Numerical Solution of ODEs

Exercise Class

17th October 2023

Explicit One-Step Methods

Euler Implemented by eul.m:

$$
\begin{aligned}
\kappa_{1} & =f(t, x) \\
\psi(t+\tau, t, x) & =x+\tau \kappa_{1} .
\end{aligned}
$$

Runge Implemented by runge.m:

$$
\begin{aligned}
\kappa_{1} & =f(t, x), \\
\kappa_{2} & =f\left(t+\frac{\tau}{2}, x+\frac{\tau}{2} \kappa_{1}\right), \\
\psi(t+\tau, t, x) & =x+\tau \kappa_{2} .
\end{aligned}
$$

Runge-Kutta Implemented by rk_classical.m:

$$
\begin{aligned}
\kappa_{1} & =f(t, x) \\
\kappa_{2} & =f\left(t+\frac{\tau}{2}, x+\frac{\tau}{2} \kappa_{1}\right) \\
\kappa_{3} & =f\left(t+\frac{\tau}{2}, x+\frac{\tau}{2} \kappa_{2}\right) \\
\kappa_{4} & =f\left(t+\tau, x+\tau \kappa_{3}\right) \\
\psi(t+\tau, t, x) & =x+\tau\left(\frac{1}{6} \kappa_{1}+\frac{1}{3} \kappa_{2}+\frac{1}{3} \kappa_{3}+\frac{1}{6} \kappa_{4}\right) .
\end{aligned}
$$

Heun

$$
\begin{aligned}
\kappa_{1} & =f(t, x), \\
\kappa_{2} & =f\left(t+\tau, x+\tau \kappa_{1}\right), \\
\psi(t+\tau, t, x) & =x+\frac{\tau}{2}\left(\kappa_{1}+\kappa_{2}\right) .
\end{aligned}
$$

Exercises

1. Compare the solution obtained by the Euler, Runge, and Runge-Kutta methods with $\tau=$ $1 / 2,1 / 4,1 / 8$ to the solution obtained with ode 23 for the following problems:
(a) Logistic equation

$$
\begin{aligned}
x(t)^{\prime} & =(a-b x(t)) x(t), \\
x(0) & =x_{0},
\end{aligned} t \in[0,3],
$$

with $a=b=1$ and $x_{0}=2$.
(b) The pendulum problem:

$$
\begin{aligned}
& x^{\prime \prime}(t)=-k \sin (x(t)), \\
& x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

with $k=1, t=(0,6 \pi)$, and various initial conditions

$$
x_{0}=\binom{-1.5}{0},\binom{-3}{0},\binom{-\pi}{1} .
$$

(c) The harmonic oscillator

$$
\begin{aligned}
x^{\prime \prime}(t)+b x & =c \cos (\omega t), \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

with

- $a=0, b=9, c=10$
- $t=[0,50]$
- $x_{0}=(1,0)^{\top}$
- $\omega=2.5,2.9,3.1,3, \sqrt{3}$

2. Implement the Heun method as a MATLAB function, and test with the logistic equation with $\tau=1 / 2,1 / 4,1 / 8$.
