Homework 1

Finite Element Methods 1

Due date: 6th November 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamník učitele) in SIS, or hand-in directly at the practical class on the 6th November 2023.

1. (2 points) Consider the boundary value problem

$$
\begin{array}{rlr}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial u}{\partial x_{j}}\right)+c u=f & \text { in } \Omega, \\
\sum_{i, j=1}^{n} n_{i} a_{i j} \frac{\partial u}{\partial x_{j}}+h u=g & \text { on } \partial \Omega,
\end{array}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with a Lipschitz continuous boundary, $a_{i j} \in L^{\infty}(\Omega)$, $c \in L^{\infty}(\Omega), f \in L^{2}(\Omega), h \in L^{\infty}(\partial \Omega)$, and $g \in L^{2}(\partial \Omega)$. We assume the matrix $\left(a_{i j}\right)_{i, j=1}^{n}$ is uniformly positive definite a.e. in $\Omega, c \geq 0$ a.e. in Ω, and $h \geq h_{0}$ on $\partial \Omega$ where h_{0} is a positive constant.

Derive the variational formulation for the above boundary value problem, using the test space $V=H^{1}(\Omega)$, and prove a unique solution exists.
2. (2 points) Consider the Poisson equation on the unit square with homogeneous boundary conditions:

$$
\begin{align*}
-\Delta u & =f & & \text { in } \Omega:=(0,1)^{2} \\
u & =0 & & \text { on } \partial \Omega, \tag{1}
\end{align*}
$$

where f is a constant.
We define the finite element method for this problem as: Find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle \quad \text { for all } v_{h} \in V_{h}, \tag{2}
\end{equation*}
$$

where

$$
a\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} \mathrm{~d} \boldsymbol{x}, \quad\left\langle F, v_{h}\right\rangle=\int_{\Omega} f v_{h} \mathrm{~d} \boldsymbol{x}
$$

and V_{h} is finite-dimensional subspace of $H_{0}^{1}(\Omega)$. Let $\varphi_{1}, \ldots, \varphi_{N}$ be the basis functions of V_{h}; then, the solution u_{h} of the finite element discretization (2) can be written in the

(a) Example of 4×4 triangular mesh

(b) Nodal linear basis function φ_{i}

Figure 1: Question 3
form $u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j}$. Hence, the discretization (2) is equivalent to solving the following linear system of N unknown coefficients u_{1}, \ldots, u_{N} :

$$
\begin{equation*}
\sum_{j=1}^{N} a\left(\varphi_{j}, \varphi_{i}\right) u_{j}=\left\langle F, \varphi_{i}\right\rangle \quad \text { for } i=1, \ldots, N \tag{3}
\end{equation*}
$$

We denote by \mathcal{T}_{h} the triangulation of Ω into triangles in the following manner:

1. subdivide the domain into $(M+1) \times(M+1)$ squares of equal size,
2. divide each square into two triangles by splitting from the bottom left to top-right corner of the square;
see Figure 1a for an example when $M=3$. We define the width and height of each square as $h=1 /(M+1)$. Let

$$
V_{h}=\left\{v_{h} \in H_{0}^{1}(\Omega):\left.v_{h}\right|_{T} \in P_{1}(T) \forall T \in \mathcal{T}_{h}\right\} ;
$$

i.e. the space of continuous piecewise linear functions vanishing on the boundary of Ω. To the interior vertices $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ of \mathcal{T}_{h}, where $N=M^{2}$, (see Figure 1a for one possible numbering of the vertices) we assign a basis function of V_{h} such that

$$
\varphi_{i}\left(x_{j}\right)=\delta_{i j} \quad \text { for } i, j=1, \ldots, N
$$

The support of the basis function φ_{i} consists of the six triangles sharing the vertex \boldsymbol{x}_{i}, see Figure 1b. This implies that every row of the matrix for the linear system (3) contains at most seven non-zero entries.
Compute the entries for the matrix and right-hand side vector for the linear system (3) and compare these entries to a discretization using the finite difference scheme on a uniform square mesh.
Hint. Computation of these entries is fairly trivial. Consider, for example, the calculation of $a\left(\varphi_{j}, \varphi_{i}\right)$, where $j=i+1$. The nodes \boldsymbol{x}_{j} and \boldsymbol{x}_{i+1} are connected by an edge and only two triangles share this edge; see Figure 1b. We denote these two triangles as T_{1} and T_{2},
and note that $\operatorname{supp} \varphi_{j} \cap \operatorname{supp} \varphi_{i}=T_{1} \cup T_{2}$. Note, also, that $\nabla \varphi_{j}$ and $\nabla \varphi_{i}$ are constant on each triangle; therefore,

$$
a\left(\varphi_{j}, \varphi_{i}\right)=\int_{T_{1} \cup T_{2}} \nabla \varphi_{j} \cdot \nabla \varphi_{i} \mathrm{~d} \boldsymbol{x}=\left.\left.\left|T_{1}\right|\left(\nabla \varphi_{j}\right)\right|_{T_{1}} \cdot\left(\nabla \varphi_{i}\right)\right|_{T_{1}}+\left.\left.\left|T_{2}\right|\left(\nabla \varphi_{j}\right)\right|_{T_{2}} \cdot\left(\nabla \varphi_{i}\right)\right|_{T_{2}}
$$

The derivatives of φ_{j} and φ_{i} with respect to x and y can be computed on the horizontal and vertical edges, respectively, of the triangles T_{1} and T_{2}.
3. (2 points) Let T be an n-simplex, let $\left\{a_{i}\right\}_{i=1}^{n},\left\{a_{i i j}\right\}_{i \neq j},\left\{a_{i j k}\right\}_{i<j<k}$ be the points of $L_{3}(T)$ and let $\left\{p_{i}\right\}_{i=1}^{n},\left\{p_{i i j}\right\}_{i \neq j},\left\{p_{i j k}\right\}_{i<j<k}$ be the corresponding basis functions of $P_{3}(T)$. For $i<j<k$ define the linear functionals

$$
\Phi_{i j k}(p)=12 p\left(a_{i j k}\right)+2 \sum_{\ell \in\{i, j, k\}} p\left(a_{\ell}\right)-3 \sum_{\substack{\ell, m \in\{i, j, k\} \\ \ell \neq m}} p\left(a_{l l m}\right)
$$

and the space

$$
P_{3}^{\prime}(T)=\left\{p \in P_{3}(T): \Psi_{i j k}(p)=0,1 \leq i<j<k \leq n+1\right\}
$$

Prove that any function from the space $P_{3}^{\prime}(T)$ is uniquely determined by its values at the points $\left\{a_{i}\right\}_{i=1}^{n} \cup\left\{a_{i i j}\right\}_{i \neq j}$ and derive basis functions such that each basis function equals 1 at one of these points and vanishes at the rest.
Hint. The basis functions $\left\{p_{i}\right\}_{i=1}^{n},\left\{p_{i i j}\right\}_{i \neq j}$ can be modified by adding linear combinations of the functions $\left\{p_{i j k}\right\}_{i<j<k}$ in such a way that the resulting functions are in $P_{3}^{\prime}(T)$. Show that these function form a basis of $P_{3}^{\prime}(T)$ and find formulas for these basis functions.

