06.11.2023 — Homework 2

Finite Element Methods 1

Due date: 20th November 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the *Study Group Roster (Záznamník učitele)* in SIS, or hand-in directly at the practical class on the 20th November 2023.

1. (2 points) Consider finite elements (T, P_T, Σ_T) , where

T is a rectangle,

$$P_T = Q_3(T),$$

 $\Sigma_T = \{p(z) : z \in M_3(T)\}.$

For $T = [0, 1]^2$, and the points from the principal lattice $M_3(T)$ numbered as per Figure 1b, write basis functions of the finite element (T, P_T, Σ_T) . It is sufficient to derive functions for only four basis functions, as the remaining twelve can be obtained by circular permutations of the indices. Let \mathcal{T}_h be a triangulation of a bounded domain $\Omega \subset \mathbb{R}^2$ consisting of rectangles and assign the above finite element to each $T \in \mathcal{T}_h$. Write the definition of the corresponding finite element space X_h and verify that $X_h \subset C(\overline{\Omega})$.

Figure 1: Principal lattices for rectangles

Using the notation and coordinate systems introduced in the practical class $(x_3 = 1 - x_1 \text{ and } x_4 = 1 - x_2)$, we define the basis functions on $T = [0, 1]^2$ as

$$p_{1} = \frac{1}{4}x_{3}(3x_{3} - 1)(3x_{3} - 2)x_{4}(3x_{4} - 1)(3x_{4} - 2), \quad p_{2}, p_{3}, p_{4} \text{ by circ. perm.},$$

$$p_{5} = -\frac{9}{4}x_{3}(3x_{3} - 1)(x_{3} - 1)x_{4}(3x_{4} - 1)(3x_{4} - 2), \quad p_{6}, p_{7}, p_{8} \text{ by circ. perm.},$$

$$p_{9} = \frac{9}{4}x_{3}(3x_{3} - 2)(x_{3} - 1)x_{4}(3x_{4} - 1)(3x_{4} - 2), \quad p_{10}, p_{11}, p_{12} \text{ by circ. perm.},$$

$$p_{13} = \frac{81}{4}x_{3}(3x_{3} - 1)(x_{3} - 1)x_{4}(3x_{4} - 1)(x_{4} - 1), \quad p_{14}, p_{15}, p_{16} \text{ by circ. perm.}.$$

In order to define the finite element space we let

$$\bigcup_{T \in \mathcal{T}_h} M_3(T) = \{z_i\}_{i=1}^{N_h}, \quad \text{and} \quad \mathcal{T}_h^i = \{T \in \mathcal{T}_h : z_i \in T\}, \quad i = 1, \dots, N_h$$

Then, the finite element space is defined as

$$X_h = \{ v_h \in L^2(\Omega) : v_h |_T \in Q_3(T) \ \forall T \in \mathcal{T}_h, \\ v_h |_T(z_i) = v_h(z_i) |_{\widetilde{T}} \ \forall T, \widetilde{T} \in \mathcal{T}_h^i, i = 1, \dots, N_h \}.$$

In order to show continuity of the space we let $v_h \in X_h$ and consider any interior edge E of \mathcal{T}_h . Let $T, \widetilde{T} \in \mathcal{T}_h$ be the two elements of T_h , sharing the edge E, and denote by a_1, \ldots, a_4 the four points of $\{z_i\}_{i=1}^{N_h}$ lying on the edge E, see figure to the right. Then, $v_h|_T(a_i) = v_h|_{\widetilde{T}}(a_i)$, $i = 1, \ldots, 4$. Defining $p = (v_h|_T)|_E - (v_h|_{\widetilde{T}})|_E$, we have that $p \in P_3(E)$ and $p(a_i) = 0$, $i = 1, \ldots, 4$. Therefore, $p \equiv 0$ and, hence, v_h is continuous across E. As E was arbitrary we deduce that $v_h \in C(\overline{\Omega})$.

2. (2 points) Let the points $a_1, \ldots a_9$ be the points of the principal lattice $M_2(T)$, see Figure 1a, and define the space

$$Q_2'(T) = \left\{ p \in Q_2(T) : 4 \, p(a_9) + \sum_{i=1}^4 p(a_i) - 2 \sum_{i=5}^8 p(a_i) = 0 \right\}.$$

Show that any polynomial $p \in Q'_2(T)$ is uniquely determined by the values at the points a_1, \ldots, a_8 and derive basis functions p'_1, \ldots, p'_8 of $Q'_2(T)$ satisfying $p'_i(a_j) = \delta_{ij}$, $i, j = 1, \ldots, 8$. Prove that $P_2(T) \subset Q'_2(T)$.

