Numerical Solution of ODEs

Exercise Class

21st November 2023

Exercises

1. Derive the recursive formula for the following methods using the numerical integration definition

$$
u\left(t_{j+1}\right) \approx u\left(t_{j-k}\right)+\sum_{i=0}^{q+\ell} f_{j-q+i} \int_{t_{j-k}}^{t^{j+1}} \mathcal{L}_{j-q+i}(s) \mathrm{d} s
$$

where $f_{j-q+i}=f\left(t_{j-q+i}, u\left(t_{j-q+i}\right)\right)$ and

$$
\mathcal{L}_{j-q+i}(s)=\prod_{\substack{k=0 \\ k \neq i}}^{q+\ell} \frac{s-t_{j-q+k}}{t_{j-q+i}-t_{j-q+k}}, \quad t_{i-q} \leq s \leq t_{j+1}
$$

for $i=0, \ldots, q+\ell$ are the Lagrange basis functions.
(a) 2-step Nyström method $(k=1, \ell=0, q=1)$
(b) 2-step Milne-Simpson method $(k=1, \ell=1, q=1)$
2. Compare the numerical solutions given by the 2-step Milne-Simpson, Nyström, and AdamsMoulton methods, along with the numerical solution from ode 23 for the following ODEs.
(a) Linear oscillator (oscillator.m) on the time interval $t \in[0,10]$, with $\tau=0.1$:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-9 x+10 \cos (t), \\
\boldsymbol{x}(0) & =\binom{2}{1}
\end{aligned}
$$

For comparisons plot t vs. x_{1}.
(b) Stiff linear system (linsystem.m) on the time interval $t \in[0,0.05]$ with $\tau=0.001$:

$$
\begin{aligned}
\boldsymbol{x}^{\prime} & =\left(\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right) \boldsymbol{x} \\
\boldsymbol{x}(0) & =\binom{2}{1}
\end{aligned}
$$

Also run convergence analysis using conv_analysis.m to deduce the order of the MilneSimpson, and Nyström 2-step methods.

