### 18.12.2023 - Homework 4

Finite Element Methods 1

Due date: 8th January 2024

Submit a PDF/scan of the answers to the following questions before the deadline via the Study Group Roster (Záznamnîk učitele) in SIS, or hand-in directly at the practical class on the 8th January 2024.

1. (2 points) Let $T$ be an $n$-simplex in $\mathbb{R}^{n}$ and let $\lambda_{1}, \ldots, \lambda_{n+1}$ be the barycentric coordinates with respect to the vertices of $T$. Prove the formula

$$
\int_{T} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \cdots \lambda_{n+1}^{\alpha_{n+1}} \mathrm{~d} \boldsymbol{x}=\frac{\alpha_{1}!\alpha_{2}!\cdots \alpha_{n+1}!n!}{\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n+1}+n\right)!}|T|, \quad \forall \alpha_{1}, \ldots, \alpha_{n+1} \in \mathbb{N}_{0} .
$$

Hint. Transform the integral over $T$ to an integral over the reference simplex $\widehat{T}$.

## Solution:

Let $F_{T}$ be an invertible mapping which maps the unit $n$-simplex $\widehat{T}$ onto the $n$-simplex $T$. Then,

$$
\begin{aligned}
I & :=\int_{T} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \cdots \lambda_{n+1}^{\alpha_{n+1}} \mathrm{~d} \boldsymbol{x} \\
& =\frac{|T|}{|\widehat{T}|} \int_{\widehat{T}} \widehat{\lambda}_{1}^{\alpha_{1}} \widehat{\lambda}_{2}^{\alpha_{2}} \cdots \widehat{\lambda}_{n+1}^{\alpha_{n+1}} \mathrm{~d} \widehat{\boldsymbol{x}} \\
& =\frac{|T|}{|\widehat{T}|} \int_{\widehat{T}} \widehat{x}_{1}^{\alpha_{1}} \widehat{x}_{2}^{\alpha_{2}} \cdots \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{\boldsymbol{x}}
\end{aligned}
$$

Since

$$
\begin{aligned}
\widehat{T}= & \left\{\widehat{\boldsymbol{x}} \in \mathbb{R}^{n}: \widehat{x}_{i} \in[0,1], i=1, \ldots, n, \sum_{i=1}^{n} \widehat{x}_{i} \leq 1\right\} \\
= & \left\{\widehat{\boldsymbol{x}} \in \mathbb{R}^{n}: \widehat{x}_{1} \in[0,1], \widehat{x}_{2} \in\left[0,1-\widehat{x}_{1}\right]\right. \\
& \left.\widehat{x}_{3} \in\left[0,1-\left(\widehat{x}_{1}+\widehat{x}_{2}\right)\right], \ldots, \widehat{x}_{n} \in\left[0,1-\sum_{i=1}^{n-1} \widehat{x}_{i}\right]\right\}
\end{aligned}
$$

the integral becomes

$$
I=\frac{|T|}{|\widehat{T}|} \int_{0}^{1} \widehat{x}_{1}^{\alpha_{1}} \ldots \int_{0}^{1-\sum_{i=1}^{n-2} \widehat{x}_{i}} \widehat{x}_{n-1}^{\alpha_{n-1}} \int_{0}^{1-\sum_{i=1}^{n-1} \widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{x}_{n} \mathrm{~d} \widehat{x}_{n-1} \ldots \mathrm{~d} \widehat{x}_{1} .
$$

