06.11.2023 - Homework 2

Finite Element Methods 1

Due date: 20th November 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamnîk učitele) in SIS, or hand-in directly at the practical class on the 20th November 2023.

1. (2 points) Consider finite elements $\left(T, P_{T}, \Sigma_{T}\right)$, where

$$
\begin{aligned}
& T \text { is a rectangle, } \\
& P_{T}=Q_{3}(T) \\
& \Sigma_{T}=\left\{p(z): z \in M_{3}(T)\right\}
\end{aligned}
$$

For $T=[0,1]^{2}$, and the points from the principal lattice $M_{3}(T)$ numbered as per Figure 1 b , write basis functions of the finite element $\left(T, P_{T}, \Sigma_{T}\right)$. It is sufficient to derive functions for only four basis functions, as the remaining twelve can be obtained by circular permutations of the indices. Let \mathcal{T}_{h} be a triangulation of a bounded domain $\Omega \subset \mathbb{R}^{2}$ consisting of rectangles and assign the above finite element to each $T \in \mathcal{T}_{h}$. Write the definition of the corresponding finite element space X_{h} and verify that $X_{h} \subset C(\bar{\Omega})$.
2. (2 points) Let the points $a_{1}, \ldots a_{9}$ be the points of the principal lattice $M_{2}(T)$, see Figure 1a, and define the space

$$
Q_{2}^{\prime}(T)=\left\{p \in Q_{2}(T): 4 p\left(a_{9}\right)+\sum_{i=1}^{4} p\left(a_{i}\right)-2 \sum_{i=5}^{8} p\left(a_{i}\right)=0\right\} .
$$

(a) $M_{2}(T)$

(b) $M_{3}(T)$

Figure 1: Principal lattices for rectangles

Show that any polynomial $p \in Q_{2}^{\prime}(T)$ is uniquely determined by the values at the points a_{1}, \ldots, a_{8} and derive basis functions $p_{1}^{\prime}, \ldots, p_{8}^{\prime}$ of $Q_{2}^{\prime}(T)$ satisfying $p_{i}^{\prime}\left(a_{j}\right)=\delta_{i j}$, $i, j=1, \ldots, 8$. Prove that $P_{2}(T) \subset Q_{2}^{\prime}(T)$.
Hint. We can proceed similarly as for the reduced Lagrange cubic n-simplex. It is sufficient to derive functions for only two basis functions, as the remaining six can be obtained by circular permutations of the indices.
3. (2 points) Let T be a pentahedral prism, see Figure 2 , with vertices a_{1}, \ldots, a_{6}. The triangular faces are orthogonal to the x_{3} axis, and the quadrilateral faces are parallel to the x_{3} axis. Let

$$
\begin{aligned}
& P_{T}=\left\{p\left(x_{1}, x_{2}, x_{3}\right)=\gamma_{1}\right.+\gamma_{2} x_{1}+\gamma_{3} x_{2}+\gamma_{4} x_{3} \\
&+ \gamma_{5} x_{1} x_{3}+\gamma_{6} x_{2} x_{3} \\
&\left.: \gamma_{1}, \ldots, \gamma_{6} \in \mathbb{R}\right\} .
\end{aligned}
$$

Show that any function $p \in P_{T}$ is uniquely determined by its values at the vertices a_{1}, \ldots, a_{6} and that, for any $p \in P_{T}$ and face $F \subset \partial T$, the restric-

Figure 2: Pentahedral prism tion $\left.p\right|_{F}$ is uniquely determined by its values at the vertices of the face F.

