27.11.2023 - Homework 3

Finite Element Methods 1

Due date: 11th December 2023

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamník učitele) in SIS, or hand-in directly at the practical class on the 11th December 2023.

1. (1 point) Consider a triangulation \mathcal{T}_{h} of $\Omega \subset \mathbb{R}^{2}$ consisting of simplices T with diameter h_{T}, and define by ϱ_{T} the diameter of the largest inscribed ball in T. Show that the condition

$$
\begin{equation*}
\frac{h_{T}}{\varrho_{T}} \leq \sigma, \quad \text { for all } T \in \mathcal{T}_{h} \tag{1.1}
\end{equation*}
$$

where the constant σ is independent of T, is equivalent to the condition that all angles in all $T \in \mathcal{T}_{h}$ are bounded from below by a positive constant θ_{0} independent of T.
2. Consider a triangulation \mathcal{T}_{h} of $\Omega \subset \mathbb{R}^{n}$ consisting of simplices T with diameter h_{T}, define by ϱ_{T} the diameter of the largest inscribed ball in T, and assume that (1.1) holds.
(a) (1 point) Show that $|T|$, for any $T \in \mathcal{T}_{h}$, satisfies the condition

$$
C_{1} h_{T}^{n} \leq|T| \leq C_{2} h_{T}^{n},
$$

where C_{1} is a positive constant dependent only on σ and n, and C_{2} is a positive constant dependent only on n.
(b) (1 point) Show, for $n=3$, that any face F of \mathcal{T}_{h} satisfies the condition.

$$
\frac{h_{F}}{\varrho_{F}} \leq \sigma
$$

(c) (1 point) Show that $h_{T} \leq \sigma h_{\widetilde{T}}$, for $n=2,3$, for any pair of elements $T, \widetilde{T} \in \mathcal{T}_{h}$ sharing an edge.
3. (2 points) Let \mathcal{T}_{h} be a triangulation consisting of n-simplices T in \mathbb{R}^{n} satisfying (1.1) and the assumptions $\left(\mathcal{T}_{h} 1\right)-\left(\mathcal{T}_{h} 5\right)$. Prove that the number of elements of \mathcal{T}_{h} sharing a vertex is bounded by a constant depending on σ and n.