We consider a more generic integral

$$
\int_{0}^{c} \xi^{\alpha}(c-\xi)^{\beta} \mathrm{d} \xi
$$

for $\alpha, \beta \in \mathbb{N}_{0}$ and $c \in[0,1]$. If $\beta=0$ then

$$
\int_{0}^{c} \xi^{\alpha}(c-\xi)^{\beta} \mathrm{d} \xi=\frac{c^{\alpha+1}}{\alpha+1}
$$

and when $\beta>0$

$$
\begin{aligned}
\int_{0}^{c} \xi^{\alpha}(c-\xi)^{\beta} \mathrm{d} \xi=\int_{0}^{c}\left(\frac{\xi^{\alpha+1}}{\alpha+1}\right)^{\prime}(c-\xi)^{\beta} \mathrm{d} \xi & =\int_{0}^{c} \frac{\xi^{\alpha+1}}{\alpha+1} \beta(c-\xi)^{\beta-1} \mathrm{~d} \xi=\ldots \\
& =\int_{0}^{c} \frac{\xi^{\alpha+\beta}}{(\alpha+1) \ldots(\alpha+\beta)} \beta!\mathrm{d} \xi \\
& =\frac{\alpha!\beta!}{(\alpha+\beta+1)!} c^{\alpha+\beta+1}
\end{aligned}
$$

Thus, we have be selecting $\alpha=\alpha_{n}, \beta=\alpha_{n+1}, \xi=\widehat{x}_{n}$ and $c=1-\sum_{i=1}^{n-1} \widehat{x}_{i}$ that

$$
\int_{0}^{1-} \sum_{i=1}^{n-1} \widehat{x}_{i} \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{x}_{n}=\frac{\alpha_{n}!\alpha_{n+1}!}{\left(\alpha_{n}+\alpha_{n+1}+1\right)!}\left(1-\sum_{i=1}^{n-1} \widehat{x}_{i}\right)^{\alpha_{n}+\alpha_{n+1}+1} .
$$

Similarly, we have that

$$
\begin{aligned}
& \int_{0}^{1-\sum_{i=1}^{n-2} \widehat{x}_{i}} \widehat{x}_{n-1}^{\alpha_{n-1}} \int_{0}^{1-\sum_{i=1}^{n-1} \widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{x}_{n} \mathrm{~d} \widehat{x}_{n-1} \\
& \quad=\frac{\alpha_{n}!\alpha_{n+1}!}{\left(\alpha_{n}+\alpha_{n+1}+1\right)!} \int_{0}^{1-\sum_{i=1}^{n-2} \widehat{x}_{i}} \widehat{x}_{n-1}^{\alpha_{n-1}}\left(1-\sum_{i=1}^{n-1} \widehat{x}_{i}\right)^{\alpha_{n}+\alpha_{n+1}+1} \mathrm{~d} \widehat{x}_{n-1} \\
& \quad=\frac{\alpha_{n}!\alpha_{n+1}!}{\left(\alpha_{n}+\alpha_{n+1}+1\right)!} \frac{\alpha_{n-1}!\left(\alpha_{n}+\alpha_{n+1}+1\right)!}{\left(\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2\right)!}\left(1-\sum_{i=1}^{n-2} \widehat{x}_{i}\right)^{\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2} \\
& \quad=\frac{\alpha_{n-1}!\alpha_{n}!\alpha_{n+1}!}{\left(\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2\right)!}\left(1-\sum_{i=1}^{n-2} \widehat{x}_{i}\right)^{\alpha_{n-1}+\alpha_{n}+\alpha_{n+1}+2}
\end{aligned}
$$

Recursively, we get that for $k=1, \ldots, n$,

$$
\begin{gathered}
\int_{0}^{1-\sum_{i=1}^{n-k} \widehat{x}_{i}} \widehat{x}_{n-k+1}^{\alpha_{1}} \cdots \int_{0}^{1-\sum_{i=1}^{n-1} \widehat{x}_{i}} \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{x}_{n} \mathrm{~d} \widehat{x}_{n-1} \ldots \mathrm{~d} \widehat{x}_{n-k+1} \\
=\frac{\alpha_{n-k+1}!\ldots \alpha_{n+1}!}{\left(\alpha_{n-k+1}+\cdots+\alpha_{n+1}+k\right)!}\left(1-\sum_{i=1}^{n-k} \widehat{x}_{i}\right)^{\alpha_{n-k+1}+\cdots+\alpha_{n+1}+k}
\end{gathered}
$$

