
18.12.2023 — Homework 4

Finite Element Methods 1

Due date: 8th January 2024

Submit a PDF/scan of the answers to the following questions before the deadline via the
Study Group Roster (Záznamńık učitele) in SIS, or hand-in directly at the practical class on
the 8th January 2024.

1. (2 points) Let T be an n-simplex in Rn and let λ1, . . . , λn+1 be the barycentric coordi-
nates with respect to the vertices of T . Prove the formula∫

T

λα1
1 λα2

2 · · ·λαn+1

n+1 dx =
α1!α2! · · ·αn+1!n!

(α1 + α2 + · · ·+ αn+1 + n)!
|T |, ∀α1, . . . , αn+1 ∈ N0.

Hint. Transform the integral over T to an integral over the reference simplex T̂ .

Solution:

Let FT be an invertible mapping which maps the unit n-simplex T̂ onto the n-simplex
T . Then,

I :=

∫
T

λα1
1 λα2

2 · · ·λαn+1

n+1 dx

=
|T |
|T̂ |

∫
T̂

λ̂α1
1 λ̂α2

2 · · · λ̂αn+1

n+1 dx̂

=
|T |
|T̂ |

∫
T̂

x̂α1
1 x̂α2

2 · · · x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂.

Since

T̂ =

{
x̂ ∈ Rn : x̂i ∈ [0, 1], i = 1, . . . , n,

n∑
i=1

x̂i ≤ 1

}

=

{
x̂ ∈ Rn : x̂1 ∈ [0, 1], x̂2 ∈ [0, 1− x̂1],

x̂3 ∈ [0, 1− (x̂1 + x̂2)], . . . , x̂n ∈

[
0, 1−

n−1∑
i=1

x̂i

]}
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the integral becomes

I =
|T |
|T̂ |

∫ 1

0

x̂α1
1 · · ·

∫ 1−
n−2∑
i=1

x̂i

0

x̂
αn−1

n−1

∫ 1−
n−1∑
i=1

x̂i

0

x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂n dx̂n−1 . . . dx̂1.

We consider a more generic integral∫ c

0

ξα(c− ξ)β dξ,

for α, β ∈ N0 and c ∈ [0, 1]. If β = 0 then∫ c

0

ξα(c− ξ)β dξ =
cα+1

α + 1
;

and when β > 0∫ c

0

ξα(c− ξ)β dξ =

∫ c

0

(
ξα+1

α + 1

)′

(c− ξ)β dξ =

∫ c

0

ξα+1

α + 1
β(c− ξ)β−1 dξ = . . .

=

∫ c

0

ξα+β

(α + 1) . . . (α + β)
β! dξ

=
α!β!

(α + β + 1)!
cα+β+1.

Thus, we have be selecting α = αn, β = αn+1, ξ = x̂n and c = 1−
∑n−1

i=1 x̂i that

∫ 1−
n−1∑
i=1

x̂i

0

x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂n =
αn!αn+1!

(αn + αn+1 + 1)!

(
1−

n−1∑
i=1

x̂i

)αn+αn+1+1

.

Similarly, we have that

∫ 1−
n−2∑
i=1

x̂i

0

x̂
αn−1

n−1

∫ 1−
n−1∑
i=1

x̂i

0

x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂n dx̂n−1

=
αn!αn+1!

(αn + αn+1 + 1)!

∫ 1−
n−2∑
i=1

x̂i

0

x̂
αn−1

n−1

(
1−

n−1∑
i=1

x̂i

)αn+αn+1+1

dx̂n−1

=
αn!αn+1!

(αn + αn+1 + 1)!

αn−1!(αn + αn+1 + 1)!

(αn−1 + αn + αn+1 + 2)!

(
1−

n−2∑
i=1

x̂i

)αn−1+αn+αn+1+2

=
αn−1!αn!αn+1!

(αn−1 + αn + αn+1 + 2)!

(
1−

n−2∑
i=1

x̂i

)αn−1+αn+αn+1+2

.
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Recursively, we get that for k = 1, . . . , n,

∫ 1−
n−k∑
i=1

x̂i

0

x̂α1
n−k+1 · · ·

∫ 1−
n−1∑
i=1

x̂i

0

x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂n dx̂n−1 . . . dx̂n−k+1

=
αn−k+1! . . . αn+1!

(αn−k+1 + · · ·+ αn+1 + k)!

(
1−

n−k∑
i=1

x̂i

)αn−k+1+···+αn+1+k

.

Therefore, we have that∫
T̂

x̂α1
1 x̂α2

2 · · · x̂αn
n

(
1−

n∑
i=1

x̂i

)αn+1

dx̂ =
α1! . . . αn+1!

(α1 + · · ·+ αn+1 + n)!
.

By setting α1 = · · · = αn+1 = 0 we have that

|T̂ | =
∫
T̂

1 dx̂ =
1

n!
;

hence,

I =
α1! . . . αn+1!n!

(α1 + · · ·+ αn+1 + n)!
|T |.

