Nonlinear Differential Equations

Practical Exercises 3

Due: 13th March 2024

- 1. Let $\mathbf{A}: \mathbb{R}^m \to \mathbb{R}^m, m > 0$, be a symmetric positive definite matrix.
 - (a) Show that the operator

$$T: \mathbb{R}^m \to \mathbb{R}^m,$$
$$v \mapsto \mathbf{A}v,$$

is strongly monotone and Lipschitz continuous.

Hint. Consider the eigendecomposition of A.

(b) Given $\boldsymbol{b} \in \mathbb{R}^m$, show that there exists a positive constant $\delta \in \mathbb{R}$ such that the iteration

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \delta(\boldsymbol{A}\boldsymbol{x}_n - \boldsymbol{b}), \qquad n \ge 0,$$

converges to $A^{-1}b$ for any starting vector $x_0 \in \mathbb{R}^m$.

2. Continuous linear operators are *always* bounded; whereas, continuous *nonlinear* operators may not be bounded.

For example, consider $X := \ell^2$ and define the operator $A : X \to X$ as

$$Ax = y,$$
 $x = \{\xi_1, \dots, \xi_k, \dots\}, y = \{(\xi_1)^1, \dots, (\xi_k)^k, \dots\}.$

Show that A is continuous but not bounded.

Hint. For continuity construct a (bounded) convergent sequence. You can also use the trivial statements

$$(a^{i} - b^{i})^{2} \le (a - b)^{2} i r^{i-1}, \quad \text{for } a \ge 0, b \ge 0, i \in \mathbb{N}, r = \max(a, b)$$

and

$$\lim_{i \to \infty} \left(i \left(\frac{1}{2} \right)^{i-1} \right) \to 0$$

without proof.

- 3. Show that for the operators $A, B: X \to X^*$, on a Banach space X, that
 - (a) A uniformly monotone \implies A strictly monotone
 - (b) A strictly monotone \implies A monotone
 - (c) $A \alpha$ -monotone $\implies A$ monotone
 - (d) A strongly monotone and B strongly monotone \implies A + B strongly monotone
 - (e) A strongly monotone and B monotone \implies A + B strongly monotone