Therefore, we have that

$$
\int_{\widehat{T}} \widehat{x}_{1}^{\alpha_{1}} \widehat{x}_{2}^{\alpha_{2}} \cdots \widehat{x}_{n}^{\alpha_{n}}\left(1-\sum_{i=1}^{n} \widehat{x}_{i}\right)^{\alpha_{n+1}} \mathrm{~d} \widehat{\boldsymbol{x}}=\frac{\alpha_{1}!\ldots \alpha_{n+1}!}{\left(\alpha_{1}+\cdots+\alpha_{n+1}+n\right)!} .
$$

By setting $\alpha_{1}=\cdots=\alpha_{n+1}=0$ we have that

$$
|\widehat{T}|=\int_{\widehat{T}} 1 \mathrm{~d} \widehat{\boldsymbol{x}}=\frac{1}{n!} ;
$$

hence,

$$
I=\frac{\alpha_{1}!\ldots \alpha_{n+1}!n!}{\left(\alpha_{1}+\cdots+\alpha_{n+1}+n\right)!}|T| .
$$

2. (2 points) Prove Theorem 12 from the lecture:

Let $\left\{\mathcal{T}_{h}\right\}$ be a family of triangulations of a bounded domain $\Omega \subset \mathbb{R}^{n}$ with Lipschitzcontinuous boundary and $\left\{X_{h}\right\}$ the family of the corresponding finite element spaces under the assumptions required for convergence of a discrete solution. We assume all finite elements $\left(T, P_{T}, \Sigma_{T}\right)$ are affine-equivalent to a reference element $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$ with invertible affine mapping $F_{T}(\widehat{x})=\mathbb{B}_{T} \widehat{x}+b_{T}$ such that $F_{T}(\widehat{T})=T$.
Consider the quadrature formula

$$
\int_{\widehat{T}} \widehat{\varphi} \mathrm{~d} \boldsymbol{x} \approx \sum_{\ell=1}^{L} \widehat{\omega}_{\ell} \widehat{\varphi}\left(\widehat{b}_{\ell}\right)
$$

where $\widehat{\varphi}$ and $\widehat{b}_{\ell}$, for $\ell=1, \ldots, L$, are the quadrature weights and nodes, defined on the reference element $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$, let $m \in \mathbb{N}$ be such that $\widehat{P} \subset P_{m}(\widehat{T})$, and let there hold at least one of the following conditions
(I) $\bigcup_{\ell=1}^{L}\left\{\widehat{b}_{\ell}\right\}$ contains a $P_{m-1}(\widehat{T})$-unisolvent set, or
(II) $\widehat{E}(\widehat{\varphi})=0$ for all $\widehat{\varphi} \in P_{2 m-2}(\widehat{T})$,
where

$$
\widehat{E}(\widehat{\varphi})=\int_{\widehat{T}} \widehat{\varphi} \mathrm{~d} \boldsymbol{x}-\sum_{\ell=1}^{L} \widehat{\omega}_{\ell} \widehat{\varphi}\left(\widehat{b}_{\ell}\right) .
$$

Define $V_{h}=\left\{v_{h} \in X_{h}: \phi\left(v_{h}\right)=0 \quad \forall \phi \in \Sigma_{h}^{\partial \Omega}\right\} \subset H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ and the bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ as

$$
a_{h}\left(u_{h}, v_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \sum_{\ell=1}^{L} \omega_{\ell, T} \sum_{i, j=1}^{n}\left(a_{i j} \frac{\partial u_{h}}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)\left(b_{\ell_{T}}\right),
$$

where $\omega_{\ell, T}=\left|\operatorname{det} \mathbb{B}_{T}\right| \widehat{\omega}_{\ell}, b_{\ell, T}=F_{T}\left(\widehat{b}_{\ell}\right), a_{i j} \in L^{\infty}(\Omega)$ and let there exist a constant $\theta>0$ such that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \quad \forall x \in \bar{\Omega}, \forall \xi \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

