Nonlinear Differential Equations

Practical Exercises 8

Due: 17th April 2024

1. Let

$$
(\mathcal{A} u)(x)=\sum_{|\alpha| \leq k} D^{\alpha} a_{\alpha}\left(x, \delta_{k} u(x)\right),
$$

$p \in(1, \infty)$, and $a_{\alpha} \in \operatorname{CAR}^{*}(p)$ for $|\alpha| \leq k$. Let V be such that

$$
W_{0}^{k, p}(\Omega) \subset V \subset W^{k, p}(\Omega)
$$

Q a Banach space of functions in Ω, with norm $\|\cdot\|_{Q}$, where $C^{\infty}(\Omega)$ is dense in Q and V is continuously embedded in $Q(V \hookrightarrow Q)$. Finally,
(a) function $\varphi \in W^{k, p}(\Omega)$,
(b) functional $g \in V^{*}$ such that for all $v \in W_{0}^{k, p}(\Omega),\langle g, v\rangle_{V}=0$,
(c) functional $f \in Q^{*}$.

Define $A: W^{k, p}(\Omega) \rightarrow\left(W^{k, p}(\Omega)\right)^{*}$ such that for all $u, v \in W^{k, p}(\Omega)$

$$
\langle A u, v\rangle=\sum_{|\alpha| \leq k} \int_{\Omega} a_{\alpha}\left(x, \delta_{k} u(x)\right) D^{\alpha} v(x) \mathrm{d} \boldsymbol{x} .
$$

Define the operator T on V such that, for $u \in V, T u$ is an element from V^{*} defined by

$$
\langle T u, v\rangle=\langle A(u+\varphi), v\rangle-\langle f, v\rangle_{Q}-\langle g, v\rangle_{V} \quad \text { for all } v \in V .
$$

Prove that
(a) T is bounded and demicontinuous (Lemma 3.14);

Hint. Use the continuity of the Nemyckii operator corresponding to a_{α} (see Theorem 3.11).
(b) T is monotone if, for all $\xi, \eta \in \mathbb{R}^{\kappa}$ and almost all $x \in \Omega$,

$$
\begin{equation*}
\sum_{|\alpha| \leq k}\left(a_{\alpha}(x, \xi)-a_{\alpha}(x, \eta)\right)\left(\xi_{\alpha}-\eta_{\alpha}\right) \geq 0 \tag{1}
\end{equation*}
$$

(Lemma 3.15)
(c) T is strictly monotone if equality only holds in (1) for $\eta=\xi$ (Corollary 3.16).
2. Consider the following Dirichlet problem:

$$
\begin{aligned}
-\nabla \cdot(\mu(\boldsymbol{x}, \nabla u) \nabla u)+b(\boldsymbol{x}, u) & =h(\boldsymbol{x}) & & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where Ω has Lipschitz boundary, $u: \Omega \rightarrow \mathbb{R}$ is the unknown function, $h \in C(\bar{\Omega})$, and

$$
\begin{aligned}
\nabla \phi & =\binom{\frac{\partial \phi}{\partial x_{1}}}{\frac{\partial \phi}{\partial x_{1}}} & \text { for scalar-valued function } \varphi: \Omega \rightarrow \mathbb{R}, \\
\nabla \cdot \boldsymbol{\sigma} & =\frac{\partial \sigma_{1}}{\partial x_{1}}+\frac{\partial \sigma_{2}}{\partial x_{2}} & \text { for vector-valued function } \boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}\right)^{\top}: \Omega \rightarrow \mathbb{R}^{2} .
\end{aligned}
$$

Let $p=2, V=W_{0}^{1,2}(\Omega), Q=L^{2}(\Omega)$, define $\varphi \in W^{1,2}(\Omega)$ as $\varphi=0, g \in V^{*}$ as $g=0$, and $f \in Q^{*}$ such that

$$
\langle f, v\rangle_{Q}=\int_{\Omega} h(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \forall v \in V
$$

(a) Define, for this problem,
i. the coefficient functions $a_{\alpha}(\boldsymbol{x}, \boldsymbol{\xi}), \boldsymbol{\xi} \in \mathbb{R}^{\kappa}$, for all multi-indices α, where $|\alpha| \leq 1$,
ii. the divergence form of the Dirichlet problem,
iii. the boundary value problem (\mathcal{A}, V, Q),
iv. the definition of the weak solution of the boundary value problem, and
v. an operator $T: V \rightarrow V^{*}$ such that the set of solution of $T u=0$ is equivalent to the set of weak solutions to the boundary value problem.
(b) Derive conditions for μ, b, and h, such that Theorem 3.18 can be applied to show existence of a weak solution of the boundary value problem and any additional conditions necessary to ensure the weak solution is unique; i.e., state conditions such that
i. T is monotone,
ii. T is strictly monotone,
iii. T is coercive, and
iv. $a_{\alpha} \in \operatorname{CAR}^{*}(2),|\alpha| \leq 1$
(c) In the case that $b(u) \equiv 0$ additionally state conditions on μ such that T is
i. strongly monotone, and
ii. Lipschitz continuous.

