Question 2
We consider the linear ODE where
We can determine whether the stable state is by analysing the eigenvalues.
We get that, , and hence the stable state is A-stable as
We now try to determine valid values of to ensure the fixed point
of first, second, third, and fourth order Runge-Kutta methods are A-stable.
A = [ -3 0 0; 0 -3 4; 0 -2 1]; figure; hold on; lambda=1; plot(lambda*eig(A), 'ko', 'MarkerSize', 14); lambda=0.9; plot(lambda*eig(A), 'go', 'MarkerSize', 14); lambda=0.8; plot(lambda*eig(A), 'mo', 'MarkerSize', 14); lambda=0.65; plot(lambda*eig(A), 'bo', 'MarkerSize', 14); lambda=0.4; plot(lambda*eig(A), 'ro', 'MarkerSize', 14); rk_stab(1, 'r.'); rk_stab(2, 'b.'); rk_stab(3, 'm.'); rk_stab(4, 'g.'); xlim([-4 4]); ylim([-4 4]); axis('square'); xlabel('Re'); ylabel('Im'); legend('1\lambda','0.9\lambda','0.8\lambda','0.65\lambda', '0.4\lambda', ... 'First Order RK', 'Second Order RK', 'Third Order RK', 'Fourth Order RK');

In order for the various Runge-Kutta methods to have an A-stable fixed point then needs be less than roughly the following values for each method:
Order (s) | tau -----------+----- 1 | 0.4 2 | 0.65 3 | 0.8 4 | 0.9