Numerical Solution of ODEs

Exercise Class

3rd October 2023

Exercises

1. Read about the following ODE systems:

Population Growth http://en.wikipedia.org/wiki/Population_growth
Logistic http://en.wikipedia.org/wiki/Logistic_function
Pendulum http://en.wikipedia.org/wiki/Pendulum_\(mathematics\)
Harmonic Oscillator http://en.wikipedia.org/wiki/Harmonic_oscillator
2. Experiment with the logistic equation with the following constants, time range, and initial conditions x_{0} :

- $a=b=1$
- $t=[0,3],[0,-1]$
- $x_{0}=1 / 2,3 / 2,1,-1 / 20$

3. Compare ode23 and ode15s for the logistic equation with $a=b=1, \mathrm{c}=1 / 5, t=[0,100]$, $x_{0}=0.7233$. Compare also to the exact solution:

$$
u(t)=\frac{\sqrt{5}}{10} \tanh \left(\left(t-t_{0}\right) \frac{\sqrt{5}}{10}+\operatorname{arctanh}\left(\left(2 x_{0}-1\right) \sqrt{5}\right)\right)+\frac{1}{2}
$$

4. Use ode23 to solve the pendulum problem:

$$
\begin{aligned}
& x^{\prime \prime}(t)=-k \sin (x(t)) \\
& x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

with $k=1, t=(0,6 \pi)$, and various initial conditions

$$
x_{0}=\binom{-1.5}{0},\binom{-3}{0},\binom{-\pi}{1} .
$$

5. Consider the harmonic oscillator

$$
\begin{aligned}
x^{\prime \prime}(t)+b x & =c \cos (\omega t), \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

(a) Attempt to derive an explicit solution. Consider the two cases $b \neq \omega^{2}$ and $b=\omega^{2}$ separately.
(b) Experiment with the following constants, time range, and initial conditions x_{0} :

- $a=0, b=9, c=10$
- $t=[0,50]$
- $x_{0}=(1,0)^{\top}$
- $\omega=2.5,2.9,3.1,3, \sqrt{3}$

