
Numerical Solution of ODEs

Lecture notes for the course NMNV539

Scott Congreve;
based on original notes by Vladimír Janovský

Charles University,
Faculty of Mathematics and Physics,

Department of Numerical Mathematics,
Sokolovská 83, 18675 Prague

Contents

1 Mathematical modelling of evolution 1
1.1 Motivation examples . 1
1.2 Formulation of the problem . 5
1.3 Flow of a vector field . 7
1.4 Taylor expansion of the flow . 11

2 One-step methods 15
2.1 Discretisation of the vector field . 16
2.2 Convergence analysis of one-step methods . 24
2.3 Adaptive time-stepping . 27
2.4 Runge-Kutta methods (RK) . 30

2.4.1 Explicit RK methods . 34
2.4.2 Implicit RK methods . 40

3 Multistep methods 45
3.1 Linear multistep method . 45
3.2 D-stability & Convergence . 49
3.3 Construction of multistep methods . 52

3.3.1 Adams methods . 52
3.3.2 Predictor/Corrector methods . 56
3.3.3 BDF methods . 58
3.3.4 Adaptive time-stepping . 60

4 Dynamical systems 61
4.1 Asymptotics of the time evolution . 62
4.2 The steady state . 63
4.3 Discrete-time dynamical systems . 69

5 Domain of stability & stiff systems 73
5.1 Domain of stability: one-step method . 74
5.2 Domain of stability: multistep method . 83
5.3 Stiff problems . 87

Bibliography 93

Index 94

i

List of Figures

1.1 Logistic equation — trajectory examples . 2
1.2 Logistic equation – direction field . 2
1.3 Logistic equation — selected tangents to trajectories 3
1.4 Logistic equation — trajectory compared to numerical solutions 3
1.5 Linear oscillator — trajectory . 4
1.6 Linear oscillator — phase curve . 4

2.1 Euler method with step size τ = 1/2 . 16
2.2 One-step method — The discrete flow ψ(t+ τ, t, x) vs. the exact solution ϕ(t+

τ, t, x) . 17
2.3 Linear oscillator — comparison of Euler and Runge 21

3.1 Comparison of exact solution and unstable multistep solution of the initial
value problem (3.23) . 49

4.1 Van der Pol oscillator — orbits and limit sets for a = 1.1 62
4.2 Van der Pol oscillator — orbit and single point ω-limit for a = −0.1 63
4.3 Van der Pol oscillator — phase portraits for system and linearised system for

a = −0.1 . 66
4.4 Van der Pol oscillator — phase portraits for a = 1.1 66
4.5 Van der Pol oscillator, a = −0.1 — positive orbit for (1, 1) compared to nu-

merical approximation using Euler . 71
4.6 Van der Pol oscillator, a = −0.1 — positive orbit for (0.5, 0) compared to nu-

merical approximation using Euler . 71
4.7 Van der Pol oscillator, a = −0.1 — positive orbit for (1, 1) compared to nu-

merical approximation using implicit one-step methods 72

5.1 Domain of stability for Euler . 77
5.2 Domains of stability for Runge and Classical Runge-Kutta 78
5.3 Domain of stability for Classical Runge-Kutta 79
5.4 Domains of stability for Implicit Euler and Crank-Nicholson 80
5.5 Domains of stability for Adams methods (interior of curves) 85
5.6 Domains of stability for BDF (exterior of curves) 85
5.7 Orbit of Example 5.13 for x0 = (6, 3) . 87
5.8 Trajectories of Example 5.13 for state variable x 88
5.9 Trajectories of Example 5.13 for state variable y 88
5.10 Trajectories of Example 5.14 for state variable y 89
5.11 Comparison of ode23 and ode23s for Example 5.14 90

ii

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode23s.html

List of Examples

1.1 Logistic equation . 1
1.2 Linear oscillator . 4
1.3 Explicit constructions of ϕ . 8

2.1 Quadrature formulas . 19
2.2 Butcher tableaux . 31
2.3 Classical Runge-Kutta . 31
2.4 Explicit RK methods (s = 2) . 35
2.5 RK3(2) with Heun . 36
2.6 RK3(2) with Runge . 36
2.7 RK2(1) . 37
2.8 Explicit RK methods (s = 4) . 39
2.9 Butcher method (1963) . 39
2.10 RK5(4) — Dormand-Prince (1980) . 40
2.11 Gauss1 . 41
2.12 Gauss2 . 42
2.13 RadauI2 & RadauII2 . 43
2.14 RadauI1 & RadauII1 . 44
2.15 Lobatto . 44

3.1 Multistep explicit method . 46
3.2 Multistep implicit method . 46
3.3 Implicit 2-step method with maximal order p = 4 51
3.4 Explicit 2-step method with maximal order p = 3 52
3.5 Adams method: m = 2, implicit . 53
3.6 Adams method: m = 2, explicit . 53
3.7 Explicit Adams methods — Adams-Bashfort (m = 1, 2, 3, 4) 54
3.8 Implicit Adams methods — Adams-Moulton (m = 1, 2, 3, 4) 54
3.9 BDF2 . 58
3.10 BDF methods (m = 1, . . . , 6) . 59

4.1 Van der Pol oscillator . 62
4.2 Linear dynamical system . 64

5.1 Euler for linearised ODE . 74
5.2 Runge for linearised ODE . 74
5.3 Heun for linearised ODE . 74
5.4 Classical Runge-Kutta for linearised ODE . 75

iii

NUMERICAL SOLUTION OF ODES

5.5 Implicit Euler for linearised ODE . 75
5.6 Crank-Nicholson for linearised ODE . 75
5.7 Choice of τ > 0 for Euler . 77
5.8 Choice of τ > 0 for classical Runge-Kutta . 79
5.9 Choice of τ > 0 for implicit one-step . 81
5.10 Domain of stability for explicit Adams method 84
5.11 Domain of stability for implicit Adams method 84
5.12 Domain of stability for BDF . 85
5.13 Damped linear oscillator . 87
5.14 Stiff damped linear oscillator . 89
5.15 Heat equation . 91

iv

List of Algorithms

2.1 Adaptive step size . 28

3.1 Linear m-step method . 45
3.2 PECE . 56
3.3 PEC . 57
3.4 PECECE = P (EC)2E . 57

v

CHAPTER 1

Mathematical modelling of evolution

1.1 Motivation examples
Example 1.1 (Logistic equation). Consider differential equation

x′ = (a− bx)x− c (1.1)

with initial condition
x(t0) = x0, (1.2)

and parameters a ≥ 0, b ≥ 0, c ≥ 0.

