Numerical Solution of ODEs

Exercise Class

19th December 2023

Consider the heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial^{2} u}{\partial x^{2}} & & \text { in } \Omega:=\left\{(t, x), 0 \leq x \leq \pi, t_{0} \leq t \leq T\right\}, \\
u(0, t)=u(\pi, t) & =0, & & \text { for } t \in\left[t_{0}, T\right], \\
u(x, 0) & =u^{0}(x), & & \text { for } x \in[0, \pi] .
\end{aligned}
$$

Via the method of lines and a central difference approximation at discrete spatial points $x_{j}=h j$, $j=1, \ldots, N, h=\frac{\pi}{N+1}$ of

$$
\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u_{j-1}(t)-2 u_{j}(t)+u_{j+1}(t)}{h^{2}}, \quad j=1, \ldots, N
$$

we derive the following initial value:

$$
\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t) \quad \text { for } t \in\left[t_{0}, T\right]
$$

with initial conditions $\boldsymbol{u}^{0} \in \mathbb{R}^{N}$ at time $t_{0}=0$, given by $u_{j}^{0}=u^{0}\left(x_{j}\right), j=1, \ldots, N$, where

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right) \in \mathbb{R}^{N \times N}
$$

This is the Jacobian of the initial value problem at any point.

1. Solve this system for $N=100,1000$.
2. Numerically compute (using MATLAB) the spectrum $\sigma(A)$ and stiffness ratio

$$
L=\frac{\max _{i=1, \ldots, N}\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}{\min _{i=1, \ldots, N}\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}
$$

for $N=10,100,1000$.

