Numerical Solution of ODEs

Exercise Class

07th November 2023

Embedded RK Methods

Using the Butcher Tableau

c_{1}	a_{11}	a_{12}	\cdots	$a_{1 s}$
c_{2}	a_{21}	a_{22}	\cdots	$a_{2 s}$
\vdots	\vdots	\vdots	\ddots	\vdots
c_{s}	$a_{s 1}$	$a_{s 2}$	\cdots	$a_{s s}$
	b_{1}	b_{2}	\cdots	b_{3}

we can define a one step method as

$$
\begin{aligned}
\kappa_{i} & =f\left(t+\tau c_{i}, x+\tau \sum_{j=1}^{s} a_{i j} \kappa_{j}\right), \\
\psi(t+\tau, t, x) & =x+\tau \sum_{i=1}^{s} b_{i} \kappa_{i} .
\end{aligned}
$$

ode23 requires two methods:
"low order" method explicit RK $s=2$

0		
1	1	
	$1 / 2$	$1 / 2$

$$
\begin{aligned}
\kappa_{1} & =f(t, x), \\
\kappa_{2} & =f\left(t+\tau, x+\tau \kappa_{1}\right), \\
\psi(t+\tau, t, x) & =x+1 / 2 \tau \kappa_{1}+1 / 2 \tau \kappa_{2} .
\end{aligned}
$$

"high order" method explicit RK $s=3$

0			
c_{1}	a_{21}		
c_{1}	a_{31}	a_{32}	
	b_{1}	b_{2}	b_{3}

$$
\begin{aligned}
\bar{\kappa}_{1} & =f(t, x), \\
\bar{\kappa}_{2} & =f\left(t+c_{1} \tau, x+a_{21} \tau \bar{\kappa}_{1}\right), \\
\bar{\kappa}_{3} & =f\left(t+c_{2} \tau, x+a_{31} \tau \bar{\kappa}_{1}+a_{32} \tau \bar{\kappa}_{2}\right), \\
\psi(t+\tau, t, x) & =x+b_{1} \tau \bar{\kappa}_{1}+b_{2} \tau \bar{\kappa}_{2}+b_{3} \tau \bar{\kappa}_{3} .
\end{aligned}
$$

Therefore, the low order method requires two evaluations of f, and the high order method requires three evaluations of f; hence, five evaluations of f in total.

Note that $\kappa_{1}=\bar{\kappa}_{2}$; therefore, it reduces the number of evaluations of f by one. If we select $c_{1}=1$ and $c_{2}=1 / 2$ then we have that,

$$
\begin{array}{c|ccc}
0 & & & \\
1 & 1 & & \\
1 / 2 & 1 / 4 & 1 / 4 & \\
\hline & 1 / 6 & 1 / 6 & 2 / 3
\end{array}
$$

$$
\begin{aligned}
\bar{\kappa}_{1} & =f(t, x)=\kappa_{1}, \\
\bar{\kappa}_{2} & =f\left(t+\tau, x+\tau \bar{\kappa}_{1}\right)=\kappa_{2} \\
\bar{\kappa}_{3} & =f\left(t+\frac{1}{2} \tau, x+\frac{1}{4} \tau \kappa_{1}+\frac{1}{4} \tau \kappa_{2}\right), \\
\psi(t+\tau, t, x) & =x+\frac{1}{6} \tau \kappa_{1}+\frac{1}{6} \tau \kappa_{2}+\frac{2}{3} \tau \bar{\kappa}_{3} .
\end{aligned}
$$

Now only need to evaluate κ_{1}, κ_{2}, and $\bar{\kappa}_{3}$; therefore, only need three evaluations of f, which is the same number of evaluations as for just the high order method.

We can define the low order method as embedded in the high order method:

Exercises

1. Modify ode23_orig.m to use the following low and high order methods:

$$
\begin{array}{c|ccc|ccc}
0 & & & 0 & & & \\
1 & 1 & & & \begin{array}{c}
1 / 3 \\
1 / 3 \\
\\
2 / 3
\end{array} & & \\
\hline & 1 / 2 & 1 / 2 & 2 / 3 & \\
\hline
\end{array}
$$

2. Modify ode23_orig.m to use the embedded methods:

0			
$1 / 2$	$1 / 2$		
1	-1	2	
	0	1	
	$1 / 6$	$2 / 3$	$1 / 6$

3. Compare results and computation time (using tic and toc) for the two methods generated in the previous questions on various equations (linsystem, logistic, oscillator)
4. Study gauss2.m