Solution of the problem (1.1)–(1.2) is a twice continuously differentiable function u : R→
R which satisfies the identity

du(t)

dt
= (a− bu(t))u(t)− c

for each t ∈ R, where u(t0) = x0.
We define an operator ϕ : R × R × R → R which maps the initial condition (1.2) to the

solution of the problem (1.1)–(1.2) at time t; e.g.,

ϕ : (t, t0, x0) 7−→ u(t). (1.3)

The operator ϕ defines the evolution of the given initial condition in time.
The problem (1.1)–(1.2) is a biological model, which models the density x of a population

in a fixed volume over time. This model can be used to predict the future of the population
density (t ≥ t0), or even used to reconstruct the past (t ≤ t0). Figure 1.1 displays trajectories
initialized with the initial conditions (t0, x0) = (0, 3/2), (0, 1), (0, 1/2), (0, 0) and (0,−1/20) for
the parameters a = 1, b = 1 and c = 0 of this problem, where the solid lines correspond to
t ≥ 0 and the dotted lines to t ≤ 0. In general, we call a trajectory a mapping t ∈ I 7−→
(t, ϕ(t, t0, x0)), for some interval I containing t0.

The right-hand side of the differential equation (1.1) can be defined as a mapping f :
R× R→ R, defined as

(t, x) 7−→ f(t, x) ≡ (a− bx)x− c; (1.4)

here, we note that the right-hand side does not depend on t; however, in future examples it
may (cf. Example 1.7)

Using the mapping f we can define a mapping[
t
x

]
∈ R× R 7−→

[
1

f(t, x)

]
∈ R× R. (1.5)

1

NUMERICAL SOLUTION OF ODES

−1 0 1 2 3

−1

0

1

2
(0, 3/2)

(0, 1)

(0, 1/2)

(0, 0)

(0,−1/20)

t

u

Figure 1.1: Logistic equation — five different trajectories related to the indicated initial con-
ditions with parameters a = 1, b = 1, c = 0.

−1 0 1 2 3

−1

0

1

2

t

u

Figure 1.2: Logistic equation — direction field. Parameters a = 1, b = 1, c = 0.

The graph of the mapping (1.5) is called the direction field. It describes the displacement of
a given vector (t, x) to a position (t, x) + (1, f(t, x)). The new position is the superposition
of the given vector (t, x) and direction vector (1, f(t, x)). Note that the direction vector has
normalized the first component; alternatively, we can choose another normalisation: Let
K > 0 be a given constant; then, the direction field is a graph of the mapping[

t
x

]
∈ R× R 7−→ K√

1 + (f(t, x))2

[
1

f(t, x)

]
∈ R× R. (1.6)

Both definitions (1.5) and (1.6) are equivalent, and yield the same information. The direction
field is displayed in Figure 1.2, where the direction field is evaluated at fixed points and
displayed as arrows of fixed length K = 0.25. We observe the trajectories corresponding to
initial conditions (0, 1) and (0, 0), see Figure 1.2, do not change in time. These are stationary
solutions of the problem (1.1)–(1.2).

We now formulate a geometric interpretation of the solution of (1.1)–(1.2): We seek a
trajectory in R2 such that

2

MATHEMATICAL MODELLING OF EVOLUTION

−1 0 1 2 3

−1

0

1

2
(0, 3/2)

(0, 1/2)

(0,−1/20)

t

u

Figure 1.3: Logistic equation — selected tangents to trajectories. Parameters a = 1, b = 1,
c = 0.

0 20 40 60 80 100

0.722

0.723

0.724

0.725

t

u

Analytical soln.
ode23
ode15s

Figure 1.4: Logistic equation — trajectory with the initial condition (0, 0.7233) compared to
solution of ode23 and ode15s. Parameters a = 1, b = 1, c = 1/5.

a) it satisfies the initial condition, and

b) at each point the tangent of the trajectory corresponds to the given direction field;

see Figure 1.3. The trajectories in Figure 1.1 were computed numerically; in particular, they
were approximated in MATLAB using the function ode23 (with default parameters for the
solver); cf., Shampine and Reichelt (1997). We note that all numerical methods investigated
in these notes (including ode23) defines a sequence of discrete times and solution values.
These sequences are processed in such a way that plotting interpolates the output; conse-
quently, the trajectories appear continuous.

Figure 1.4 displays the trajectory corresponding to the initial condition t0 = 0, x0 =
0.7233 and parameters a = 1, b = 1, c = 1/5, which is given by the explicit formula (analytical
solution)

u(t) =

√
5

10
tanh

(
(t− t0)

√
5

10
+ arctanh

(
(2x0 − 1)

√
5
))

+
1

2
.

3

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode15s.html
https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode23.html

NUMERICAL SOLUTION OF ODES

−10 0 10 20−5
0

5

−10
0

10

t

u1
u
2

Figure 1.5: Linear oscillator — trajectory for initial condition t0 = 0, x0 = (1, 0) with param-
eters b = 9, c = 10, ω = 2.5. The motion is periodic with a period T , T ∼ 12.5664.

Additionally, we numerically approximated the trajectory using the Matlab functions ode23
and ode15s (cf., Shampine and Reichelt, 1997), with the linear interpolations of the nu-
merical solutions displayed with dotted lines. We see that ode23 distorts the reality while
ode15s yields, at least qualitatively, a correct solution. It is possible to explain the issue: the
initial condition is close to one of the stationary solutions. Later, in Section 5.3, we will talk
about so-called stiff problems.

−5 0 5
−20

−10

0

10

20

u1

u
2

Figure 1.6: Linear oscillator — phase curve with parameters b = 9, c = 10, ω = 2.5; i.e., the
projection of the trajectory on state space R2.