Prove that the bilinear form $a_{h}$ is uniformly $V_{h}$-elliptic; i.e., there exists a constant $\widetilde{\alpha}>0$ independent of $h$ such that

$$
a_{h}\left(v_{h}, v_{h}\right) \geq \widetilde{\alpha}\left|v_{h}\right|_{1, h}^{2} \quad \forall v_{h} \in V_{h}, \forall h>0
$$

Hint. First show that there exists a constant $\widehat{C}>0$ such that

$$
\begin{equation*}
\widehat{C}|\widehat{p}|_{1, \widehat{T}}^{2} \leq \sum_{\ell=1}^{L} \widehat{\omega}_{\ell}\left|\widehat{\nabla} \widehat{p}\left(\widehat{b}_{\ell}\right)\right|^{2} \quad \forall \widehat{p} \in \widehat{P} \tag{2.2}
\end{equation*}
$$

for condition (I) and (II) separately.

## Solution:

Assume (I) holds, then, for any $p \in \widehat{P}$

$$
\begin{array}{rlrl} 
& \sum_{\ell=1}^{L} \widehat{\omega}_{\ell}\left|\widehat{\nabla} \widehat{p}\left(\widehat{b}_{\ell}\right)\right|^{2} & =0 \\
\Longrightarrow \quad(\widehat{\nabla} \widehat{p})\left(\widehat{b}_{\ell}\right) & =0 \quad \ell=1, \ldots, L, & \left(\text { as } \widehat{\omega}_{\ell}>0\right) \\
\Longrightarrow \quad \widehat{\nabla} \widehat{p} & =0 & & \left(\text { since } \widehat{\nabla} \widehat{p} \in\left[P_{m-1}(\widehat{T})\right]^{n}\right) ;
\end{array}
$$

therefore, $\widehat{p} \in \widehat{P}_{0}(\widehat{T})$. Hence, the mapping

$$
\widehat{p} \rightarrow\left[\sum_{\ell=1}^{L} \widehat{\omega}_{\ell}\left|\widehat{\nabla} \widehat{p}\left(\widehat{b}_{\ell}\right)\right|^{2}\right]^{1 / 2}
$$

is a norm on the factor space $\widehat{P} / P_{0}(\widehat{T})$. Since $|\cdot|_{1, \widehat{T}}$ is also a norm on this factor space (2.2) follows by equivalence of norms on finite dimensional spaces.

If, instead, (II) holds then

$$
0=\widehat{E}\left(|\widehat{\nabla} \widehat{p}|^{2}\right)=\int_{\widehat{T}}|\widehat{\nabla} \widehat{p}|^{2} \mathrm{~d} \widehat{\boldsymbol{x}}-\sum_{\ell=1}^{L} \widehat{\omega}_{\ell}\left|\widehat{\nabla} \widehat{p}\left(\widehat{b}_{\ell}\right)\right|^{2}
$$

Hence, (2.2) holds as an equality for $\widehat{C}=1$.
Now we have proven the hint we consider any $v_{h} \in V_{h}$ and $T \in \mathcal{T}_{h}$, define $F_{T}(\widehat{\boldsymbol{x}})=$ $\mathbb{B}_{T} \widehat{\boldsymbol{x}}+\boldsymbol{b}_{T}$ as the invertible affine map of $\widehat{T}$ to $T$, and denote $p_{T}=\left.v_{h}\right|_{T}$ and $\widehat{p}_{T}=$ $p_{T} \circ F_{T}$. Then, $\widehat{p}_{T} \in \widehat{P}$ and

$$
\begin{equation*}
\frac{\partial \widehat{p}_{T}}{\partial \widehat{x}_{i}}(\widehat{\boldsymbol{x}})=\sum_{j=1}^{n} \frac{\partial p_{T}}{\partial x_{j}}\left(F_{T}(\widehat{\boldsymbol{x}})\left(B_{T}\right)_{j i}\right) \quad \Longrightarrow \quad\left|\widehat{\nabla} \widehat{p}_{T}(\widehat{\boldsymbol{x}})\right| \leq\left|\nabla p_{T}\left(F_{T}(\widehat{\boldsymbol{x}})\right)\right|\left\|\mathbb{B}_{T}\right\| . \tag{2.3}
\end{equation*}
$$