Hint. We can proceed similarly as for the reduced Lagrange cubic n-simplex. It is sufficient to derive functions for only two basis functions, as the remaining six can be obtained by circular permutations of the indices.

Solution:

Let p_1, \ldots, p_9 be the basis functions of $Q_2(T)$, with $p_i(a_j) = \delta_{ij}$, $i, j = 1, \ldots, 9$. We can define $p'_i \coloneqq p_i + \alpha_i p_9$, for $i = 1, \ldots, 8$, which we require to be functions in $Q'_2(T)$; therefore, we have that

$$0 = 4p'(a_9) + \sum_{i=1}^{4} p'(a_i) - 2\sum_{i=5}^{8} p'(a_i) = 4\alpha_i + 1, \quad \text{for } i = 1, \dots, 4,$$

$$0 = 4p'(a_9) + \sum_{i=1}^{4} p'(a_i) - 2\sum_{i=5}^{8} p'(a_i) = 4\alpha_i - 2, \quad \text{for } i = 5, \dots, 8.$$

Hence, selecting $\alpha_i = -1/4$, for $i = 1, \ldots, 4$ and $\alpha_i = 1/2$, for $i = 5, \ldots, 8$, we have that $p'_1, \ldots, p'_8 \in Q'_2(T)$. Furthermore p'_1, \ldots, p'_8, p_9 form a basis of $Q_2(T)$ (nine linearly independent functions in $Q_2(T)$), and since $p_9 \notin Q'_2$ then p'_1, \ldots, p'_8 form a basis of $Q'_2(T)$. As $p'_i(a_j) = \delta_{ij}$, $i, j = 1, \ldots, 8$ then $p \in Q'_2(T)$ is uniquely determined by its values at the points a_1, \ldots, a_8 . Using the definition of p'_i , p_i and the value of α_i we have that

$$p_1' = x_3(2x_3 - 1)x_4(2x_4 - 1) - 4x_1x_2x_3x_4 = x_3x_4(2x_3 + 2x_4 - 3),$$

$$p_5' = -4x_3(x_3 - 1)x_4(2x_4 - 1) + 8x_1x_2x_3x_4 = -4x_3x_4(x_3 - 1),$$

where x_1, x_2, x_3, x_4 are defined as in the practical class. The other basis functions are defined by circular permutations of the indices.

To show $P_2(T) \subset Q'_2(T)$ we let $p \in P_2(T)$ and show that $p \in Q'_2(T)$. Denoting by $A = \nabla^2 p$ the Hessian of p, and applying the (exact) Taylor's formula around a_9 we have that

$$p(a_i) = p(a_9) + \nabla p(a_9) \cdot (a_i - a_9) + \frac{1}{2}(a_i - a_9) \cdot A(a_i - a_9), \qquad i = 1, \cdots, 8.$$

Noting that as a_9 is the barycentre of the rectangle

$$a_9 = \frac{a_1 + a_2 + a_3 + a_4}{4} = \frac{a_5 + a_6 + a_7 + a_8}{4} \implies \sum_{i=1}^4 (a_i - a_9) = \sum_{i=5}^8 (a_i - a_9) = 0;$$

then,

$$\sum_{i=1}^{4} p(a_i) = 4p(a_9) + \frac{1}{2} \sum_{i=1}^{4} (a_i - a_9) \cdot A(a_i - a_9),$$
$$\sum_{i=5}^{8} p(a_i) = 4p(a_9) + \frac{1}{2} \sum_{i=5}^{8} (a_i - a_9) \cdot A(a_i - a_9).$$

As a_5, \ldots, a_8 are the midpoints of the edges we have that $a_i = \frac{1}{2}(a_{i-4} + a_{i-3})$, for i = 5, 6, 7 and $a_8 = \frac{1}{2}(a_4 + a_1)$; therefore,

$$\sum_{i=5}^{8} (a_i - a_9) \cdot A(a_i - a_9) = \frac{1}{2} \sum_{i=1}^{4} (a_i - a_9) \cdot A(a_i - a_9) + \frac{1}{2} \sum_{i=1}^{3} (a_i - a_9) \cdot A(a_{i+1} - a_9) + \frac{1}{2} (a_4 - a_9) \cdot A(a_1 - a_9).$$

Considering only the last two terms we have that

$$(a_1 - a_9) \cdot A(a_2 - a_9) + (a_2 - a_9) \cdot A(a_3 - a_9) + (a_3 - a_9) \cdot A(a_4 - a_9) + (a_4 - a_9) \cdot A(a_1 - a_9) = (a_2 - a_9) \cdot A(a_1 + a_3 - 2a_9) + (a_4 - a_9) \cdot A(a_1 + a_3 - 2a_9) = 0,$$

as a_9 is the midpoint of a_1 and a_3 . Combining these results we have that

$$\sum_{i=1}^{4} p(a_i) - 2\sum_{i=5}^{8} p(a_i) = -4p(a_9),$$

and, hence, $p \in Q'_2(T)$.