Example 1.2 (Linear oscillator). Consider a system of two differential equations

x′1 = x2,

x′2 = −bx1 + c cos(ωt).

where b ≥ 0, c ≥ 0 and ω ∈ R are parameters. In vector notation, we have

x′ = f(t, x) ≡
[

x2
−bx1 + c cos(ωt)

]
. (1.7)

4

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode15s.html
https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode15s.html

MATHEMATICAL MODELLING OF EVOLUTION

We complete the system (1.7) with the initial condition

x(t0) = x0 ∈ R2. (1.8)

The solution of the problem (1.7)–(1.8) is a continuously differentiable vector function
t 7→ u(t) ∈ R2 such that

du(t)

dt
= f(t, u(t)) ≡

[
u2(t)

−bu1(t) + c cos(ωt)

]
(1.9)

for all t ∈ R. Moreover, we require u(t0) = x0 ∈ R2.
If we choose the initial condition (t0, x0) ∈ R × R2, then for each time t ∈ R there exists

a unique solution vector u(t) ∈ R2 of the problem (1.7)–(1.8). Therefore, there exists an
operator

(t, t0, x0) ∈ R× R× R2 7−→ u(t) ≡ ϕ(t, t0, x0) ∈ R2. (1.10)

For this particular problem we can construct the operator (1.10) explicitly; however, it is suf-
ficient just to prove the existence of this operator. If the operator exists then we can approxi-
mate it numerically; this is the concept of the numerical solution of the problem (1.7)–(1.8).

The problem (1.7)–(1.8) models the oscillation of an elastic spring, where the components
u1(t) and u2(t) of the vector u(t) = ϕ(t, t0, x0) ∈ R2 are interpreted as the deflection and
speed in time t, respectively.

The variable x = (x1, x2) ∈ R2 in (1.7) is called the state variable. In particular, x1 and x2
are deflection and speed, respectively. In relation to problem(1.7)–(1.8), the space R2 is called
the state space. Parameters b, c and ω are fixed; in particular, b is the elasticity modulus, c is
the amplitude of the oscillations and ω is the frequency of the acting force.

The problem of the linear oscillator is usually formulated via a linear second order dif-
ferential equation

x′′ + bx = c cos(ωt) (1.11)

with the initial condition (x(t0), x
′(t0)) = x0 ∈ R2. The mentioned initial value problem

for (1.11) is equivalent to the problem (1.7)–(1.8). In general, differential equations of higher
orders can be transformed to first order systems.

The trajectory
t 7−→ (t, ϕ(t, t0, x0)) ∈ R× R2,

in Figure 1.5, was computed numerically with ode23, and period T of this motion was
estimated as T = 12.5664. In Figure Figure 1.6 the trajectory is projected onto the state space

t 7−→ ϕ(t, t0, x0) ∈ R2.

The resulting object is called the phase curve.

1.2 Formulation of the problem
We are going to formulate the initial value problem (Cauchy problem) for a system of Ordi-
nary Differential Equations (ODE). Without loss of generality, we consider systems of the first
order. The initial value problem models evolution in a finite dimensional state space. We will
identify the state space with the linear space Rn, with time as a scalar parameter t.

5

https://www.mathworks.com/help/matlab/ref/ode23.html

NUMERICAL SOLUTION OF ODES

Data of the problem:

1. the initial condition; i.e. a given state x0 ∈ Rn at a particular time t0.

2. a mapping
f : R× Rn → Rn. (1.12)

The mapping (1.12) is called the right-hand side of the ODE. We assume that

• the domain of the right-hand side f is defined on an open set J ×D ⊂ R× Rn, where
J is an interval,

• t0 ∈ J and x0 ∈ D, i.e., the initial condition (t0, x0) ∈ R× Rn belongs to the domain of
the right-hand side, and

• the right-hand side is continuous, i.e.,

f ∈ C(J ×D,Rn). (1.13)

We formally define the initial value problem (IVP) for the ODE as:

x′ = f(t, x), x(t0) = x0. (IVP)

We have to specify the meaning of the problem (IVP):

Definition 1.1 (Solution of the initial value problem). Let there exist

1. an open interval I , I ⊂ J , containing t0

2. a vector function u : R→ Rn, continuously differentiable on I , i.e., u ∈ C1(I,Rn).

such that
u′(t) = f(t, u(t)) (1.14)

for each t ∈ I . Moreover, let the initial value condition

u(t0) = x0 (1.15)

be satisfied. Then we say that the function u is the solution of the initial value problem on
the interval I .

Remark 1.2 (Integral formulation). If f ∈ C(J×D,Rn) then a function u satisfies (1.14)–(1.15)
if and only if

u(t) = x0 +

∫ t

t0

f(s, u(s)) ds (1.16)

for each t ∈ I .

The right-hand side in the initial value problem (IVP) can be interpreted as the direction
field (or slope field) and the vector field.

Definition 1.3 (Direction field or Slope field). Let J×D be the domain of the right-hand side
f ; then, the direction field is a graph of the mapping[

t
x

]
∈ J ×D 7−→

[
1

f(t, x)

]
∈ R× Rn. (1.17)

6

MATHEMATICAL MODELLING OF EVOLUTION

The direction field describes the displacement of a given vector (t, x) ∈ R × Rn to the
position (t, x)+(1, f(t, x)) ∈ R×Rn. The new position is the superposition of the given vector
(t, x) and direction vector (1, f(t, x)). Note that the direction vector has been normalized in
the first component. We can choose another normalisation: Let K > 0 be a given constant;,
then the direction field is a graph of the mapping[

t
x

]
∈ J ×D 7−→ K√

(1 + (f(t, x))2)

[
1

f(t, x)

]
∈ R× Rn. (1.18)

Both definitions (1.17) and (1.18) are equivalent.

Definition 1.4 (Vector field). Let J × D be the domain of the right-hand side f . For each
fixed t ∈ J we define the vector field as a graph of the mapping

x ∈ D 7−→ f(t, x) ∈ Rn. (1.19)

Let time t ∈ J be fixed; then, the vector field describes the displacement of a given point
x ∈ D to a new position x + f(t, x) ∈ Rn. This position is a superposition of x and an
increment f(t, x). This increment is interpreted as the immediate velocity x′ = f(t, x) at time
t ∈ J in the point x ∈ D of the state space.

An important class of ODE are autonomous ODEs:

Definition 1.5 (Autonomous ODE). Let J × D be the domain of the right-hand side f . If
f(t, x) = f(x) for each (t, x) ∈ J × D, i.e., independent of t, then we say that the ODE is
autonomous.

