Numerical Solution of ODEs

Exercise Class

31st October 2023

Adaptive Timestepping

Algorithm 1. Given two one step methods

$$
\begin{aligned}
& \psi-\operatorname{Order} p \\
& \bar{\psi}-\operatorname{Order} p+1 .
\end{aligned}
$$

we define adaptive timestepping at each timestep as:

```
    \(\tau \leftarrow \max (\tau\), TOL \()\)
    \(\delta \leftarrow\|\bar{\psi}(t+\tau, t, x)-\psi(t+\tau, t, x)\|\)
    while \(\delta>\) TOL do
        \(\tau \leftarrow \tau\left(\frac{\mathrm{TOL}}{\delta}\right)^{1 / p+1}\)
        \(\delta \leftarrow\|\bar{\psi}(t+\tau, t, x)-\psi(t+\tau, t, x)\|\)
    end while
    accept \(\tau\)
    \(x=\bar{\psi}(t+\tau, t, x)\)
    \(t=t+\tau\)
```

We provide three implementations of an algorithm with $p=1$:
ode12_1.m Basic algorithm (using Euler and Heun)
ode12_2.m Adds damping to the timestep size update to prevent large changes.
ode12.m Adds heuristics for the initial timestep size.

Exercises

1. Solve

$$
\begin{array}{ll}
x^{\prime}(t) & =\left(\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right) x(t), \\
x(0) & =\binom{2}{1}, \tag{2}
\end{array}
$$

implemented by linsystem.m, using all three version of ode12 (ode12_1.m, ode12_2.m, and ode12.m).
2. Modify ode12 to use Euler (order $p=1$ method) and Runge (order $p+1=2$ method). Solve the linear system from (1)-(2) using this method.
3. Study ode23.m.

