Nonlinear Differential Equations

Practical Exercises 3

Due: 13th March 2024

1. Let $\boldsymbol{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, m>0$, be a symmetric positive definite matrix.
(a) Show that the operator

$$
\begin{aligned}
T: \mathbb{R}^{m} & \rightarrow \mathbb{R}^{m}, \\
v & \mapsto \boldsymbol{A} v,
\end{aligned}
$$

is strongly monotone and Lipschitz continuous.
Hint. Consider the eigendecomposition of \boldsymbol{A}.
(b) Given $\boldsymbol{b} \in \mathbb{R}^{m}$, show that there exists a positive constant $\delta \in \mathbb{R}$ such that the iteration

$$
\boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}-\delta\left(\boldsymbol{A} \boldsymbol{x}_{n}-\boldsymbol{b}\right), \quad n \geq 0
$$

converges to $\boldsymbol{A}^{-1} \boldsymbol{b}$ for any starting vector $\boldsymbol{x}_{0} \in \mathbb{R}^{m}$.
2. Continuous linear operators are always bounded; whereas, continuous nonlinear operators may not be bounded.
For example, consider $X:=\ell^{2}$ and define the operator $A: X \rightarrow X$ as

$$
A x=y, \quad x=\left\{\xi_{1}, \ldots, \xi_{k}, \ldots\right\}, y=\left\{\left(\xi_{1}\right)^{1}, \ldots,\left(\xi_{k}\right)^{k}, \ldots\right\}
$$

Show that A is continuous but not bounded.
Hint. For continuity construct a (bounded) convergent sequence. You can also use the trivial statements

$$
\left(a^{i}-b^{i}\right)^{2} \leq(a-b)^{2} i r^{i-1}, \quad \text { for } a \geq 0, b \geq 0, i \in \mathbb{N}, r=\max (a, b)
$$

and

$$
\lim _{i \rightarrow \infty}\left(i\left(\frac{1}{2}\right)^{i-1}\right) \rightarrow 0
$$

without proof.
3. Show that for the operators $A, B: X \rightarrow X^{*}$, on a Banach space X, that
(a) A uniformly monotone $\Longrightarrow A$ strictly monotone
(b) A strictly monotone $\Longrightarrow A$ monotone
(c) $A \alpha$-monotone $\Longrightarrow A$ monotone
(d) A strongly monotone and B strongly monotone $\Longrightarrow A+B$ strongly monotone
(e) A strongly monotone and B monotone $\Longrightarrow A+B$ strongly monotone

