Homework 2 - Multi-step Predictor/Corrector Method

Numerical Solution for ODEs

Due date: January 5nd, 2024

Support Files

Support files for this homework can be found as a ZIP file on:
https://www.karlin.mff.cuni.cz/~congreve/teaching.php?c=WS2023_ODE

Exercises

Exercise 1. Write a MATLAB function, with the name pred_corr, to implement one of the following predictor/corrector methods (see support files for initial template):

Algorithm		Predictor
1. $\quad P E C E$	Corrector	
2.step Nyström	2-step Milne-Simpson	
3. $P(E C)^{4}$	1-step Adams-Bashfort	3-step Adams-Moulton
4. $P(E C)^{2} E$	1-step Adams-Bashfort	3-step Nyström

Exercise 2. Test your script on the following problems from the support files:

1. The logistic equation $x^{\prime}=(1-x) x$ (logistic.m) for $t \in[0,3], x_{0}=2, \tau=0.1$ and plot t versus the solution x :
```
x0=2.0; h=0.1;
figure;
[t,x]=pred_corr(@logistic, 0, 3, x0, h);
plot(t,x,'-bx');
```

2. The linear oscillator (oscillator.m)

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-9 x_{1}+10 \cos (2.5 t)
\end{aligned}
$$

for $t \in[0,10], \boldsymbol{x}_{0}=(2,1)^{\top}, \tau=0.1$ and plot t versus the solution x_{1} :

```
figure;
x0 = [2;1]; h = 0.1;
[t,x]=pred_corr(@oscillator, 0, 10, x0, h);
plot(t,x(:,1),'-bx');
```

3. The satellite problem (sat_ode.m) with $\mu=\frac{1}{82.45}$

$$
\begin{aligned}
& x_{1}^{\prime}=x_{3} \\
& x_{2}^{\prime}=x_{4} \\
& x_{3}^{\prime}=2 x_{4}+x_{1}-(1-\mu) \frac{x_{1}+\mu}{\left(\left(x_{1}+\mu\right)^{2}+x_{2}^{2}\right)^{1.5}}-\mu \frac{x_{1}-1+\mu}{\left(\left(x_{1}-1+\mu\right)^{2}+x_{2}^{2}\right)^{1.5}} \\
& x_{4}^{\prime}=-2 x_{3}+x_{2}-(1-\mu) \frac{x_{2}}{\left(\left(x_{1}+\mu\right)^{2}+x_{2}^{2}\right)^{1.5}}-\mu \frac{x_{2}}{\left(\left(x_{1}-1+\mu\right)^{2}+x_{2}^{2}\right)^{1.5}}
\end{aligned}
$$

for $t \in[0,6.19216933131963970674], \boldsymbol{x}_{0}=(1.2,0,0,-1.04935750983031990726)^{\top}, \tau=$ 0.001 and plot x_{1} versus x_{2} :

```
figure
x0 = [1.2; 0; 0; -1.04935750983031990726]; h = 1e-3;
[t,x] = pred_corr(@sat_ode, 0, 6.19216933131963970674, x0, h);
plot(x(:,1), x(:,2));
```

Save each of these plots as a PDF file using Save > Save As.
Exercise 3. Apply linear regression to estimate the method order. See conv_analysis.m for a script to perform this, when called with the pred_corr:

```
conv_analysis(@pred_corr);
```


Submission

Submit the MATLAB script for the implemented method from exercise 1, the PDF files of the plots from exercise 2, and enter the order of the method deduced in exercise 3 via the Study Group Roster (Záznamnik učitele) in SIS before the deadline.

