18.12.2023 - Homework 4

Finite Element Methods 1

Due date: 8th January 2024

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamník učitele) in SIS, or hand-in directly at the practical class on the 8th January 2024.

1. (2 points) Let T be an n-simplex in \mathbb{R}^{n} and let $\lambda_{1}, \ldots, \lambda_{n+1}$ be the barycentric coordinates with respect to the vertices of T. Prove the formula

$$
\int_{T} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \cdots \lambda_{n+1}^{\alpha_{n+1}} \mathrm{~d} \boldsymbol{x}=\frac{\alpha_{1}!\alpha_{2}!\cdots \alpha_{n+1}!n!}{\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n+1}+n\right)!}|T|, \quad \forall \alpha_{1}, \ldots, \alpha_{n+1} \in \mathbb{N}_{0}
$$

Hint. Transform the integral over T to an integral over the reference simplex \widehat{T}.
2. (2 points) Prove Theorem 12 from the lecture:

Let $\left\{\mathcal{T}_{h}\right\}$ be a family of triangulations of a bounded domain Ω with Lipschitz-continuous boundary and $\left\{X_{h}\right\}$ the family of the corresponding finite element spaces under the assumptions required for convergence of a discrete solution. We assume all finite elements $\left(T, P_{T}, \Sigma_{T}\right)$ are affine-equivalent to a reference element $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$ with invertible affine mapping $F_{T}(\widehat{x})=\mathbb{B}_{T} \widehat{x}+b_{T}$ such that $F_{T}(\widehat{T})=T$.
Consider the quadrature formula

$$
\int_{\widehat{T}} \widehat{\varphi} \mathrm{~d} \boldsymbol{x} \approx \sum_{\ell=1}^{L} \widehat{\omega}_{\ell} \widehat{\varphi}\left(\widehat{b}_{\ell}\right)
$$

where $\widehat{\varphi}$ and \widehat{b}_{ℓ}, for $\ell=1, \ldots, L$, are the quadrature weights and nodes, defined on the reference element $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$, let $m \in \mathbb{N}$ be such that $\widehat{P} \subset P_{m}(\widehat{T})$, and let there hold at least one of the following conditions
(I) $\bigcup_{\ell=1}^{L}\left\{\widehat{b}_{\ell}\right\}$ contains a $P_{m-1}(\widehat{T})$-unisolvent set, or
(II) $\widehat{E}(\widehat{\varphi})=0$ for all $\widehat{\varphi} \in P_{2 m-2}(\widehat{T})$,
where

$$
\widehat{E}(\widehat{\varphi})=\int_{\widehat{T}} \widehat{\varphi} \mathrm{~d} \boldsymbol{x}-\sum_{\ell=1}^{L} \widehat{\omega}_{\ell} \widehat{\varphi}\left(\widehat{b}_{\ell}\right) .
$$

Define $V_{h}=\left\{v_{h} \in X_{h}: \phi\left(v_{h}\right)=0 \quad \forall \phi \in \Sigma_{h}^{\partial \Omega}\right\} \subset H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ and the bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ as

$$
a_{h}\left(u_{h}, v_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \sum_{\ell=1}^{L} \omega_{\ell, T} \sum_{i, j=1}^{n}\left(a_{i j} \frac{\partial u_{h}}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)\left(b_{\ell_{T}}\right)
$$

where $\omega_{\ell, T}=\left|\operatorname{det} \mathbb{B}_{T}\right| \widehat{\omega}_{\ell}, b_{\ell, T}=F_{T}\left(\widehat{b}_{\ell}\right), a_{i j} \in L^{\infty}(\Omega)$ and let there exist a constant $\theta>0$ such that

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \forall x \in \bar{\Omega}, \forall \xi \in \mathbb{R}^{n}
$$

Prove that the bilinear form a_{h} is uniformly V_{h}-elliptic; i.e., there exists a constant $\widetilde{\alpha}>0$ independent of h such that

$$
a_{h}\left(v_{h}, v_{h}\right) \geq \widetilde{\alpha}\left|v_{h}\right|_{1, h}^{2} \quad \forall v_{h} \in V_{h}, \forall h>0
$$

Hint. First show that there exists a constant $\widehat{C}>0$ such that

$$
\widehat{C}|\widehat{p}|_{1, \widehat{T}} \leq \sum_{\ell=1}^{L} \widehat{\omega}_{\ell}\left|\widehat{\nabla} \widehat{p}\left(\widehat{b}_{\ell}\right)\right|^{2} \quad \forall \widehat{p} \in \widehat{P}
$$

for condition (I) and (II) separately.
3. (2 points) Let $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$ be a finite element, and let $l, m \in \mathbb{N}_{0}$ and $r, q \in[1, \infty]$ be such that $l \leq m$ and $\widehat{P} \subset W^{l, r}(\widehat{T}) \cap W^{m, q}(\widehat{T})$. For any $T \in \mathcal{T}_{h}$, let $\left(T, P_{T}, \Sigma_{T}\right)$ be a finite element which is affine-equivalent to $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$. Then, there exists a positive constant C, depending only on $\widehat{T}, \widehat{P}, l, m, r, q$, and n such that

$$
\begin{equation*}
|v|_{m, q, T} \leq C \frac{h_{T}^{l}}{\varrho_{T}^{m}}|T|^{\frac{1}{q}-\frac{1}{r}}|v|_{l, r, T}, \quad \text { for all } v \in P_{T}, T \in \mathcal{T}_{h} \tag{3.1}
\end{equation*}
$$

Let X_{h} be the finite element space corresponding to \mathcal{T}_{h} and the finite elements $\left(T, P_{T}, \Sigma_{T}\right)$. Introduce the seminorms

$$
|v|_{m, q, h}=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{m, q, T}^{q}\right)^{1 / q} \quad \text { if } q<\infty, \quad|v|_{m, \infty, h}=\max _{T \in \mathcal{T}_{h}}|v|_{m, \infty, T}
$$

Let \mathcal{T}_{h} satisfy

$$
\frac{h_{T}}{\varrho_{T}} \leq \sigma, \quad \text { for all } T \in \mathcal{T}_{h}
$$

and the inverse assumption

$$
\exists \kappa>0: \quad \frac{h}{h_{T}} \leq \kappa \quad \text { for all } T \in \mathcal{T}_{h}
$$

where $h=\max _{T \in \mathcal{T}_{h}} h_{T}$. Prove that the inverse inequality

$$
\left|v_{h}\right|_{m, q, h} \leq C h^{l-m+\min (0, n / q-n / r)}\left|v_{h}\right|_{l, r, h}, \quad \text { for all } v_{h} \in X_{h}
$$

where C is a positive constant depending only on $\widehat{T}, \widehat{P}, l, m, r, q, n, \sigma, \kappa$, and Ω.

Hint. The following inequalities may be useful.
Hölder Inequality For any non-negative numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q}
$$

for any $p, q \in(1, \infty)$ satisfying $1 / p+1 / q=1$.
Jensen Inequality For any non-negative numbers a_{1}, \ldots, a_{n}

$$
\left(\sum_{i=1}^{n} a_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}
$$

for any $p, q \in(0, \infty)$ satisfying $p \leq q$.

