06.11.2023 - Homework 2

Finite Element Methods 1

Due date: 20th November 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamník učitele) in SIS, or hand-in directly at the practical class on the 20th November 2023.

1. (2 points) Consider finite elements $\left(T, P_{T}, \Sigma_{T}\right)$, where

$$
\begin{aligned}
T & \text { is a rectangle, } \\
P_{T} & =Q_{3}(T) \\
\Sigma_{T} & =\left\{p(z): z \in M_{3}(T)\right\}
\end{aligned}
$$

For $T=[0,1]^{2}$, and the points from the principal lattice $M_{3}(T)$ numbered as per Figure 1 b , write basis functions of the finite element $\left(T, P_{T}, \Sigma_{T}\right)$. It is sufficient to derive functions for only four basis functions, as the remaining twelve can be obtained by circular permutations of the indices. Let \mathcal{T}_{h} be a triangulation of a bounded domain $\Omega \subset \mathbb{R}^{2}$ consisting of rectangles and assign the above finite element to each $T \in \mathcal{T}_{h}$. Write the definition of the corresponding finite element space X_{h} and verify that $X_{h} \subset C(\bar{\Omega})$.

Figure 1: Principal lattices for rectangles

Using the notation and coordinate systems introduced in the practical class $\left(x_{3}=\right.$ $1-x_{1}$ and $x_{4}=1-x_{2}$), we define the basis functions on $T=[0,1]^{2}$ as

$$
\begin{array}{rll}
p_{1} & =\frac{1}{4} x_{3}\left(3 x_{3}-1\right)\left(3 x_{3}-2\right) x_{4}\left(3 x_{4}-1\right)\left(3 x_{4}-2\right), & p_{2}, p_{3}, p_{4} \text { by circ. perm., } \\
p_{5} & =-\frac{9}{4} x_{3}\left(3 x_{3}-1\right)\left(x_{3}-1\right) x_{4}\left(3 x_{4}-1\right)\left(3 x_{4}-2\right), & p_{6}, p_{7}, p_{8} \text { by circ. perm., } \\
p_{9} & =\frac{9}{4} x_{3}\left(3 x_{3}-2\right)\left(x_{3}-1\right) x_{4}\left(3 x_{4}-1\right)\left(3 x_{4}-2\right), & p_{10}, p_{11}, p_{12} \text { by circ. perm., } \\
p_{13} & =\frac{81}{4} x_{3}\left(3 x_{3}-1\right)\left(x_{3}-1\right) x_{4}\left(3 x_{4}-1\right)\left(x_{4}-1\right), & p_{14}, p_{15}, p_{16} \text { by circ. perm.. }
\end{array}
$$

In order to define the finite element space we let

$$
\bigcup_{T \in \mathcal{T}_{h}} M_{3}(T)=\left\{z_{i}\right\}_{i=1}^{N_{h}}, \quad \text { and } \quad \mathcal{T}_{h}^{i}=\left\{T \in \mathcal{T}_{h}: z_{i} \in T\right\}, \quad i=1, \ldots, N_{h}
$$

Then, the finite element space is defined as

$$
\begin{aligned}
X_{h}=\left\{v_{h} \in L^{2}(\Omega):\left.v_{h}\right|_{T} \in Q_{3}(T)\right. & \forall T \in \mathcal{T}_{h} \\
& \left.\left.v_{h}\right|_{T}\left(z_{i}\right)=\left.v_{h}\left(z_{i}\right)\right|_{\widetilde{T}} \forall T, \widetilde{T} \in \mathcal{T}_{h}^{i}, i=1, \ldots, N_{h}\right\} .
\end{aligned}
$$

