Numerical Solution of ODEs

Exercise Class

5th December 2023

Dynamical Systems

Consider Van der Pol's oscillator:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{2} & =f_{1}(x) \\
x_{2}^{\prime}=-x_{1}+2 a x_{2}-x_{1}^{2} x_{2} & =f_{2}(x)
\end{array}
$$

with initial conditions $x_{0} \in \mathbb{R}^{2}$ at time $t_{0}=0$. In order to solve this we require a stiff solver such as ode23s or ode45s.

Steady State

This problem has a steady state at $\boldsymbol{x}^{*}=(0,0)^{\top} \in \mathbb{R}^{2}$, but is it A-stable? In order to determine this we need to compute the eigenvalues of the Jacobian matrix

$$
A=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{2}}\left(\boldsymbol{x}^{*}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(\boldsymbol{x}^{*}\right) \\
\frac{\partial f_{2}}{\partial x_{2}}\left(\boldsymbol{x}^{*}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(\boldsymbol{x}^{*}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1-2 x_{1}^{*} x_{2}^{*} & 2 a-\left(x_{1}^{*}\right)^{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2 a
\end{array}\right) .
$$

From the characteristic polynomial we can compute that the spectrum of A is

$$
\sigma(A)=\left\{a+\sqrt{a^{2}+1}, a-\sqrt{a^{2}+1}\right\} .
$$

The steady state is A-stable if $\max _{\lambda \in \sigma(A)} \operatorname{Re}(\lambda)<0$. So we evaluate for different values of a :
$|\boldsymbol{a}|<\mathbf{1}$: Here $\sigma(A)=\{a+b i, a-b i\}$, for some $b \in \mathbb{R}$; therefore, $\max _{\lambda \in \sigma(A)} \operatorname{Re}(\lambda)=a$. Hence, we have that \boldsymbol{x}^{*} is A-stable if $a<0$ and \boldsymbol{x}^{*} is unstable if $a>0$.
$|a|>1:$ Here $\sigma(A)=\{a+b, a-b\}$, for some $b \in[0,|a|]$; therefore, $\max _{\lambda \in \sigma(A)} \operatorname{Re}(\lambda)=a+b$.
Hence, we have that \boldsymbol{x}^{*} is A-stable if $a<0$ and \boldsymbol{x}^{*} is unstable if $a>0$.

Linearisation

We can generate the linearised version of Van der Pol's oscillator using Taylor's expansion around \boldsymbol{x}^{*} :

$$
\boldsymbol{x}^{\prime}=f(\boldsymbol{x})=f\left(\boldsymbol{x}^{*}\right)+A\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)+\underbrace{g\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)}_{\begin{array}{c}
\text { Higher-order terms } \\
\text { discarded }
\end{array}} .
$$

This gives the linearised form as

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}, \\
x_{2}^{\prime} & =-x_{1}+2 a x_{2} .
\end{aligned}
$$

Exercises

1. Consider Van der Pol's oscillator given by (1)- 2 2).
(a) Plot the result of solving forwards to T_{f} and backwards to T_{b} for the following situations:
i. $x_{0}=(1,1)^{\top}, a=-0.1, T_{f}=20, T_{b}=-5$
ii. $x_{0}=(0,0)^{\top}, a=-0.1, T_{f}=20, T_{b}=-1.5$
iii. $x_{0}=(1,1)^{\top}, a=1.1, T_{f}=20, T_{b}=-1.5$
iv. $x_{0}=(-1,6)^{\top}, a=1.1, T_{f}=20, T_{b}=-0.4$
(b) For Van der Pol's oscillator study the steady state numerically (see vdpol_steady) for $a=-1.1,0.5,1.1$.
2. Consider the initial value problem

$$
\begin{aligned}
x_{1}^{\prime} & =(a-b) x_{1}-c x_{2}+x_{1}\left(x_{3}+d\left(1-x_{3}^{2}\right)\right) \\
x_{2}^{\prime} & =c x_{1}+(a-b) x_{2}+x_{2}\left(x_{3}+d\left(1-x_{3}^{2}\right)\right) \\
x_{3}^{\prime} & =a x_{3}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
\end{aligned}
$$

with initial conditions $x_{0} \in \mathbb{R}^{3}$ at time $t_{0}=0$. This problem has two steady states,

$$
\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad x^{*}=\left(\begin{array}{l}
0 \\
0 \\
a
\end{array}\right) .
$$

(a) Compute the Jacobian $A \in \mathbb{R}^{3 \times 3}$ at x^{*} and check if this steady state is A-stable for:
i. $a=1.0, b=3, c=0.25, d=0.2$
ii. $a=1.95, b=3, c=0.25, d=0.2$
iii. $a=2.02, b=3, c=0.25, d=0.2$

Remark. Attempt to deduce the eigenvalues analytically if possible, and then verify by numerically calculating the eigenvalues using the MATLAB eig function.
(b) Plot and estimate the ω-limit for the same parameters

Hint. Solve upto time $T=2000$.

