Nonlinear Differential Equations

Practical Exercises 7

Due: 11th April 2024

1. Prove only the boundedness of the Nemyckii operator in the following (ignore continuity).

Theorem 3.11. Let $k \in \mathbb{N}, p \geq 1, r \geq 1, f(x, \xi) \in \operatorname{CAR}$ be a function defined on $x \in \Omega \subset$ \mathbb{R}^{n} and $\xi \in \mathbb{R}^{\kappa}$. Suppose there exists a continuous function $c(t) \geq 0$, defined for $t \geq 0$, and function $g \in L^{r}(\Omega)$ such that for all $\xi \in \mathbb{R}^{\kappa}$ and for almost all $x \in \Omega$ it holds that

$$
|f(x, \xi)| \leq c\left(\sum_{|\beta|<k-\frac{n}{p}}\left|\xi_{\beta}\right|\right)\left[g(x)+\sum_{k-\frac{n}{p} \leq|\beta| \leq k}\left|\xi_{\beta}\right|^{\frac{q(\beta)}{r}}\right]
$$

where
(a) for $|\beta|>k-\frac{n}{p}$

$$
q(\beta)=\frac{n p}{n-(k-|\beta|) p}
$$

(b) for $|\beta|=k-\frac{n}{p}$

$$
q(\beta) \geq 1 \quad \text { arbitrary }
$$

Then, for each $u \in W^{k, p}(\Omega), f\left(x, \delta_{k} u(x)\right) \in L^{r}(\Omega)$ and the Nemyckii operator defined by f $(\mathcal{N}(u)(x)=f(x, u(x)), x \in \Omega)$ is continuous and bounded from $W^{k, p}(\Omega)$ to $L^{r}(\Omega)$.

Hint. Using the inequality

$$
(a+b)^{r} \leq 2^{r-1}\left(a^{r}+b^{r}\right), \quad a, b>0, \quad r \in \mathbb{N},
$$

show that

$$
\left|f\left(x, \delta_{k} u(x)\right)\right|^{r} \leq c_{1}\left|c\left(\sum_{|\beta|<k-\frac{n}{p}}\left|D^{\beta} u(x)\right|\right)\right|^{r}\left(|g(x)|^{r}+\sum_{k-\frac{n}{p} \leq|\beta| \leq k}\left|D^{\beta} u(x)\right|^{q(\beta)}\right)
$$

where c_{1} is a constant. c is continuous, Ω is bounded and thus by Theorem 3.8 (iii) there exists a constant $c_{2}>0$ such that for all $x \in \bar{\Omega}$

$$
\left|f\left(x, \delta_{k} u(x)\right)\right|^{r} \leq c_{1} c_{2}\left(|g(x)|^{r}+\sum_{k-\frac{n}{p} \leq|\beta| \leq k}\left|D^{\beta} u(x)\right|^{q(\beta)}\right)
$$

Integrate over Ω to complete the proof.
2. Prove the following.

Theorem 3.12. Let \mathcal{A} be a formal differential operator of order $2 k$,

$$
(\mathcal{A} u)(x)=\sum_{|\alpha| \leq k} D^{\alpha} a_{\alpha}\left(x, \delta_{k} u(x)\right)
$$

and let the functions $a_{\alpha} \in \operatorname{CAR}$ satisfy, for almost all $x \in \Omega \subset \mathbb{R}^{n}$ and all $\xi \in \mathbb{R}^{\kappa}$ the growth condition

$$
\left|a_{\alpha}(x, \xi)\right| \leq c_{\alpha}\left(\sum_{|\beta|<k-\frac{n}{p}}\left|\xi_{\beta}\right|\right)\left[g_{\alpha}(x)+\sum_{k-\frac{n}{p} \leq|\beta| \leq k}\left|\xi_{\beta}\right|^{r(\alpha, \beta)}\right]
$$

where $p>1$ and
(a) $c_{\alpha}(t)$ is a non-negative continuous function of $t \geq 0$, with c_{α} constant for $k-\frac{n}{p}<0$,
(b) $g_{\alpha} \in L^{s}(\Omega)$, where

$$
s= \begin{cases}\frac{q(\alpha)}{q(\alpha)-1} & \text { if }|\alpha| \geq k-\frac{n}{p} \\ 1 & \text { if }|\alpha|<k-\frac{n}{p}\end{cases}
$$

(c)

$$
r(\alpha, \beta)= \begin{cases}\frac{(q(\alpha)-1) q(\beta)}{q(\alpha)} & \text { if }|\alpha| \geq k-\frac{n}{p}, \\ q(\beta) & \text { if }|\alpha|<k-\frac{n}{p},\end{cases}
$$

(d)

$$
q(\nu)= \begin{cases}\frac{N p}{N-(k-|\nu|) p} & \text { if }|\nu|>k-\frac{n}{p}, \\ \geq 1 \text { arbitrary } & \text { if }|\nu|=k-\frac{n}{p} .\end{cases}
$$

Then, the operator A defined by the relation

$$
\langle A u, v\rangle=\sum_{|\alpha| \leq k} \int_{\Omega} a_{\alpha}\left(x, \delta_{k} u(x)\right) D^{\alpha} v(x) \mathrm{d} x, \quad v \in W^{k, p}(\Omega)
$$

is bounded and continuous from $W^{k, p}(\Omega)$ to the dual space $\left(W^{k, p}(\Omega)\right)^{*}$.
Hint. To estimate integrals of the form

$$
\int_{\Omega} a_{\alpha}\left(x, \delta_{k} u(x)\right) D^{\alpha} v(x) \mathrm{d} x, \quad u, v \in W^{k, p}(\Omega),|\alpha| \leq k
$$

use Theorems 3.8 and 3.11, taking the functions a_{α} instead of f and choose r as follows:

$$
r= \begin{cases}\frac{q(\alpha)}{q(\alpha)-1}, & \text { if }|\alpha| \geq k-\frac{n}{p} \\ 1, & \text { if }|\alpha|<k-\frac{n}{p}\end{cases}
$$

