Homework 1 - Implicit RK

Numerical Solution for ODEs

Due date: November 28th, 2023

Support files for this homework can be found as a ZIP file on:
https://www.karlin.mff.cuni.cz/~congreve/teaching.php?c=WS2023_ODE
Exercise 1. Write a MATLAB implementation of one of the following Implicit RungeKutta methods:

RadauI2	RadauII2	Lobatto3		Lobatto3B		Lobatto3C		
0 $\frac{1}{4}$ $-\frac{1}{4}$	$\frac{1}{3} \left\lvert\, \begin{array}{cl}\frac{5}{12} & -\frac{1}{12}\end{array}\right.$	0	0 0 0	0	$\begin{array}{llll}\frac{1}{6} & -\frac{1}{6} & 0\end{array}$	0	$\frac{1}{6}-\frac{1}{3}$	$\frac{1}{6}$
$\frac{2}{3}$ $\frac{1}{4}$ $\frac{5}{12}$	1 $\frac{3}{4}$ $\frac{1}{4}$	$\frac{1}{2}$	$\frac{5}{24} \quad \frac{1}{3}-\frac{1}{24}$	$\frac{1}{2}$	$\begin{array}{llll}\frac{1}{6} & \frac{1}{3} & 0\end{array}$	$\frac{1}{2}$	$\frac{1}{6} \quad \frac{5}{12}$	$-\frac{1}{12}$
$\frac{1}{4} \quad \frac{3}{4}$	$\frac{3}{4} \quad \frac{1}{4}$	1	$\begin{array}{lll} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \hline \end{array}$	1	$\frac{1}{6}$ $\frac{5}{6}$ 0	1	$\frac{1}{6} \quad \frac{2}{3}$	$\frac{1}{6}$
			$\begin{array}{lll}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{array}$		$\begin{array}{lll}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{array}$		$\frac{1}{6} \quad \frac{2}{3}$	$\underline{1}$

Initial templates (radauI2.m, radauII2.m lobatto3.m, lobatto3b.m and lobatto3C.m) can be found in the support files.

Exercise 2. Test your script on the following problems from the support files:

1. lin1p.m for $t \in[0,2], x_{0}=2, \tau=0.04$ and plot t versus the solution x :
```
x0=2.0; h=0.04;
figure;
[t,x]=feval(method, @lin1p,0,2, x0, h);
plot(t,x,'bo',t,x,'b');
```

2. lin2.m for $t \in[0,0.1], \boldsymbol{x}_{0}=(2,1)^{\top}, \tau=0.001$ and plot t versus the solution x_{1} :
```
figure;
x0 = [2;1]; h = 1e-3;
[t,x]=feval(method, @lin2, 0,.1, x0, h);
plot(t,x(:,1),'b');
```

3. sat_ode.m for $t \in[0,6.19216933131963970674], \boldsymbol{x}_{0}=(1.2,0,0,-1.04935750983031990726)^{\top}$, $\tau=0.001$ and x_{1} versus x_{2} :
```
figure
x0 = [1.2; 0; 0; -1.04935750983031990726]; h = 1e-3;
[t,x] = feval(method, @sat_ode, 0, 6.19216933131963970674, x0, h);
plot(x(:,1), x(:,2));
```

Save each of these plots as a PDF file using Save > Save As. A function called test_problems.m is included in the support files, which performs the above operations when passed the name of the implicit Runge-Kutta method to run:

```
test_problems(@lobatto3);
```

Exercise 3. Apply linear regression to estimate the order of the method. See conv_analysis.m for a script to perform this, when called with the name of the implicit Runge-Kutta method:

```
conv_analysis(@lobatto3);
```


Submission

Submit the MATLAB script for the implemented method from exercise 1, the PDF files of the plots from exercise 2, and enter the order of the method deduced in exercise 3 via the Study Group Roster (Záznamnik učitele) in SIS before the deadline.