Similarly,

$$
\left|\nabla p_{T}(\boldsymbol{x})\right| \leq\left|\widehat{\nabla} \widehat{p}_{T}\left(F_{T}^{-1}(\boldsymbol{x})\right)\right|\left\|\mathbb{B}_{T}^{-1}\right\|
$$

Hence,

$$
\begin{align*}
\left|p_{T}\right|_{1, T}^{2}=\int_{T}\left|\nabla p_{T}(\boldsymbol{x})\right|^{2} \mathrm{~d} \boldsymbol{x} & =\left|\operatorname{det} \mathbb{B}_{T}\right| \int_{\widehat{T}}\left|\left(\nabla p_{T}\right)\left(F_{T}(\widehat{\boldsymbol{x}})\right)\right|^{2} \mathrm{~d} \widehat{\boldsymbol{x}} \\
& \leq\left.\left|\operatorname{det} \mathbb{B}_{T}\right|\left|\mathbb{B}_{T}^{-1} \|^{2} \int_{\widehat{T}}\right|\left(\widehat{\nabla} \widehat{p}_{T}\right)(\widehat{\boldsymbol{x}})\right|^{2} \mathrm{~d} \widehat{\boldsymbol{x}} \\
& =\left|\operatorname{det} \mathbb{B}_{T}\right|| | \mathbb{B}_{T}^{-1} \|^{2}\left|\widehat{p}_{T}\right|_{1, \widehat{T}}^{2} . \tag{2.4}
\end{align*}
$$

Therefore,

$$
\begin{array}{rlrl}
\sum_{\ell=1} \omega_{\ell, T} \sum_{i, j=1}^{n}\left(a_{i j} \frac{\partial v_{h}}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)\left(b_{\ell, T}\right) & =\sum_{\ell=1} \omega_{\ell, T} \sum_{i, j=1}^{n}\left(a_{i j} \frac{\partial p_{T}}{\partial x_{i}} \frac{\partial p_{T}}{\partial x_{j}}\right)\left(b_{\ell, T}\right) & \\
& \geq \theta \sum_{\ell=1} \omega_{\ell, T}\left|\nabla p_{T}\left(b_{\ell, T}\right)\right|^{2} & & \text { by }(2.1) \\
& \geq \theta\left|\operatorname{det} \mathbb{B}_{T}\right|\left\|\mathbb{B}_{T}\right\|^{-2} \sum_{\ell=1} \widehat{\omega}_{\ell, T}\left|\widehat{\nabla} \widehat{p}_{T}\left(\widehat{b}_{\ell}\right)\right|^{2} & & \text { by }(2.3) \\
& \geq \widehat{C} \theta\left|\operatorname{det} \mathbb{B}_{T}\right|\left\|\mathbb{B}_{T}\right\|^{-2}\left|\widehat{p}_{T}\right|_{1, \widehat{T}}^{2} & & \text { by }(2.2) \\
& \geq \widehat{C} \theta\left(\left\|\mathbb{B}_{T}\right\|\left\|\mathbb{B}_{T}^{-1}\right\|\right)^{-2}\left|p_{T}\right|_{1, T}^{2} & & \text { by }(2.4) .
\end{array}
$$

