Homework 1

Finite Element Methods 1

Due date: 6th November 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the *Study Group Roster (Záznamník učitele)* in SIS, or hand-in directly at the practical class on the 6th November 2023.

1. (2 points) Consider the boundary value problem

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + cu = f \qquad \text{in } \Omega,$$
$$\sum_{i,j=1}^{n} n_i a_{ij} \frac{\partial u}{\partial x_j} + hu = g \qquad \text{on } \partial\Omega,$$

where $\Omega \subset \mathbb{R}^n$ is a bounded domain with a Lipschitz continuous boundary, $a_{ij} \in L^{\infty}(\Omega)$, $c \in L^{\infty}(\Omega)$, $f \in L^2(\Omega)$, $h \in L^{\infty}(\partial\Omega)$, and $g \in L^2(\partial\Omega)$. We assume the matrix $(a_{ij})_{i,j=1}^n$ is uniformly positive definite a.e. in Ω , $c \geq 0$ a.e. in Ω , and $h \geq h_0$ on $\partial\Omega$ where h_0 is a positive constant.

Derive the variational formulation for the above boundary value problem, using the test space $V = H^1(\Omega)$, and prove a unique solution exists.

2. (2 points) Consider the Poisson equation on the unit square with homogeneous boundary conditions:

$$-\Delta u = f \quad \text{in } \Omega \coloneqq (0,1)^2$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(1)

where f is a constant.

We define the finite element method for this problem as: Find $u_h \in V_h$ such that

$$a(u_h, v_h) = \langle F, v_h \rangle$$
 for all $v_h \in V_h$, (2)

where

$$a(u_h, v_h) = \int_{\Omega} \nabla u_h \cdot \nabla v_h \, \mathrm{d}\boldsymbol{x}, \qquad \langle F, v_h \rangle = \int_{\Omega} f v_h \, \mathrm{d}\boldsymbol{x},$$

and V_h is finite-dimensional subspace of $H_0^1(\Omega)$. Let $\varphi_1, \ldots, \varphi_N$ be the basis functions of V_h ; then, the solution u_h of the finite element discretization (2) can be written in the

(a) Example of 4×4 triangular mesh

Figure 1: Question 3

form $u_h = \sum_{j=1}^N u_j \varphi_j$. Hence, the discretization (2) is equivalent to solving the following linear system of N unknown coefficients u_1, \ldots, u_N :

$$\sum_{j=1}^{N} a(\varphi_j, \varphi_i) u_j = \langle F, \varphi_i \rangle \quad \text{for } i = 1, \dots, N.$$
(3)

We denote by \mathcal{T}_h the triangulation of Ω into triangles in the following manner:

- 1. subdivide the domain into $(M+1) \times (M+1)$ squares of equal size,
- 2. divide each square into two triangles by splitting from the bottom left to top-right corner of the square;

see Figure 1a for an example when M = 3. We define the width and height of each square as h = 1/(M+1). Let

$$V_h = \{ v_h \in H^1_0(\Omega) : v_h |_T \in P_1(T) \ \forall T \in \mathcal{T}_h \};$$

i.e. the space of continuous piecewise linear functions vanishing on the boundary of Ω . To the interior vertices $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N$ of \mathcal{T}_h , where $N = M^2$, (see Figure 1a for one possible numbering of the vertices) we assign a basis function of V_h such that

$$\varphi_i(x_j) = \delta_{ij}$$
 for $i, j = 1, \dots, N$.

The support of the basis function φ_i consists of the six triangles sharing the vertex \boldsymbol{x}_i , see Figure 1b. This implies that every row of the matrix for the linear system (3) contains at most seven non-zero entries.

Compute the entries for the matrix and right-hand side vector for the linear system (3) and compare these entries to a discretization using the finite difference scheme on a uniform square mesh.

Hint. Computation of these entries is fairly trivial. Consider, for example, the calculation of $a(\varphi_j, \varphi_i)$, where j = i + 1. The nodes \boldsymbol{x}_j and \boldsymbol{x}_{i+1} are connected by an edge and only two triangles share this edge; see Figure 1b. We denote these two triangles as T_1 and T_2 ,

and note that $\operatorname{supp} \varphi_j \cap \operatorname{supp} \varphi_i = T_1 \cup T_2$. Note, also, that $\nabla \varphi_j$ and $\nabla \varphi_i$ are constant on each triangle; therefore,

$$a(\varphi_j,\varphi_i) = \int_{T_1 \cup T_2} \nabla \varphi_j \cdot \nabla \varphi_i \, \mathrm{d}\boldsymbol{x} = |T_1| \, (\nabla \varphi_j)|_{T_1} \cdot (\nabla \varphi_i)|_{T_1} + |T_2| \, (\nabla \varphi_j)|_{T_2} \cdot (\nabla \varphi_i)|_{T_2}.$$

The derivatives of φ_j and φ_i with respect to x and y can be computed on the horizontal and vertical edges, respectively, of the triangles T_1 and T_2 .

3. (2 points) Let T be an n-simplex, let $\{a_i\}_{i=1}^n$, $\{a_{iij}\}_{i \neq j}$, $\{a_{ijk}\}_{i < j < k}$ be the points of $L_3(T)$ and let $\{p_i\}_{i=1}^n$, $\{p_{iij}\}_{i \neq j}$, $\{p_{ijk}\}_{i < j < k}$ be the corresponding basis functions of $P_3(T)$. For i < j < k define the linear functionals

$$\Phi_{ijk}(p) = 12 \, p(a_{ijk}) + 2 \sum_{\ell \in \{i,j,k\}} p(a_\ell) - 3 \sum_{\substack{\ell,m \in \{i,j,k\}\\ \ell \neq m}} p(a_{llm})$$

and the space

$$P'_{3}(T) = \{ p \in P_{3}(T) : \Psi_{ijk}(p) = 0, 1 \le i < j < k \le n+1 \}.$$

Prove that any function from the space $P'_3(T)$ is uniquely determined by its values at the points $\{a_i\}_{i=1}^n \cup \{a_{iij}\}_{i\neq j}$ and derive basis functions such that each basis function equals 1 at one of these points and vanishes at the rest.

Hint. The basis functions $\{p_i\}_{i=1}^n$, $\{p_{iij}\}_{i\neq j}$ can be modified by adding linear combinations of the functions $\{p_{ijk}\}_{i< j< k}$ in such a way that the resulting functions are in $P'_3(T)$. Show that these function form a basis of $P'_3(T)$ and find formulas for these basis functions.