Without loss of generality we assume that J ≡ (−∞,+∞).

1.3 Flow of a vector field
We consider the initial value problem (IVP). So far we assume continuity of the right-hand
side; i.e. f ∈ C(J ×D,Rn). In order to proof the existence and uniqueness of the solution we
need a stronger assumption then just continuity of the right-hand side:

Definition 1.6 (Local Lipschitz continuity). Let f : J ×D → Rn and f ∈ C(J ×D,Rn). We
say that f is locally Lipschitz continuous on J ×D provided that the following holds: For each
(t0, x0) ∈ J × D there exists an open neighbourhood J̃ × D̃ of the point (t0, x0) such that
f : J̃ × D̃ → Rn is Lipschitz continuous; i.e., there exists a constant L ≥ 0 such that

∥f(t, x)− f(t, y)∥ ≤ L ∥x− y∥ (1.20)

for all t ∈ J̃ and x, y ∈ D̃.

Theorem 1.7 (Picard-Lindelöf — Local existence and uniqueness). Let the right-hand side f be
locally Lipschitz continuous on J ×D. Then the problem (IVP) is locally uniquely solvable; i.e., for
each initial condition (t0, x0) ∈ J ×D it holds that there exists an open interval I ⊂ J containing
t0 ∈ I and a function u ∈ C1(I,Rn) such that a vector function t 7→ u(t) is the unique solution of
the equation (1.14) on the interval I that satisfies the initial condition (1.15).

Proof. See Kurzweil (1973, 1986)

7

NUMERICAL SOLUTION OF ODES

Remark 1.8 (a sufficient condition). Let f ∈ C(J ×D,Rn), ∂f
∂xi
∈ C(J ×D,Rn), i = 1, . . . , n;

then, f is locally Lipschitz continuous. Therefore, the initial value problem (IVP) is locally
uniquely solvable.

Consider a solution due to Theorem 1.7 and let (t0, x0) ∈ J × D be an initial condition;
then, the solution t 7→ u(t) exists on the interval I . Employing the axiom of choice (AC)
we can extend the existing solution to a larger open interval. Assume that there exists an
open interval Î , I ⊂ Î ⊂ J , and a solution t 7−→ û(t) of (IVP) on the interval Î . Note that
û(t) = u(t) for t ∈ I . We say that the solution t 7−→ û(t) is the extension of the solution on Î .
We naturally define a trivial extension which is related to the case I = Î . The maximal solution
of (IVP) is the solution t 7−→ u(t) on an interval J to which there does not exist a non-trivial
extension.

Theorem 1.9 (Global solution = Maximal solution). Let the right-hand side f be locally Lipschitz
continuous on J ×D. Given the initial condition (t0, x0) ∈ J ×D, the corresponding (IVP) has a
maximal solution on an open interval J = J (t0, x0).

Proof. See Deuflhard and Bornemann (2012, Theorem 2.9, p. 39). For additional detail, see
Kurzweil (1973, 1986).

Definition 1.10 (Maximal solution interval). We denote the limits of J (t0, x0) as

J (t0, x0) =
(
t−(t0, x0), t

+(t0, x0)
)
. (1.21)

We now introduce an operator related to (IVP).

Definition 1.11 (Flow of a vector field). Let f be locally Lipschitz continuous on J×D. Given
an initial condition (t0, x0) ∈ J ×D we consider the global solution of (IVP); i.e., the vector
function t 7→ u(t) defined for t ∈ J (t0, x0). We define an operator ϕ : R × R × Rn → Rn as
follows:

t ∈ J (t0, x0), (t0, x0) ∈ J ×D 7−→ ϕ(t, t0, x0) = u(t) ∈ Rn. (1.22)

The operator ϕ is called the flow of the vector field f .

Under the assumption of Theorem 1.9 we know that the flow ϕ exists. In Chapters 2
and 3 we will show how to approximate the flow ϕ numerically. However, in rare cases we
can construct the flow ϕ explicitly.

Example 1.3 (Explicit constructions of ϕ). Consider the following scalar ODEs:

1. x′ = ax, x(t0) = x0, where a is a parameter; then, J ×D = R× R and

u(t) = ϕ(t, t0, x0) = ea(t−t0) x0, J (t0, x0) = (−∞,∞).

2. x′ = x2, x(t0) = x0 > 0; then, J ×D = R× (0,∞),

u(t) = ϕ(t, t0, x0) =
x0

1− (t− t0)x0
, J (t0, x0) =

(
−∞, 1

x0
+ t0

)
.

8

MATHEMATICAL MODELLING OF EVOLUTION

3. x′ = −x−1/2, x(t0) = x0 > 0; then, J ×D = R× (0,∞),

u(t) = ϕ(t, t0, x0) =

(
x

3/2
0 −

3(t− t0)
2

)2/3

, J (t0, x0) =
(
−∞, 2

3
x

3/2
0 + t0

)
.

It holds that lim
t→

(
2
3
x
3/2
0 +t0

)−
x′(t) = −∞.

The second and the third examples blow up and collapse, respectively.

Definition 1.12 (Trajectory & Phase curve). Consider the initial value problem (IVP); then,
the curve

t ∈ J (t0, x0) 7−→ (t, ϕ(t, t0, x0)) ∈ R× Rn (1.23)

is called the trajectory. The projection of a trajectory onto the state space Rn

t ∈ J (t0, x0) 7−→ ϕ(t, t0, x0) ∈ Rn (1.24)

is called the phase curve.

For the linear oscillator (Example 1.2) Figure 1.5 and Figure 1.6 show examples of a tra-
jectory and the relevant phase curve, respectively.

Remark 1.13. Let f be locally Lipschitz continuous and (t, x) ∈ J ×D. It can be verified that

1. ϕ(t, t, x) = x

2. for each pair t1, t2 ∈ J (t, x),

ϕ(t2, t1, ϕ(t1, t, x)) = ϕ(t2, t, x). (1.25)

Definition 1.14 (Immediate velocity). Let f be locally Lipschitz continuous; then, for a given
(t, x) ∈ J ×D we define a vector x′ ∈ Rn by setting

x′ = lim
τ→0

1

τ
(ϕ(t+ τ, t, x)− x) . (1.26)

We say that x′ ∈ Rn is the immediate velocity at the point (t, x) ∈ J ×D.

