Nonlinear Differential Equations

Practical Exercises 4

Due: 20th March 2024

1. Let $A: X \to X^*$, where X is a real reflexive Banach space. Suppose that the decomposition A = B + T exists, where $B: X \to X^*$ is radially continuous, monotone, and bounded and $T: X \to X^*$ is strongly continuous.

Show that the operator A is pseudomonotone and bounded.

2. Let X_n be a finite dimensional subspace of a Banach space X. Define $P_n : X \to X_n$ as a *projection* from X to X_n , and construct the dual projection $P_n^* : X_n^* \to X^*$ such that

$$\langle f_n, P_n x \rangle = \langle P_n^* f_n, x \rangle \qquad \forall f_n \in X_n^*, x \in X.$$

Given an operator $A: X \to X^*$, define the operator $A_n: X_n \to X_n^*$ as $A_n = P_n^* A P_n$. Prove that

- (a) A monotone $\implies A_n$ monotone
- (b) A coercive $\implies A_n$ coercive
- (c) A demicontinuous \implies A_n demicontinuous
- 3. Prove the following.

Theorem 2.12. Let H be a Hilbert space and the operator $A : H \to H$ meet the following conditions:

- (a) A is monotone,
- (b) A is continuous for every finite dimensional subspace $M \subset H$,
- (c) A is coercive; i.e.,

$$\lim_{\|x\| \to \infty} \frac{(Ax, x)}{\|x\|} = \infty.$$

Then, the operator A is surjective; i.e., the equation Ax = y has a solution for every right hand side $y \in H$. Moreover, if A is strictly monotone the solution is unique.

Hint. For fixed $y \in H$ define the operator $T : H \to H$ as Tx = Ax - y. Then, use the following theorem and/or corollary to show that there exist a x such that Tx = 0.

Theorem 1. Let B be a closed unit ball in a Hilbert space H, and let $A : B \to H$ be monotone and continuous on $B \cap M$, where M is an arbitrary finite dimensional subspace of H.

(a) Then, there exists $x_0 \in B$ such that

$$(Ax_0, y - x_0) \ge 0$$
 for all $y \in B$.

Moreover, the set of points satisfying this condition is convex.

(b) If $||x_0|| < 1$ then $Ax_0 = 0$.

(c) If $||x_0|| = 1$ and if, for each

$$x \in \mathcal{G} := \{ u \in H : ||u|| = 1 \},\$$

it holds that $x + \lambda Ax \neq 0$ for all $\lambda > 0$, then $Ax_0 = 0$.

Corollary 2. Let B(w, r) be a closed ball in a Hilbert space H with centre $w \in H$ and radius r > 0, and let $T : B(w, r) \to H$ be monotone and continuous on $B(w, r) \cap M$, where M is an arbitrary finite dimensional subspace of H. If, for each

$$z \in \mathcal{S}(w, r) := \{ u \in H : ||u - w|| = r \},\$$

it holds that $z - w + \lambda T z \neq 0$ for all $\lambda > 0$; then, there exists a $z_0 \in B(w, r)$ such that $Tz_0 = 0$.

4. Prove the following.

Corollary 2.16. Let X be a separable, reflexive Banach space and the operator $A : X \to X^*$ meets one of the following conditions:

- (a) A is coercive, demicontinuous, bounded, and satisfies condition (S),
- (b) A is coercive, pseudomonotone, and bounded.

Then, the operator A is surjective; i.e, a solution of the equation Au = b exists for every right hand side $b \in X^*$. Additionally, A^{-1} is bounded; i.e., there exists a function $N : \mathbb{R}_+ \to \mathbb{R}_+$ such that, for all $u \in X$,

$$\|u\| \le N(\|Au\|).$$