As

$$
\left\|\mathbb{B}_{T}\right\|\left\|\mathbb{B}_{T}^{-1}\right\| \leq \frac{h_{T}}{\widehat{\rho}} \frac{\widehat{h}}{\rho_{T}} \leq \frac{\widehat{h} \sigma}{\widehat{\rho}}
$$

then,

$$
\sum_{\ell=1} \omega_{\ell, T} \sum_{i, j=1}^{n}\left(a_{i j} \frac{\partial v_{h}}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)\left(b_{\ell, T}\right) \geq \widehat{C} \theta\left(\frac{\widehat{\rho}}{\widehat{h} \sigma}\right)^{2}\left|p_{T}\right|_{1, T}^{2}
$$

Summation over all $T \in \mathcal{T}_{h}$ and setting $\widetilde{\alpha}=\widehat{C} \theta \widehat{\rho}^{2} /(\widehat{h} \sigma)^{2}$ completes the proof.
3. (2 points) Let $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$ be a finite element, and let $l$, $m \in \mathbb{N}_{0}$ and $r, q \in[1, \infty]$ be such that $l \leq m$ and $\widehat{P} \subset W^{l, r}(\widehat{T}) \cap W^{m, q}(\widehat{T})$. For any $T \in \mathcal{T}_{h}$, let $\left(T, P_{T}, \Sigma_{T}\right)$ be a finite element which is affine-equivalent to $(\widehat{T}, \widehat{P}, \widehat{\Sigma})$. Then, there exists a positive constant $C$, depending only on $\widehat{T}, \widehat{P}, l, m, r, q$, and $n$ such that

$$
\begin{equation*}
|v|_{m, q, T} \leq C \frac{h_{T}^{l}}{\varrho_{T}^{m}}|T|^{\frac{1}{q}-\frac{1}{r}}|v|_{l, r, T}, \quad \text { for all } v \in P_{T}, T \in \mathcal{T}_{h} \tag{3.5}
\end{equation*}
$$

Let $X_{h}$ be the finite element space corresponding to $\mathcal{T}_{h}$ and the finite elements $\left(T, P_{T}, \Sigma_{T}\right)$. Introduce the seminorms

$$
|v|_{m, q, h}=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{m, q, T}^{q}\right)^{1 / q} \quad \text { if } q<\infty, \quad|v|_{m, \infty, h}=\max _{T \in \mathcal{T}_{h}}|v|_{m, \infty, T}
$$

Let $\mathcal{T}_{h}$ satisfy

$$
\frac{h_{T}}{\varrho_{T}} \leq \sigma, \quad \text { for all } T \in \mathcal{T}_{h}
$$

and the inverse assumption

$$
\exists \kappa>0: \quad \frac{h}{h_{T}} \leq \kappa \quad \text { for all } T \in \mathcal{T}_{h}
$$

where $h=\max _{T \in \mathcal{T}_{h}} h_{T}$. Prove that the inverse inequality

$$
\left|v_{h}\right|_{m, q, h} \leq C h^{l-m+\min (0, n / q-n / r)}\left|v_{h}\right|_{l, r, h}, \quad \text { for all } v_{h} \in X_{h}
$$

where $C$ is a positive constant depending only on $\widehat{T}, \widehat{P}, l, m, r, q, n, \sigma, \kappa$, and $\Omega$.
Hint. The following inequalities may be useful.
Hölder Inequality For any non-negative numbers $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q}
$$

for any $p, q \in(1, \infty)$ satisfying $1 / p+1 / q=1$.
Jensen Inequality For any non-negative numbers $a_{1}, \ldots, a_{n}$

$$
\left(\sum_{i=1}^{n} a_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}
$$

for any $p, q \in(0, \infty)$ satisfying $p \leq q$.

