continuous and compact.

Then, $T_1 + T_2$ has a fixed point in M.

Hint. Show that

- (a) $I T_1$ defines a homeomorphism on M, where I is the identity function,
- (b) $T_2: M \to (I T_1)(M)$, and
- (c) $(I T_1)^{-1} \circ T_2 : M \to M$ is compact and continuous (see Lemma 1.17).