2. (2 points) Prove Theorem 12 from the lecture:

Let {Th} be a family of triangulations of a bounded domain Ω ⊂ Rn with Lipschitz-
continuous boundary and {Xh} the family of the corresponding finite element spaces
under the assumptions required for convergence of a discrete solution. We assume all
finite elements (T, PT ,ΣT ) are affine-equivalent to a reference element (T̂ , P̂ , Σ̂) with

invertible affine mapping FT (x̂) = BT x̂+ bT such that FT (T̂ ) = T .

Consider the quadrature formula∫
T̂

φ̂ dx ≈
L∑

ℓ=1

ω̂ℓφ̂(̂bℓ)

where φ̂ and b̂ℓ, for ℓ = 1, . . . , L, are the quadrature weights and nodes, defined on the
reference element (T̂ , P̂ , Σ̂), let m ∈ N be such that P̂ ⊂ Pm(T̂ ), and let there hold at
least one of the following conditions

(I)
L⋃

ℓ=1

{b̂ℓ} contains a Pm−1(T̂ )-unisolvent set, or

(II) Ê(φ̂) = 0 for all φ̂ ∈ P2m−2(T̂ ),
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where

Ê(φ̂) =

∫
T̂

φ̂ dx−
L∑

ℓ=1

ω̂ℓφ̂(̂bℓ).

Define Vh = {vh ∈ Xh : ϕ(vh) = 0 ∀ϕ ∈ Σ∂Ω
h } ⊂ H1

0 (Ω) ∩ C(Ω) and the bilinear form
ah : Vh × Vh → R as

ah(uh, vh) =
∑
T∈Th

L∑
ℓ=1

ωℓ,T

n∑
i,j=1

(
aij

∂uh

∂xi

∂vh
∂xj

)
(bℓT ),

where ωℓ,T = | detBT |ω̂ℓ, bℓ,T = FT (̂bℓ), aij ∈ L∞(Ω) and let there exist a constant θ > 0
such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 ∀x ∈ Ω,∀ξ ∈ Rn. (2.1)

Prove that the bilinear form ah is uniformly Vh-elliptic; i.e., there exists a constant α̃ > 0
independent of h such that

ah(vh, vh) ≥ α̃|vh|21,h ∀vh ∈ Vh,∀h > 0.

Hint. First show that there exists a constant Ĉ > 0 such that

Ĉ|p̂|2
1,T̂

≤
L∑

ℓ=1

ω̂ℓ|∇̂p̂(̂bℓ)|2 ∀p̂ ∈ P̂ (2.2)

for condition (I) and (II) separately.

Solution:

Assume (I) holds, then, for any p ∈ P̂

L∑
ℓ=1

ω̂ℓ|∇̂p̂(̂bℓ)|2 = 0

=⇒
(
∇̂p̂
)
(̂bℓ) = 0 ℓ = 1, . . . , L, (as ω̂ℓ > 0)

=⇒ ∇̂p̂ = 0
(
since ∇̂p̂ ∈

[
Pm−1(T̂ )

]n)
;

therefore, p̂ ∈ P̂0(T̂ ). Hence, the mapping

p̂ →

[
L∑

ℓ=1

ω̂ℓ|∇̂p̂(̂bℓ)|2
]1/2

is a norm on the factor space P̂ /P0(T̂ ). Since | · |1,T̂ is also a norm on this factor
space (2.2) follows by equivalence of norms on finite dimensional spaces.
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If, instead, (II) holds then

0 = Ê(|∇̂p̂|2) =
∫
T̂

|∇̂p̂|2 dx̂−
L∑

ℓ=1

ω̂ℓ|∇̂p̂(̂bℓ)|2.

Hence, (2.2) holds as an equality for Ĉ = 1.

Now we have proven the hint we consider any vh ∈ Vh and T ∈ Th, define FT (x̂) =

BT x̂ + bT as the invertible affine map of T̂ to T , and denote pT = vh|T and p̂T =

pT ◦ FT . Then, p̂T ∈ P̂ and

∂p̂T
∂x̂i

(x̂) =
n∑

j=1

∂pT
∂xj

(FT (x̂)(BT )ji) =⇒ |∇̂p̂T (x̂)| ≤ |∇pT (FT (x̂))|∥BT∥.

(2.3)
Similarly,

|∇pT (x)| ≤ |∇̂p̂T (F
−1
T (x))|∥B−1

T ∥.
Hence,

|pT |21,T =

∫
T

|∇pT (x)|2 dx = | detBT |
∫
T̂

|(∇pT )(FT (x̂))|2 dx̂

≤ | detBT |∥B−1
T ∥2

∫
T̂

|(∇̂p̂T )(x̂)|2 dx̂

= | detBT |∥B−1
T ∥2|p̂T |21,T̂ . (2.4)

Therefore,∑
ℓ=1

ωℓ,T

n∑
i,j=1

(
aij

∂vh
∂xi

∂vh
∂xj

)
(bℓ,T ) =

∑
ℓ=1

ωℓ,T

n∑
i,j=1

(
aij

∂pT
∂xi

∂pT
∂xj

)
(bℓ,T )

≥ θ
∑
ℓ=1

ωℓ,T |∇pT (bℓ,T )|2 by (2.1)

≥ θ| detBT |∥BT∥−2
∑
ℓ=1

ω̂ℓ,T |∇̂p̂T (̂bℓ)|2 by (2.3)

≥ Ĉθ| detBT |∥BT∥−2|p̂T |21,T̂ by (2.2)

≥ Ĉθ
(
∥BT∥∥B−1

T ∥
)−2 |pT |21,T by (2.4).