In order to show continuity of the space we let $v_{h} \in X_{h}$ and consider any interior edge E of \mathcal{T}_{h}. Let $T, T \in \mathcal{T}_{h}$ be the two elements of T_{h}, sharing the edge E, and denote by a_{1}, \ldots, a_{4} the four points of $\left\{z_{i}\right\}_{i=1}^{N_{h}}$ lying on the edge E, see figure to the right. Then, $\left.v_{h}\right|_{T}\left(a_{i}\right)=\left.v_{h}\right|_{\widetilde{T}}\left(a_{i}\right), i=1, \ldots, 4$. Defining $p=\left.\left(\left.v_{h}\right|_{T}\right)\right|_{E}-\left.\left(\left.v_{h}\right|_{\widetilde{T}}\right)\right|_{E}$, we have that $p \in P_{3}(E)$ and $p\left(a_{i}\right)=0, i=1, \ldots, 4$. Therefore, $p \equiv 0$ and, hence, v_{h} is continuous across E. As
 E was arbitrary we deduce that $v_{h} \in C(\bar{\Omega})$.
2. (2 points) Let the points $a_{1}, \ldots a_{9}$ be the points of the principal lattice $M_{2}(T)$, see Figure 1a, and define the space

$$
Q_{2}^{\prime}(T)=\left\{p \in Q_{2}(T): 4 p\left(a_{9}\right)+\sum_{i=1}^{4} p\left(a_{i}\right)-2 \sum_{i=5}^{8} p\left(a_{i}\right)=0\right\}
$$

Show that any polynomial $p \in Q_{2}^{\prime}(T)$ is uniquely determined by the values at the points a_{1}, \ldots, a_{8} and derive basis functions $p_{1}^{\prime}, \ldots, p_{8}^{\prime}$ of $Q_{2}^{\prime}(T)$ satisfying $p_{i}^{\prime}\left(a_{j}\right)=\delta_{i j}$, $i, j=1, \ldots, 8$. Prove that $P_{2}(T) \subset Q_{2}^{\prime}(T)$.
Hint. We can proceed similarly as for the reduced Lagrange cubic n-simplex. It is sufficient to derive functions for only two basis functions, as the remaining six can be obtained by circular permutations of the indices.

Solution:

Let p_{1}, \ldots, p_{9} be the basis functions of $Q_{2}(T)$, with $p_{i}\left(a_{j}\right)=\delta_{i j}, i, j=1, \ldots, 9$. We can define $p_{i}^{\prime}:=p_{i}+\alpha_{i} p_{9}$, for $i=1, \ldots, 8$, which we require to be functions in $Q_{2}^{\prime}(T)$; therefore, we have that

$$
\begin{array}{ll}
0=4 p^{\prime}\left(a_{9}\right)+\sum_{i=1}^{4} p^{\prime}\left(a_{i}\right)-2 \sum_{i=5}^{8} p^{\prime}\left(a_{i}\right)=4 \alpha_{i}+1, & \text { for } i=1, \ldots, 4, \\
0=4 p^{\prime}\left(a_{9}\right)+\sum_{i=1}^{4} p^{\prime}\left(a_{i}\right)-2 \sum_{i=5}^{8} p^{\prime}\left(a_{i}\right)=4 \alpha_{i}-2, & \text { for } i=5, \ldots, 8 .
\end{array}
$$

Hence, selecting $\alpha_{i}=-1 / 4$, for $i=1, \ldots, 4$ and $\alpha_{i}=1 / 2$, for $i=5, \ldots, 8$, we have that $p_{1}^{\prime}, \ldots, p_{8}^{\prime} \in Q_{2}^{\prime}(T)$. Furthermore $p_{1}^{\prime}, \ldots, p_{8}^{\prime}, p_{9}$ form a basis of $Q_{2}(T)$ (nine linearly independent functions in $\left.Q_{2}(T)\right)$, and since $p_{9} \notin Q_{2}^{\prime}$ then $p_{1}^{\prime}, \ldots, p_{8}^{\prime}$ form a basis of $Q_{2}^{\prime}(T)$. As $p_{i}^{\prime}\left(a_{j}\right)=\delta_{i j}, i, j=1, \ldots, 8$ then $p \in Q_{2}^{\prime}(T)$ is uniquely determined by its values at the points a_{1}, \ldots, a_{8}. Using the definition of p_{i}^{\prime}, p_{i} and the value of α_{i} we have that

$$
\begin{aligned}
& p_{1}^{\prime}=x_{3}\left(2 x_{3}-1\right) x_{4}\left(2 x_{4}-1\right)-4 x_{1} x_{2} x_{3} x_{4}=x_{3} x_{4}\left(2 x_{3}+2 x_{4}-3\right), \\
& p_{5}^{\prime}=-4 x_{3}\left(x_{3}-1\right) x_{4}\left(2 x_{4}-1\right)+8 x_{1} x_{2} x_{3} x_{4}=-4 x_{3} x_{4}\left(x_{3}-1\right),
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are defined as in the practical class. The other basis functions are defined by circular permutations of the indices.