Remark 1.15. It holds for the immediate velocity that x′ = f(t, x).

We now consider the autonomous ODE, see Definition 1.5. As right-hand side of f does
not depend on time, we formally set J ≡ (−∞,+∞). For local Lipschitz continuity of f on
domain J ×D, we ignore J and instead just consider local Lipschitz continuity of f on the
domain D.

For an autonomous ODE the flow ϕ has specific properties.

Theorem 1.16. Let f(t, x) ≡ f(x) be locally Lipschitz continuous on D; then,

1. for each x0 ∈ D and for each t0 ∈ R it holds that

t−(0, x0) + t0 = t−(t0, x0), t+(0, x0) + t0 = t+(t0, x0),

9

NUMERICAL SOLUTION OF ODES

2. for each τ ∈ (t−(0, x0), t
+(0, x0)),

ϕ(t0 + τ, t0, x0) = ϕ(τ, 0, x0). (1.27)

The result from Theorem 1.16 justifies the following definition.

Definition 1.17 (Flow of an autonomous ODE). Let f(t, x) ≡ f(x) be locally Lipschitz con-
tinuous on D; then, for t ∈ J (0, x0) and x0 ∈ D we set

ϕ(t, x0) ≡ ϕ(t, 0, x0).

The operator ϕ : R× Rn → Rn acting as

t ∈ J (0, x0), x0 ∈ D 7−→ ϕ(t, x0) ∈ Rn

is called the flow of the autonomous vector field f .

Every ODE can be converted to an autonomous ODE using a simple trick. Instead of
(IVP) we consider the following initial value problem:[

t′

x′

]
=

[
1

f(t, x)

]
,

[
t(t0)
x(t0)

]
=

[
t0
x0

]
. (1.28)

This initial value problem (1.28) is equivalent to (IVP).

Remark 1.18. Note that the variable t in the problem (1.28) does not equate to time (cf. (IVP))
but is just the first component of the state variable. For time in (1.28) we instead choose
a different variable, such as τ ∈ R. The problem (1.28) is an autonomous ODE since the
right-hand side does not depend on τ .

We define a vector field

z 7−→ F (z) ≡
[

1
f(z)

]
∈ Rn+1 z =

[
t
x

]
∈ J ×D; (1.29)

then, the corresponding initial value problem for the system (1.29)

z′ = F (z), z(t0) = z0 ≡
[
t0
x0

]
(1.30)

has a solution on the interval I ⊂ J if and only if the initial value problem (IVP) has a
solution on I . As system (1.30) is autonomous we can shift t0 to the origin 0; i.e., we consider

z′ = F (z), z(0) = z0. (1.31)

The solutions of the problems (1.30) and (1.31) correspond up to the phase shift.
The flow of autonomous vector field F is the operator

τ, z0 7−→ Φ(τ, z0) ≡
[

t0 + τ
ϕ(t0 + τ, t0, x0)

]
∈ R× Rn, (1.32)

where τ ∈ J (t0, x0)− t0 and (t0, x0) ∈ J ×D.

10

MATHEMATICAL MODELLING OF EVOLUTION

1.4 Taylor expansion of the flow
We assume that f ∈ Ck(J × D,Rn), k ≥ 1. The choice of k specifies the smoothness of the
vector field f . The existence and uniqueness of (IVP) is guaranteed due to Remark 1.8.

Let us fix (t, x) ∈ J × D and consider the solution u of (IVP) with initial conditions
(t, x) ∈ J ×D. We define u(t + τ) ≡ ϕ(t + τ, t, x) for sufficiently small τ . Due to (1.16), this
is equivalent to

u(t+ τ) = x+

∫ t+τ

t
f(t+ s, u(t+ s)) ds. (1.33)

Due to our assumption on the smoothness of f , the function τ 7−→ u(t + τ) is (k + 1)-times
continuously differentiable at the origin τ = 0; hence, there exists an Taylor expansion

u(t+ τ) = u(t) + τu′(t) +
τ2

2
u′′(t) + · · ·+ τ j

j!
u(j)(t) + · · ·+ τk

k!
u(k)(t) +O(τk+1). (1.34)

Note that u(t) = x. We say that the expansion is of the k-th order. The coefficients u(j)(t) can
be interpreted as

u(j)(t) =
∂j

∂τ j
ϕ(t+ τ, t, x)

∣∣∣∣
τ=0

, j ≥ 0. (1.35)

Our aim is to express the Taylor coefficients u(j)(t) by means of data of the problem; i.e.,
differentials of the right-hand side f .

Let us compute four terms of the expansion. To this end, we assume that f ∈ C3(J ×
D,Rn). In order to simplify the computation we consider a scalar ODE; i.e., n = 1. Differen-
tiating the equation (1.14) with respect to d

dt we get

u′(t) = f(t, u(t)) = f(t, x) = f

u′′(t) = ft(t, x) + fx(t, x)u
′(t) = ft + fxf

u′′′(t) = ftt + 2ftxf + fxxf
2 + fx(ft + fxf)

(1.36)

Here, we skip the argument (t, x) of the function f in order to simplify the notation and simi-
larly for its partial derivatives fx, ftx, etc.. We then substitute (1.36) into (1.34). Additionally,
we assume an autonomous ODE which gives that ft = ftt = ftx = 0 and, without loss of
generality, we set t = 0. Recalling Theorem 1.16 and Definition 1.17 we obtain the simplified
expansion:

u(τ) ≡ ϕ(τ, x) = x+ τf +
τ2

2
fxf +

τ3

6
fxxf

2 +
τ3

6
fxfxf +O(τ4).

We now generalize the above formula to an arbitrary dimension n using an analogy in our
reasoning. The term fxf ∈ R corresponds in the vector analogy to the term f (1)[f] ∈ Rn,
where f (1) ∈ Rn×n is the differential computed in the direction of f ∈ Rn, and the functions
f and f (1) are evaluated at x; hence, by definition,

f (1)[f] =
n∑

i=1

∂f

∂xi
fi.

Similarly, the term fxxf
2 ∈ R corresponds to the term

f (2)[f, f] =
n∑

i,j=1

∂2f

∂xi∂xj
fifj ∈ Rn.

