Nonlinear Differential Equations

Practical Exercises 8

Due: 17th April 2024

1. Let

$$(\mathcal{A}u)(x) = \sum_{|\alpha| \le k} D^{\alpha} a_{\alpha}(x, \delta_k u(x)),$$

 $p \in (1,\infty)$, and $a_{\alpha} \in \operatorname{CAR}^{*}(p)$ for $|\alpha| \leq k$. Let V be such that

$$W_0^{k,p}(\Omega) \subset V \subset W^{k,p}(\Omega)$$

Q a Banach space of functions in Ω , with norm $\|\cdot\|_Q$, where $C^{\infty}(\Omega)$ is dense in Q and V is continuously embedded in Q ($V \hookrightarrow Q$). Finally,

- (a) function $\varphi \in W^{k,p}(\Omega)$,
- (b) functional $g \in V^*$ such that for all $v \in W_0^{k,p}(\Omega), \langle g, v \rangle_V = 0$,
- (c) functional $f \in Q^*$.

Define $A: W^{k,p}(\Omega) \to (W^{k,p}(\Omega))^*$ such that for all $u, v \in W^{k,p}(\Omega)$

$$\langle Au, v \rangle = \sum_{|\alpha| \le k} \int_{\Omega} a_{\alpha}(x, \delta_k u(x)) D^{\alpha} v(x) \, \mathrm{d}\mathbf{x}$$

Define the operator T on V such that, for $u \in V$, Tu is an element from V^* defined by

$$\langle Tu, v \rangle = \langle A(u + \varphi), v \rangle - \langle f, v \rangle_Q - \langle g, v \rangle_V$$
 for all $v \in V$.

Prove that

(a) T is bounded and demicontinuous (Lemma 3.14);

Hint. Use the continuity of the Nemyckii operator corresponding to a_{α} (see Theorem 3.11).

(b) T is monotone if, for all $\xi, \eta \in \mathbb{R}^{\kappa}$ and almost all $x \in \Omega$,

$$\sum_{|\alpha| \le k} \left(a_{\alpha}(x,\xi) - a_{\alpha}(x,\eta) \right) \left(\xi_{\alpha} - \eta_{\alpha} \right) \ge 0, \tag{1}$$

(Lemma 3.15)

- (c) T is strictly monotone if equality only holds in (1) for $\eta = \xi$ (Corollary 3.16).
- 2. Consider the following Dirichlet problem:

$$egin{aligned} -
abla \cdot (\mu(oldsymbol{x},
abla u)
abla u) + b(oldsymbol{x},u) &= h(oldsymbol{x}) & ext{in } \Omega \subset \mathbb{R}^2 \ u &= 0 & ext{on } \partial \Omega \end{aligned}$$

where Ω has Lipschitz boundary, $u: \Omega \to \mathbb{R}$ is the unknown function, $h \in C(\overline{\Omega})$, and

$$\nabla \phi = \begin{pmatrix} \frac{\partial \phi}{\partial x_1} \\ \frac{\partial \phi}{\partial x_1} \end{pmatrix} \quad \text{for scalar-valued function } \varphi : \Omega \to \mathbb{R},$$
$$\nabla \cdot \boldsymbol{\sigma} = \frac{\partial \sigma_1}{\partial x_1} + \frac{\partial \sigma_2}{\partial x_2} \quad \text{for vector-valued function } \boldsymbol{\sigma} = (\sigma_1, \sigma_2)^\top : \Omega \to \mathbb{R}^2.$$

Let $p = 2, V = W_0^{1,2}(\Omega), Q = L^2(\Omega)$, define $\varphi \in W^{1,2}(\Omega)$ as $\varphi = 0, g \in V^*$ as g = 0, and $f \in Q^*$ such that

$$\langle f, v \rangle_Q = \int_{\Omega} h(\boldsymbol{x}) v(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \qquad \forall v \in V.$$

- (a) Define, for this problem,
 - i. the coefficient functions $a_{\alpha}(\boldsymbol{x}, \boldsymbol{\xi}), \boldsymbol{\xi} \in \mathbb{R}^{\kappa}$, for all multi-indices α , where $|\alpha| \leq 1$,
 - ii. the divergence form of the Dirichlet problem,
 - iii. the boundary value problem (\mathcal{A}, V, Q) ,
 - iv. the definition of the weak solution of the boundary value problem, and
 - v. an operator $T: V \to V^*$ such that the set of solution of Tu = 0 is equivalent to the set of weak solutions to the boundary value problem.
- (b) Derive conditions for μ , b, and h, such that Theorem 3.18 can be applied to show existence of a weak solution of the boundary value problem and any additional conditions necessary to ensure the weak solution is unique; i.e., state conditions such that
 - i. T is monotone,
 - ii. T is strictly monotone,
 - iii. T is coercive, and
 - iv. $a_{\alpha} \in \operatorname{CAR}^{*}(2), |\alpha| \leq 1$
- (c) In the case that $b(u) \equiv 0$ additionally state conditions on μ such that T is
 - i. strongly monotone, and
 - ii. Lipschitz continuous.