To show $P_{2}(T) \subset Q_{2}^{\prime}(T)$ we let $p \in P_{2}(T)$ and show that $p \in Q_{2}^{\prime}(T)$. Denoting by $A=\nabla^{2} p$ the Hessian of p, and applying the (exact) Taylor's formula around a_{9} we have that

$$
p\left(a_{i}\right)=p\left(a_{9}\right)+\nabla p\left(a_{9}\right) \cdot\left(a_{i}-a_{9}\right)+\frac{1}{2}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i}-a_{9}\right), \quad i=1, \cdots, 8 .
$$

Noting that as a_{9} is the barycentre of the rectangle

$$
a_{9}=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}=\frac{a_{5}+a_{6}+a_{7}+a_{8}}{4} \Longrightarrow \sum_{i=1}^{4}\left(a_{i}-a_{9}\right)=\sum_{i=5}^{8}\left(a_{i}-a_{9}\right)=0
$$

then,

$$
\begin{aligned}
& \sum_{i=1}^{4} p\left(a_{i}\right)=4 p\left(a_{9}\right)+\frac{1}{2} \sum_{i=1}^{4}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i}-a_{9}\right), \\
& \sum_{i=5}^{8} p\left(a_{i}\right)=4 p\left(a_{9}\right)+\frac{1}{2} \sum_{i=5}^{8}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i}-a_{9}\right) .
\end{aligned}
$$

As a_{5}, \ldots, a_{8} are the midpoints of the edges we have that $a_{i}=\frac{1}{2}\left(a_{i-4}+a_{i-3}\right)$, for $i=5,6,7$ and $a_{8}=\frac{1}{2}\left(a_{4}+a_{1}\right) ;$ therefore,

$$
\begin{aligned}
\sum_{i=5}^{8}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i}-a_{9}\right)=\frac{1}{2} \sum_{i=1}^{4}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i}-a_{9}\right) & +\frac{1}{2} \sum_{i=1}^{3}\left(a_{i}-a_{9}\right) \cdot A\left(a_{i+1}-a_{9}\right) \\
& +\frac{1}{2}\left(a_{4}-a_{9}\right) \cdot A\left(a_{1}-a_{9}\right) .
\end{aligned}
$$

Considering only the last two terms we have that

$$
\begin{aligned}
& \left(a_{1}-a_{9}\right) \cdot A\left(a_{2}-a_{9}\right)+\left(a_{2}-a_{9}\right) \cdot A\left(a_{3}-a_{9}\right) \\
& \quad+\left(a_{3}-a_{9}\right) \cdot A\left(a_{4}-a_{9}\right)+\left(a_{4}-a_{9}\right) \cdot A\left(a_{1}-a_{9}\right) \\
= & \left(a_{2}-a_{9}\right) \cdot A\left(a_{1}+a_{3}-2 a_{9}\right)+\left(a_{4}-a_{9}\right) \cdot A\left(a_{1}+a_{3}-2 a_{9}\right)=0,
\end{aligned}
$$

as a_{9} is the midpoint of a_{1} and a_{3}. Combining these results we have that

$$
\sum_{i=1}^{4} p\left(a_{i}\right)-2 \sum_{i=5}^{8} p\left(a_{i}\right)=-4 p\left(a_{9}\right)
$$

and, hence, $p \in Q_{2}^{\prime}(T)$.
3. (2 points) Let T be a pentahedral prism, see Figure 2 , with vertices a_{1}, \ldots, a_{6}. The triangular faces are orthogonal to the x_{3} axis, and the quadrilateral faces are parallel to the x_{3} axis. Let

$$
\begin{aligned}
P_{T}=\left\{p\left(x_{1}, x_{2}, x_{3}\right)=\gamma_{1}\right. & +\gamma_{2} x_{1}+\gamma_{3} x_{2}+\gamma_{4} x_{3} \\
+ & \gamma_{5} x_{1} x_{3}+\gamma_{6} x_{2} x_{3} \\
& \left.: \gamma_{1}, \ldots, \gamma_{6} \in \mathbb{R}\right\} .
\end{aligned}
$$

Show that any function $p \in P_{T}$ is uniquely determined by its values at the vertices a_{1}, \ldots, a_{6} and that, for any $p \in P_{T}$ and face $F \subset \partial T$, the restriction $\left.p\right|_{F}$ is uniquely determined by its values at the vertices of the face F.