11

NUMERICAL SOLUTION OF ODES

and the term fxfxf = f2xf ∈ R to the term

f (1)[f (1)[f]] =
n∑

i=1

∂f

∂xi

n∑
j=1

∂fi
∂xj

fj =
n∑

i,j=1

∂f

∂xi

∂fi
∂xj

fj ∈ Rn.

Lemma 1.19. Consider an autonomous ODE, assume f ∈ C3(D,Rn) and choose x ∈ D; then,

ϕ(τ, x) = x+ τf +
τ2

2
f (1)[f] +

τ3

6
(f (2)[f, f] + f (1)[f (1)[f]]) +O(τ4). (1.37)

The functions f (i), i = 0, . . . , 2, are evaluated at the point x.

Proof. By computing the derivatives u′(0), u′′(0) and u′′′(0) in the expansion (1.34) we obtain
that u′(0) = f , u′′(0) = df

dt = f (1)[f], u′′′(0) = d
dtf

(1)[f] = f (2)[f, f]+f (1)[f (1)[f]]. Substituting
these into the expansion (1.34) completes the proof.

Corollary 1.20. Assume f ∈ C3(J ×D,Rn) and choose (t, x) ∈ J ×D; then,

ϕ(t+ τ, t, x) = x+ τf +
τ2

2
f (1)[F] +

τ3

6
(f (2)[F, F] + f (1)[f (1)[F]]) +O(τ4), (1.38)

where F ≡ (1, f) ∈ R× Rn. The functions f (i), i = 0, . . . , 2, are evaluated at (t, x).

Proof. We define the autonomous vector field F according to (1.29) and the relevant flow
Φ(τ, z); cf., (1.32). According to Lemma 1.19,

Φ(τ, z) = z + τF +
τ2

2
F (1)[F] +

τ3

6
(F (2)[F, F] + F (1)[F (1)[F]]) +O(τ4) ∈ R× Rn,

where F (1)[F] = (0, f (1)[F]), F (2)[F, F] = (0, f (2)[F, F]), and F (1)[F (1)[F]] = (0, f (1)[f (1)[F]]).
The last n components of the vector Φ(τ, z) ∈ R× Rn are equal to ϕ(t+ τ, t, x) ∈ Rn.

We state the following two results without proof.

Lemma 1.21. Consider an autonomous ODE, assume that f ∈ C4(D,Rn) and choose x ∈ D; then,

ϕ(τ, x) = x+ τf +
τ2

2
f (1)[f] +

τ3

6
(f (2)[f, f] + f (1)[f (1)[f]])

+
τ4

24
(f (3)[f, f, f] + 3f (2)[f (1)[f], f] + f (1)[f (2)[f, f]] + f (1)[f (1)[f (1)[f]]]) +O(τ5).

The functions f (i), i = 0, . . . , 3, are evaluated at x.

Corollary 1.22. Assume f ∈ C4(J ×D,Rn) and choose (t, x) ∈ J ×D; then,

ϕ(t+ τ, t, x) = x+ τf +
τ2

2
f (1)[F] +

τ3

6
(f (2)[F, F] + f (1)[f (1)[F]])

+
τ4

24
(f (3)[F, F, F] + 3f (2)[f (1)[F], F] + f (1)[f (2)[F, F]] + f (1)[f (1)[f (1)[F]]])

+O(τ5),

where F ≡ (1, f) ∈ R× Rn. The functions f (i), i = 0, . . . , 3, are evaluated at (t, x).

12

MATHEMATICAL MODELLING OF EVOLUTION

Remark 1.23. Assume that f ∈ Ck(J×D,Rn), k ≥ 1; then, for each (t, x) ∈ J×D there exists a
Taylor expansion of the k-th order. This expansion is expressed by differentials of the right-
hand side, which are called the elementary differentials. The number of these elementary
differentials for various order k is shown below:

k 1 2 3 4 5 6 7 8 9 10
differentials 2 3 5 9 18 38 86 201 487 1206

We can see that the number of these elementary differentials explodes with k.

13

CHAPTER 2

One-step methods

Our aim is to compute the numerical solution of the initial value problem (IVP). We search for
the trajectory u(t) = ϕ(t, t0, x0) on a finite closed interval t ∈ [t0, T], where we assume that
t0 < T < t+(t0, x0). Additionally, we assume that the right-hand side is sufficiently smooth.

In case that we need to solve (IVP) on an interval t−(t0, x0) < T < t0, we change the sign
of the vector field, i.e., we set f := −f in (IVP), and consider the problem on the interval
[t0, 2t0 − T].

EulerWe first study the the Euler method (1768), which will serve as a prototype to all the
methods we shall study in this chapter. To this end, we first define a partition

{tj}Nj=0 , tj+1 > tj , tN = T , (2.1)

of the interval [t0, T] into N intervals, where t0 is defined by the initial condition (1.15).
We define the recursive sequence {uj}Nj=0

uj+1 = uj + (tj+1 − tj)f(tj , uj). (2.2)

The i-th point uj ∈ Rn is interpreted as an approximation of the state u(tj) ∈ Rn at the time
tj .

Let us consider the scalar equation x′ = 0.3x sin(t − 4/3) with initial condition x(1) = 2.
We search for the solution u(t) on the interval [1, 3], see Figure 2.1.

We consider a equidistant (uniform) partition of the interval [t0, T]; i.e., tj+1 − tj ≡ τ =
T−t0
N , j = 1, . . . , N . The numerical solution are the couples (tj , uj) ∈ R × Rn, j = 0, . . . , N ,

n = 1, which are generated by the sequence (2.2). In the case we need to approximate the
solution at a given time t where tj < t < tj+1, we use, e.g., the linear interpolation:[

t
u(t)

]
≈ tj+1 − t
tj+1 − tj

[
tj
uj

]
+

t− tj
tj+1 − tj

[
tj+1

uj+1

]
.

This interpolation for N = 4 =⇒ τ = 1/2 is shown in Figure 2.1. The numerical procedure
is called Euler’s polyhedron formula. We can control the approximation quality by choosing
larger N and, consequently, choosing finer step size τ .

We can, alternatively, choose a non-equidistant (non-uniform) partition (2.1) defining the
step size τ = tj+1 − tj at each time instant tj in accordance with some prescribed rules.