As

∥BT∥∥B−1
T ∥ ≤ hT

ρ̂

ĥ

ρT
≤ ĥσ

ρ̂

then, ∑
ℓ=1

ωℓ,T

n∑
i,j=1

(
aij

∂vh
∂xi

∂vh
∂xj

)
(bℓ,T ) ≥ Ĉθ

(
ρ̂

ĥσ

)2

|pT |21,T

Summation over all T ∈ Th and setting α̃ = Ĉθρ̂2/(ĥσ)2 completes the proof.
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3. (2 points) Let (T̂ , P̂ , Σ̂) be a finite element, and let l,m ∈ N0 and r, q ∈ [1,∞] be such

that l ≤ m and P̂ ⊂ W l,r(T̂ ) ∩ Wm,q(T̂ ). For any T ∈ Th, let (T, PT ,ΣT ) be a finite

element which is affine-equivalent to (T̂ , P̂ , Σ̂). Then, there exists a positive constant C,

depending only on T̂ , P̂ , l, m, r, q, and n such that

|v|m,q,T ≤ C
hl
T

ϱmT
|T |

1
q
− 1

r |v|l,r,T , for all v ∈ PT , T ∈ Th. (3.5)

LetXh be the finite element space corresponding to Th and the finite elements (T, PT ,ΣT ).
Introduce the seminorms

|v|m,q,h =

(∑
T∈Th

|v|qm,q,T

)1/q

if q < ∞, |v|m,∞,h = max
T∈Th

|v|m,∞,T .

Let Th satisfy
hT

ϱT
≤ σ, for all T ∈ Th,

and the inverse assumption

∃κ > 0 :
h

hT

≤ κ for all T ∈ Th,

where h = maxT∈Th hT . Prove that the inverse inequality

|vh|m,q,h ≤ Chl−m+min(0,n/q−n/r)|vh|l,r,h, for all vh ∈ Xh,

where C is a positive constant depending only on T̂ , P̂ , l, m, r, q, n, σ, κ, and Ω.

Hint. The following inequalities may be useful.

Hölder Inequality For any non-negative numbers a1, . . . , an and b1, . . . , bn

n∑
i=1

aibi ≤

(
n∑

i=1

api

)1/p( n∑
i=1

bqi

)1/q

for any p, q ∈ (1,∞) satisfying 1/p + 1/q = 1.

Jensen Inequality For any non-negative numbers a1, . . . , an(
n∑

i=1

aqi

)1/q

≤

(
n∑

i=1

api

)1/p

for any p, q ∈ (0,∞) satisfying p ≤ q.
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Solution:

From (3.5), the fact that there exists constants σ and C2 such that for all T ∈ Th

hT

ϱT
≤ σ and |T | ≤ C2h

n
T (from Homework 3, q.2(a)),

and the inverse assumption we have that

|vh|m,q,T ≤ Chl−mh
n/q−n/r|vh|l,r,T , for all vh ∈ Xh, T ∈ Th,

where C depends only on T̂ , P̂ , l, m, r, q, n, σ, and κ. We also note that from
Homework 3, q.2(a) there exists a constant C1 such that C1h

n
T ≤ |T | and, hence,

card Th ≤ |Ω|
minT∈Th|T |

≤ |Ω|
C1minT∈Th h

n
T

≤ |Ω|κn

C1

h−n = C̃h−n,

where C̃ depends only on n, σ, κ, and Ω.

We now consider four separate cases:

• q = ∞: There exists a T0 ∈ Th such that |vh|m,∞,h = |vh|m,∞,T0 ; therefore,

|vh|m,∞,h ≤ Chl−mh−n/r|vh|l,r,T0 ≤ Chl−m−n/r|vh|l,r,h

• r = ∞:

|vh|m,q,h ≤ Chl−mh
n/q

(∑
T∈Th

|v|ql,∞,T

)1/q

≤ Chl−mh
n/q (card Th)

1/q |vh|l,∞,h ≤ CC̃
1/qhl−m|vh|l,∞,h

• r ≤ q < ∞: By Jensen inequality

|vh|m,q,h ≤ Chl−m+n/q−n/r

(∑
T∈Th

|v|ql,r,T

)1/q

≤ Chl−m+n/q−n/r|vh|l,r,h

• q < r < ∞: By Hölder inequality

|vh|m,q,h ≤ Chl−m+n/q−n/r

(∑
T∈Th

1 · |v|ql,r,T

)1/q

≤ Chl−m+n/q−n/r

(∑
T∈Th

1

)1−q/r(∑
T∈Th

|v|q·r/ql,r,T

)q/r
1/q

≤ Chl−m+n/q−n/r (card Th)
1/q−1/r |vh|l,r,h

≤ CC̃
1/q−1/rhl−m|vh|l,r,h
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