Solution:

Let F_{1} be the triangle defined by the vertices $a_{1}, a_{2}, a_{3}, F_{2}$ be the triangle defined by the vertices a_{4}, a_{5}, a_{6}, and F_{3}, F_{4}, F_{5} be the three quadrilateral faces. For any $p \in P_{T}$ we have that $\left.p\right|_{F_{1}} \in P_{1}\left(F_{1}\right)$ and hence $\left.p\right|_{F_{1}}$ is uniquely determined by $p\left(a_{1}\right), p\left(a_{2}\right)$, and $p\left(a_{3}\right)$. Similarly, $\left.p\right|_{F_{2}}$ is uniquely determined by $p\left(a_{4}\right), p\left(a_{5}\right)$, and $p\left(a_{6}\right)$. We now consider an arbitrary point $a \in T$ and draw a line s through a in the x_{3} direction, with endpoints $b \in F_{1}$ and $c \in F_{2}$. Since $\left.p\right|_{s} \in P_{1}(\boldsymbol{s})$, then $\left.p\right|_{s}$, and $p(a)$, are uniquely determined by the values $p(b)$ and $p(c)$, which are in turn uniquely determined by the values at a_{1}, \ldots, a_{6} as shown above; therefore, any func-
 tion $p \in P_{T}$ is uniquely determined by its values at the vertices.
We have also shown that $\left.p\right|_{F_{1}}$ and $\left.p\right|_{F_{2}}$ are uniquely determined by the values of p at the vertices of F_{1} and F_{2}, respectively; therefore, we only need to show that p restricted to a quadrilateral face is uniquely determined by its values at the vertices of the face. We consider the face F with vertices a_{1}, a_{2}, a_{5}, and a_{4}, noting that the other two faces follow analogously. Define a coordinate \widetilde{x}_{1} in the direction of the edge E with endpoints a_{1} and a_{2}; then, along E we have that

$$
\left(x_{1}, x_{2}\right)=\left(\alpha_{1} \widetilde{x}_{1}+\beta_{1}, \alpha_{2} \widetilde{x}_{1}+\beta_{2}\right),
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$. Then, we have that

$$
\begin{aligned}
\left.p\right|_{F} & =\gamma_{1}+\gamma_{2}\left(\alpha_{1} \widetilde{x}_{1}+\beta_{1}\right)+\gamma_{3}\left(\alpha_{2} \widetilde{x}_{1}+\beta_{2}\right)+\gamma_{4} x_{3}+\gamma_{5}\left(\alpha_{1} \widetilde{x}_{1}+\beta_{1}\right) x_{3}+\gamma_{6}\left(\alpha_{2} \widetilde{x}_{1}+\beta_{2}\right) x_{3} \\
& =\delta_{1}+\delta_{2} \widetilde{x}_{1}+\delta_{3} x_{3}+\delta_{4} \widetilde{x}_{1} x_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{1}=\gamma_{1}+\gamma_{2} \beta_{1}+\gamma_{3} \beta_{2}, \\
& \delta_{2}=\gamma_{2} \alpha_{1}+\gamma_{3} \alpha_{2}, \\
& \delta_{3}=\gamma_{4}+\gamma_{5} \beta_{1}+\gamma_{6} \beta_{2}, \\
& \delta_{4}=\gamma_{5} \alpha_{1}+\gamma_{6} \alpha_{2} .
\end{aligned}
$$

As \widetilde{x}_{1} and x_{3} define a coordinate system for F we have that $\left.p\right|_{F} \in Q_{1}(F)$ and, hence, is uniquely determined by its values at the vertices of F.