The iteration (2.2) in the state space Rn can be equivalently formulated in the time-space
R× Rn: [

tj
uj

]
7−→

[
tj
uj

]
+ (tj+1 − tj)

[
1

f(tj , uj)

]
≡
[
tj+1

uj+1

]
. (2.3)

15

NUMERICAL SOLUTION OF ODES

1 1.5 2 2.5 3

2

2.5

[t0, u0]

(t1, u1)
(t2, u2)

(t3, u3)

(t4, u4)

t

u

Figure 2.1: Euler method with step size τ = 1/2 — Comparison of actual solution vs. Euler’s
polyhedron formula

The iteration (2.3) has the following geometrical meaning: Let us recall the notion of the
direction field, Definition 1.3; then, we consider the straight line in R × Rn starting at the
point (tj , uj) in direction (1, f(tj , uj)), see (1.17).

The straight line has the parametric form

τ ∈ R 7−→
[
tj
uj

]
+ τ

[
1

f(tj , uj)

]
∈ R× Rn.

Hence, the (j + 1)−th step of the iterations (2.3) corresponds to the choice τ ≡ tj+1 − tj .

2.1 Discretisation of the vector field
In this section, we introduce the definitions of a one-step method, the discrete flow of the vector
field, the local discretisation error and define the order of the method. We will give several exam-
ples of one-step methods, which are based on numerical integration; in particular, we define
the Euler method, the Runge method, the Implicit Euler method, the Implicit Trapezoidal
method, the Heun method, and the Runge-Kutta method.

One-step methods are defined via one-step recursions. The objective is to approximate the
flow u(t) = ϕ(t, t0, x0) of a given vector field f via a time discretisation. We first give the
formal definition of this discretisation, understood as one step of the recursion:

Definition 2.1 (One-step method ≡ the discrete flow of the vector field). Let f be locally
Lipschitz continuous on J ×D and the mapping ψ : J ×D × R→ Rn,

t ∈ J, x ∈ D, τ ≥ 0 7−→ ψ(t+ τ, t, x) ∈ Rn, (2.4)

satisfies at each point (t, x) ∈ J ×D the consistency condition

ψ(t, t, x) = lim
τ→0+

ψ(t+ τ, t, x)− x
τ

= f(t, x). (2.5)

We say that the operator ψ is the discrete flow of the vector field f and the parameter τ is called
the time step.

16

ONE-STEP METHODS

t t+ τ

x

ψ(t+ τ, t, x)

ϕ(t+ τ, t, x)

Figure 2.2: One-step method — The discrete flow ψ(t + τ, t, x) vs. the exact solution ϕ(t +
τ, t, x)

Remark 2.2. The requirement (2.5) can be rephrased as the existence of the immediate veloc-
ity, see (1.26).

Definition 2.1 is a recipe defining how to obtain the numerical solution ψ(t + τ, t, x) at
time t+ τ , starting at the initial condition (t, x):[

t
x

]
7−→

[
t+ τ

ψ(t+ τ, t, x)

]
∈ R× Rn. (2.6)

Intuitively, we expect that ψ(t+ τ, t, x) yields a good approximation of ϕ(t+ τ, t, x) for small
time steps τ ≥ 0; cf. Figure 2.2.

Consider the initial value problem (IVP), we now explain how to solve the problem nu-
merically by means of a chosen one-step method.

For a given partition (2.1) of the interval [t0, T], we construct the sequence {uj}Nj=0 as the
iterations of the mapping ψ,

uj 7−→ uj+1 = ψ(tj+1, tj , uj) j = 0, . . . , N (2.7)

or, equivalently, [
tj
uj

]
7−→

[
tj+1

uj+1

]
=

[
tj+1

ψ(tj+1, tj , uj)

]
, j = 0, . . . , N. (2.8)

In the case of the Euler method, the operator ψ is defined as follows.

Definition 2.3 (Euler method, 1768). Let f be locally Lipschitz continuous on J ×D, assume
that (t, x) ∈ J ×D, and set κ1 = f(t, x). We define

ψ(t+ τ, t, x) ≡ x+ τκ1 (2.9)

for a given τ ≥ 0.

Remark 2.4. The Euler method formulated via Definition 2.9 yields the iterations (2.1) and
(2.2).

17

NUMERICAL SOLUTION OF ODES

Given a one-step method, we want to be able to measure the accuracy of the given solu-
tion.

Definition 2.5 (Local discretisation error. Order of the method). Let f be locally Lipschitz
continuous on J×D, ϕ be the flow of the vector field f , choose (t, x) ∈ J×D and a time step
τ > 0. Consider a particular one-step method; i.e., let ψ(t+ τ, t, x) be the discrete flow of the
vector field f , see (2.4). Then the local discretisation error of the method at the point (t, x) and
the chosen τ is defined as

d(t+ τ, t, x) ≡ ∥ϕ(t+ τ, t, x)− ψ(t+ τ, t, x)∥ . (2.10)

If there exists positive integer p such that

d(t+ τ, t, x) = O(τp+1) for τ → 0+; (2.11)

then, the method is of the order p at the point (t, x).

Remark 2.6. Note that the property (2.5) implies

lim
τ→0+

d(t+ τ, t, x)

τ
= 0;

i.e., d(t + τ, t, x) = O(τ). Hence, this is the required property of the function d. The order p
measures the accuracy.

Remark 2.7 (Autonomous ODE: Discrete flow). If f(t, x) ≡ f(x) then

ψ(t+ τ, t, x) = ψ(τ, 0, x), τ ≥ 0, x ∈ D, t ∈ Rn. (2.12)

Definition 2.8 (Autonomous ODE: Local discretisation error. Order of the method). Let
f(t, x) ≡ f(x) for t ∈ (−∞,+∞), f be locally Lipschitz continuous on D, ϕ denote the flow
of the vector field f and ψ the discrete flow of the vector field f . Then, the local discretisation
error of the method ψ at the point x ∈ D is a function of τ :

d(τ, x) ≡ ∥ϕ(τ, 0, x)− ψ(τ, 0, x)∥ . (2.13)

If there exists a positive integer p such that

d(τ, x) = O(τp+1) for τ → 0+.

We say that the method ψ is of the order p at the point x ∈ D.

Corollary 2.9 (Order of the Euler method). Assume that f ∈ C1(J ×D,Rn), and apply one step
of the Euler method (2.9) at an arbitrary (t, x) ∈ J × D; then, d(t + τ, t, x) = O(τ2). Hence, the
order of the Euler method is p = 1.