3. (2 points) Let T be a pentahedral prism, see Figure 2, with vertices a_1, \ldots, a_6 . The triangular faces are orthogonal to the x_3 axis, and the quadrilateral faces are parallel to the x_3 axis. Let

$$P_{T} = \{ p(x_{1}, x_{2}, x_{3}) = \gamma_{1} + \gamma_{2}x_{1} + \gamma_{3}x_{2} + \gamma_{4}x_{3} + \gamma_{5}x_{1}x_{3} + \gamma_{6}x_{2}x_{3} + \gamma_{5}x_{1}x_{3} + \gamma_{6}x_{2}x_{3} + \gamma_{1}, \dots, \gamma_{6} \in \mathbb{R} \}.$$

Show that any function $p \in P_T$ is uniquely determined by its values at the vertices a_1, \ldots, a_6 and that, for any $p \in P_T$ and face $F \subset \partial T$, the restriction $p|_F$ is uniquely determined by its values at the vertices of the face F.

Figure 2: Pentahedral prism

Solution:

Let F_1 be the triangle defined by the vertices a_1, a_2, a_3, F_2 be the triangle defined by the vertices a_4, a_5, a_6 , and F_3, F_4, F_5 be the three quadrilateral faces. For any $p \in P_T$ we have that $p|_{F_1} \in P_1(F_1)$ and hence $p|_{F_1}$ is uniquely determined by $p(a_1)$, $p(a_2)$, and $p(a_3)$. Similarly, $p|_{F_2}$ is uniquely determined by $p(a_4)$, $p(a_5)$, and $p(a_6)$. We now consider an arbitrary point $a \in T$ and draw a line s through a in the x_3 direction, with endpoints $b \in F_1$ and $c \in F_2$. Since $p|_{s} \in P_{1}(s)$, then $p|_{s}$, and p(a), are uniquely determined by the values p(b) and p(c), which are in turn uniquely determined by the values at a_1, \ldots, a_6 as shown above; therefore, any function $p \in P_T$ is uniquely determined by its values at the vertices.

We have also shown that $p|_{F_1}$ and $p|_{F_2}$ are uniquely determined by the values of p at the vertices of F_1 and F_2 , respectively; therefore, we only need to show that p restricted to a quadrilateral face is uniquely determined by its values at the vertices of the face. We consider the face F with vertices a_1, a_2, a_5 , and a_4 , noting that the other two faces follow analogously. Define a coordinate \tilde{x}_1 in the direction of the edge E with endpoints a_1 and a_2 ; then, along E we have that

$$(x_1, x_2) = (\alpha_1 \widetilde{x}_1 + \beta_1, \alpha_2 \widetilde{x}_1 + \beta_2),$$

where $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$. Then, we have that

$$p|_{F} = \gamma_{1} + \gamma_{2}(\alpha_{1}\widetilde{x}_{1} + \beta_{1}) + \gamma_{3}(\alpha_{2}\widetilde{x}_{1} + \beta_{2}) + \gamma_{4}x_{3} + \gamma_{5}(\alpha_{1}\widetilde{x}_{1} + \beta_{1})x_{3} + \gamma_{6}(\alpha_{2}\widetilde{x}_{1} + \beta_{2})x_{3}$$

= $\delta_{1} + \delta_{2}\widetilde{x}_{1} + \delta_{3}x_{3} + \delta_{4}\widetilde{x}_{1}x_{3},$

where

$$\delta_1 = \gamma_1 + \gamma_2 \beta_1 + \gamma_3 \beta_2,$$

$$\delta_2 = \gamma_2 \alpha_1 + \gamma_3 \alpha_2,$$

$$\delta_3 = \gamma_4 + \gamma_5 \beta_1 + \gamma_6 \beta_2,$$

$$\delta_4 = \gamma_5 \alpha_1 + \gamma_6 \alpha_2.$$

As \tilde{x}_1 and x_3 define a coordinate system for F we have that $p|_F \in Q_1(F)$ and, hence, is uniquely determined by its values at the vertices of F.