Nonlinear Differential Equations Practical 3 March 5, 2025

Nonlinear Differential Equations
Practical 3: Banach & Sobolev Spaces

1. Prove the generalised Holder’s inequality: For m € N, m > 2, let there exists functions f;,
i=1,....,mand 0 < py,...,pm < oo; then,

1
0,p1"'||fm\|o,pm for; = _.

1=

[f1- fmlloys < [ f1l

Hint. Use the standard Holder’s inequality (Lemma 1.12) and induction.

Solution: Forr = co thenp; = -+ = p,, = oo and

[f1-+ fmllo,co < I fillooo << I f2

follows trivially from properties of the essential supremum.

0,00

For 1 < r < oo we proceed by induction on m.

Base case: We first consider m = 2: We have that 1/r = 1/p; 4+ 1/p,; hence, 7/p1 + 7/p> = 1
and 1 < pi/r 4+ p1/q < oo. Therefore, from Lemma 1.12,

‘07P1”f2

e Yr i Yr Y
1f1follog = AT 2 s < MAT I, M2l o, = 112 lopar (L1)

Induction step: We now assume that the theorem holds for all m < £k and show it
holds for k + 1. Setting 1/p = Zle Up;, = 1/r — pyyy we have that 1/r = 1/p + 1/p,,
with 1 < p, ¢ < 1; hence, by (1.1)

| f1- frfos

o0 < 1 f1- - frllowll frslloppss- (12)
If p < oo we can apply the induction hypothesis to get that
1fv-- Fillop < 1 ftllopr - [ frllom (1.3)

as /p = 2% 1/p; or trivially for p = co. Combining (1.2) and (1.3) completes the
proof.

2. LetQ C R? be a measurable domain with Lipschitz boundary and o € NjJ be a multi-index;
then, prove that the seminorm

|v

1/2
12,0 = Z 10%01§ 2.0
la|=1

is a norm on the space H; ().
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Solution: As |- |; 2 is a seminorm the only property of a norm we need to show is
that
|’U|172,Q =0 — v=0.

We first note we can re-write the seminorm as

1/2
n 2
ov
vhgo= (>
1197l 2.0
=1 34y
< Ifv=0thend/oz; =0,i=1,...,n; hence,
ov
’8 : =0,i=1,...,n = [v]12,0 = 0.
Tillo,2,0

= If |U’1,27Q = 0 then

n

v |2 ov
Z = O — — O,Z — 1, ,n
T 107illoz0 Izillo 2.0
By the fact that ||-||p 2,0 is a norm, we have that
ov ,
=0,1=1,...,n - v=c
8.%‘

were ¢ € R is a constant. Additionally, as v € Hg(Q) then v = 0 on the boundary
0€). It can then be shown that this is only valid for v = ¢ = 0.

3. Let F': C*([0, L]) — C([0, L]) be defined by

d?

F(p) = T;QD + Asing
for fixed A € R; cf. Example 1.1. Derive the Fréchet derivative in ¢ and Gateaux derivative
in ¢ in the direction 1 of F.

Hint. Consider F (o +1) — F(p) and F(¢ +t) — F (), respectively, for ¢,vp € C%([0, L]) with
small || ¢l|2,00 and [|4)]]2,c0-

Solution: We start with the Fréchet derivative.

d? d?
Flo+1v)—F(p) = (ss; ¥ _ dsf + A(sin(p + ) — singp).

By Taylor’s expansion of sin around ¢:

sin(p + ¢) = sin(p) + cos(p) (¢ + 1 — ) + o(¥))

Therefore, )

Flp+ )~ Flp) = 5 + Aeos(e)y + o(w) = Fh(p)¥
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where Fl.(¢) € L(C?([0, L]), C([0, L])) defined as
d2
Fi(g) s v S8+ Aeos()y
is the Fréchet derivative.

Similarly, we have that

(e +tp) d%p

Flp+t))— F(p) = + A(sin(p + t1)) — sin )

ds? ds?
a2
= t@ + tAcos(p)y + o(t))

= tFG(p, 1) + 0y (t)

where oy (t) = o(t) is dependent on ¢ and F,(¢) € C([0, L]) defined as

d2
Fg(p, ) = T;ﬁ + Acos(p)y

is the Gateaux derivative in ¢ in the direction 1)

4. Let 2 C R" be a measurable domain with Lipschitz boundary and X = H&(Q) ; then,
define F' : X — X’ be defined such that for u,v € X

(F(u),v):/Q,u(|Vu])Vu-Vvda:,

where p(t) € C([0,00)) is the Carreau law defined by

n—1

plt) = ping + (10 — pin) (14 (A)?) 2
for constants fint, £10, 7, A € R. Compute
(FG(u, w), v)
where F/,(u, w) is the Gateaux derivative of F in v in the direction w.

Hint. Use (F( fw) — Flu).0)
, e u—+tw)— u),v
(Fo(u,w),v) = %1_{1(1) ; .

Solution: Note that above definition of u is potentially problematic - we proceed as if we can
make some assumptions on i and ignore its actual definition.

, L (Fu+tw) — F(u),v)
<FG(u7w)vU> _%g% t

1
= lim — (/ p(|Vu + tVw|)V(u + tw) - Vo de — / p(|Vul)Vu - Vvd:n)
Q Q

t—0 t

1
=lim— [ (p(|Vu+tVw|) — p(|Vu|)) Vu - Vode
t=01 Jq

+lim [ p(|Vu+tVw|)Vw - Vodx
t—0 Q
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() = [ gy AL 90D = 9

-/ (;uuthww

Then, assuming that the derivative of (), with respect to the argument, exists and is
defined by 1/ (t); then,

Vu - Vodz + / p(|Vu)Vw - Vo de
Q

)Vu-Vvd:c—i—/u(\Vu])Vw-Vvdw
Q

t=0

%u(\Vu+ti|)
1
= ’(|Vu+Ww|)g ’
—h dt

_ //(|Vu+ti|)% <zn: (aii(u—l—tw)>2) e v” % (a‘l (u+tw)>2

i=1

= 1/ (|Vu + tVw|) (an <aaxi(u—|—tw)>2>_l/2 nl (;i(uﬂw)) gz‘

i=1

Hence,

= W/ (|Vu))|Vu| ™! (Vu - Vw).

d
au(\Vu + tVw|) »

Combining the above results we get that

(F(u,w),v) = / ¢ (V)| Vu| ™ (Vu - Vw) Vu - Vo de + / p(|Vu|)Vw - Vo de.
Q Q
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