Nonlinear Differential Equations

Practical Exercises 6

Due: 3rd April 2024

Exercises

1. State the order of the following differential equations defined on the domain $\Omega = \mathbb{R}^n$, n = 2, 3, and categorize them as *linear*, *semilinear*, *quasilinear*, or *(fully) nonlinear*. In the following equations, for a scalar-valued function u, vector-valued function v, and $n \times n$ matrix-valued function $\underline{\sigma}$, we define the gradient operator as

$$\nabla u \coloneqq \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)^\top \qquad \nabla \boldsymbol{v} \coloneqq \begin{pmatrix} \frac{\partial v_1}{\partial x_1} & \dots & \frac{\partial v_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial v_n}{\partial x_1} & \dots & \frac{\partial v_n}{\partial x_n} \end{pmatrix},$$

and the divergence operator as

$$\nabla \cdot \boldsymbol{v} \coloneqq \sum_{i=1}^{n} \frac{\partial v_i}{\partial x_i} \qquad \nabla \cdot \underline{\sigma} = \left(\sum_{j=1}^{n} \frac{\partial \sigma_{1j}}{\partial x_j}, \dots, \sum_{j=1}^{n} \frac{\partial \sigma_{nj}}{\partial x_j}, \right)^{\top}$$

For a function ψ we define the Laplacian operator as $\Delta \psi \equiv \nabla \cdot \nabla \psi$, the biharmonic operator as $\Delta^2 \psi \equiv \Delta \Delta \psi$, and the Hessian operator as $\nabla^2 = \nabla (\nabla \psi)$.

Poisson's Equation

$$\Delta u = f$$

where $u: \Omega \to \mathbb{R}$ is the unknown and $f: \Omega \to \mathbb{R}$ is a known function.

Chladny sound figures

$$\Delta u + \lambda \sin u = 0$$

where $u: \Omega \to \mathbb{R}$ is the unknown and $\lambda: \Omega \to \mathbb{R}$ is a known function.

von Kármán equations For n = 2,

$$D\Delta^2 u - [u, w] = f,$$

$$\Delta^2 w + \frac{1}{2} [u, u] = 0,$$

where $u, w : \Omega \to \mathbb{R}$ are the unknowns, D is a constant, $f : \Omega \to \mathbb{R}$ is a known function, and the bracket operator $[\cdot, \cdot]$ is defined as

$$[u,v] = \frac{\partial^2 u}{\partial x_1^2} \frac{\partial^2 v}{\partial x_2^2} - 2\frac{\partial^2 u}{\partial x_1 \partial x_2} \frac{\partial^2 v}{\partial x_1 \partial x_2} + \frac{\partial^2 u}{\partial x_2^2} \frac{\partial^2 v}{\partial x_1^2}.$$

Non-Newtonian fluid

$$-\nabla \cdot \{\mu\left(\boldsymbol{x}, |\underline{e}\left(\boldsymbol{u}\right)|\right) \underline{e}\left(\boldsymbol{u}\right)\} + \nabla p = \boldsymbol{f},\tag{1}$$

 ∇

$$\cdot \, \boldsymbol{u} = 0, \tag{2}$$

where $\boldsymbol{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a known source term, $\boldsymbol{u}: \mathbb{R}^n \to \mathbb{R}^n$ is the unknown velocity vector, $p: \mathbb{R}^n \to \mathbb{R}$ is the unknown pressure, $\underline{e}(\boldsymbol{u})$ is the symmetric $n \times n$ strain tensor defined by

$$e_{ij}(\boldsymbol{u}) := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \qquad i, j = 1, \dots, n,$$

 $|\underline{e}(u)|$ is the Frobenius norm of $\underline{e}(u)$, and $\mu : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is a known function. (Steady State) Navier-Stokes

$$-\nu\Delta \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla p = \boldsymbol{f},$$
$$\nabla \cdot \boldsymbol{u} = 0,$$

where \boldsymbol{u}, p and \boldsymbol{f} are the same as for the non-Newtonian fluid and $\nu : \mathbb{R}^n \to \mathbb{R}$ is a known function. Here, $\boldsymbol{v} \cdot \underline{\sigma} \equiv \underline{\sigma} \boldsymbol{v}$ for a vector \boldsymbol{v} and matrix $\underline{\sigma}$.

Monge-Ampère

$$\det(\nabla^2 u) - f(\boldsymbol{x}, u, \nabla u) = 0,$$

where $u: \mathbb{R}^n \to \mathbb{R}$ is the unknown, and $f: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a known function.