## Solution:

From (3.5), the fact that there exists constants $\sigma$ and $C_{2}$ such that for all $T \in \mathcal{T}_{h}$

$$
\frac{h_{T}}{\varrho_{T}} \leq \sigma \quad \text { and } \quad|T| \leq C_{2} h_{T}^{n} \quad(\text { from Homework } 3, \mathrm{q} \cdot 2(\mathrm{a}))
$$

and the inverse assumption we have that

$$
\left|v_{h}\right|_{m, q, T} \leq \bar{C} h^{l-m} h^{n / q-n / r}\left|v_{h}\right|_{l, r, T}, \quad \text { for all } v_{h} \in X_{h}, T \in \mathcal{T}_{h}
$$

where $\bar{C}$ depends only on $\widehat{T}, \widehat{P}, l, m, r, q, n, \sigma$, and $\kappa$. We also note that from Homework 3, q.2(a) there exists a constant $C_{1}$ such that $C_{1} h_{T}^{n} \leq|T|$ and, hence,

$$
\operatorname{card} \mathcal{T}_{h} \leq \frac{|\Omega|}{\min _{T \in \mathcal{T}_{h}}|T|} \leq \frac{|\Omega|}{C_{1} \min _{T \in \mathcal{T}_{h}} h_{T}^{n}} \leq \frac{|\Omega| \kappa^{n}}{C_{1}} h^{-n}=\widetilde{C} h^{-n},
$$

where $\widetilde{C}$ depends only on $n, \sigma, \kappa$, and $\Omega$.
We now consider four separate cases:

- $q=\infty$ : There exists a $T_{0} \in \mathcal{T}_{h}$ such that $\left|v_{h}\right|_{m, \infty, h}=\left|v_{h}\right|_{m, \infty, T_{0}}$; therefore,

$$
\left|v_{h}\right|_{m, \infty, h} \leq \bar{C} h^{l-m} h^{-n / r}\left|v_{h}\right|_{l, r, T_{0}} \leq \bar{C} h^{l-m-n / r}\left|v_{h}\right|_{l, r, h}
$$

- $r=\infty$ :

$$
\begin{aligned}
\left|v_{h}\right|_{m, q, h} & \leq \bar{C} h^{l-m} h^{n / q}\left(\sum_{T \in \mathcal{T}_{h}}|v|_{l, \infty, T}^{q}\right)^{1 / q} \\
& \leq \bar{C} h^{l-m} h^{n / q}\left(\operatorname{card} \mathcal{T}_{h}\right)^{1 / q}\left|v_{h}\right|_{l, \infty, h} \leq \bar{C} \widetilde{C}^{1 / q} h^{l-m}\left|v_{h}\right|_{l, \infty, h}
\end{aligned}
$$

- $r \leq q<\infty$ : By Jensen inequality

$$
\left|v_{h}\right|_{m, q, h} \leq \bar{C} h^{l-m+n / q-n / r}\left(\sum_{T \in \mathcal{T}_{h}}|v|_{l, r, T}^{q}\right)^{1 / q} \leq \bar{C} h^{l-m+n / q-n / r}\left|v_{h}\right|_{l, r, h}
$$

- $q<r<\infty$ : By Hölder inequality

$$
\begin{aligned}
\left|v_{h}\right|_{m, q, h} & \leq \bar{C} h^{l-m+n / q-n / r}\left(\sum_{T \in \mathcal{T}_{h}} 1 \cdot|v|_{l, r, T}^{q}\right)^{1 / q} \\
& \leq \bar{C} h^{l-m+n / q-n / r}\left(\left(\sum_{T \in \mathcal{T}_{h}} 1\right)^{1-q / r}\left(\sum_{T \in \mathcal{T}_{h}}|v|_{l, r, T}^{q \cdot r / q}\right)^{q / r}\right)^{1 / q} \\
& \leq \bar{C} h^{l-m+n / q-n / r}\left(\operatorname{card} \mathcal{T}_{h}\right)^{1 / q-1 / r}\left|v_{h}\right|_{l, r, h} \\
& \leq \bar{C} \widetilde{C}^{1 / q-1 / r} h^{l-m}\left|v_{h}\right|_{l, r, h}
\end{aligned}
$$