Proof. According to (1.38), ϕ(t + τ, t, x) = x + τf + O(τ2). Due to the definition of the
method (2.9), the discrete flow ψ(t+ τ, t, x) = x+ τκ1 = x+ τf ; hence, by definition (2.10),
d(t+ τ, t, x) = O(τ2).

18

ONE-STEP METHODS

The one-step method (2.4) may be interpreted via numerical quadrature. Recall Defini-
tion 2.5; namely, the flow ϕ and the discrete flow ψ. According to the integral identity (1.16)

ϕ(t+ τ, t, x)− x =

∫ t+τ

t
f(s, u(s)) ds =

∫ t+τ

t
u′(s) ds. (2.14)

This identity can be approximated by the numerical quadrature

∫ t+τ

t
u′(s) ds =

N∑
j=1

bju
′(sj) + E(τ) (2.15)

with coefficients bj ∈ R and nodes sj ∈ [t, t+ τ] for j = 1, . . . , N , where E(τ) ∈ Rn is the error
of the quadrature. Note that u′(sj) = f(sj , u(sj)) ∈ Rn.

Example 2.1 (Quadrature formulas). Let g : [a, b] → Rn be a sufficiently smooth vector func-
tion. We will only consider Lagrange quadrature formulas here (Quarteroni et al., 2010, p. 372).
The integral of a vector function g = g(t) can be approximated by the finite sum

∫ b

a
g(t) dt ≈

N∑
j=1

bjg(sj)

with nodes sj ∈ [a, b] and coefficients (weights) bj ∈ R, j = 1, . . . N ; in particular, we consider
the following quadrature rules

rectangle rule: ∫ b

a
g(t) dt = (b− a)g(a) +O(b− a)2, (2.16)

implicit rectangle rule: ∫ b

a
g(t) dt = (b− a)g(b) +O(b− a)2, (2.17)

mid-point rule: ∫ b

a
g(t) dt = (b− a)g

(
a+ b

2

)
+O(b− a)3, (2.18)

trapezoidal rule: ∫ b

a
g(t) dt =

b− a
2

(g(a) + g(b)) +O(b− a)3, (2.19)

Simpson rule: ∫ b

a
g(t) dt =

b− a
6

(
g(a) + 4g

(
a+ b

2

)
+ g(b)

)
+O(b− a)4, (2.20)

3/8-rule:∫ b

a
g(t) dt =

b− a
8

(
g(a) + 3g

(
2a+ b

3

)
+ 3g

(
a+ 2b

3

)
+ g(b)

)
+O(b− a)4. (2.21)

19

NUMERICAL SOLUTION OF ODES

We now analyse the general quadrature formula (2.14)–(2.15). Consider the simplest
quadrature formula (2.16); hence, N = 1, s1 = t, b1 = τ and

N∑
j=1

bju
′(sj) + E(τ) = τu′(t) +O(τ2) = τf(t, x) +O(τ2). (2.22)

Hence, from (2.14)–(2.15),

ϕ(t+ τ, t, x)− x = τf(t, x) +O(τ2). (2.23)

We define the one-step method (2.4) neglecting the error O(τ2) in (2.23); i.e., we define

ψ(t+ τ, t, x)− x = τf(t, x). (2.24)

We note that this corresponds to the formula for the Euler method (2.9).
We now consider the mid-point rule (2.18); i.e., N = 1, s1 = t+ τ/2, b1 = τ .

N∑
j=1

bju
′(sj) + E(τ) = τu′(t+ τ/2) +O(τ3) = τf(t+ τ/2, u(t+ τ/2)) +O(τ3). (2.25)

We need to approximate the unknown value u(t+ τ/2); to this end, we use the Euler method

u(t+
τ

2
) = u(t) +

τ

2
f(t, u(t)) +O(τ2) = x+

τ

2
f +O(τ2).

We conclude that
ϕ(t+ τ, t, x)− x = τf(t+

τ

2
, x+

τ

2
f) +O(τ3); (2.26)

neglecting the error of order O(τ3) we get the following discrete flow

ψ(t+ τ, t, x)− x = τf(t+
τ

2
, x+

τ

2
f). (2.27)

The above derived method is called the Runge method.

Definition 2.10 (Runge method, 1895). Let f be locally Lipschitz continuous on J×D, (t, x) ∈
J ×D. We set κ1 = f(t, x), κ2 = f(t+ τ

2 , x+ τ
2κ1), and define

ψ(t+ τ, t, x) ≡ x+ τκ2 (2.28)

for a given τ ≥ 0.

Corollary 2.11 (Order of the Runge method). Assume that f ∈ C2(J ×D,Rn) and let us apply
one step of the Runge method (2.28) at an arbitrary (t, x) ∈ J × D. Then d(t + τ, t, x) = O(τ3);
therefore, the order of the Runge method is p = 2.

Proof. The statement follows from (2.26) and (2.27).

Remark 2.12. We compare the expenses (i.e. the overhead) of the Euler method (see Defini-
tion 2.9) and the Runge method (see Definition 2.10). Note that the cost can be estimated by
the number of evaluations of f ; hence, we compare the function evaluations:

20

ONE-STEP METHODS

0 5 10 15 20
−10

−5

0

5

10

t

u
1

Soln.
Euler
Runge

(a) u1

0 5 10 15 20

−20

0

20

t

u
2

Soln.
Euler
Runge

(b) u2

Figure 2.3: Linear oscillator — comparison of Euler and Runge

Euler κ1 1
Runge κ1, κ2 2

From this we would conclude that the Runge method is twice more expensive then the Euler
method. We consider the linear oscillator Example 1.2 with different equidistant partitions
of the same interval [0, 20] with different time step size

τ =

{
0.01 for Euler,
0.02 for Runge,

such that the computational cost should be the same for both methods. The experimental
evidence, cf. Figure 2.3, shows the higher precision of the Runge method compared to the
Euler method. We will consider details about the error analysis in Section 2.2, where the
order of a particular method will play a crucial role.

We now consider the implicit rectangle quadrature rule (2.17); i.e., N = 1, s1 = t + τ ,
b1 = τ :

N∑
j=1

bju
′(sj) + E(τ) = τu′(t+ τ) +O(τ2) = τf(t+ τ, u(t+ τ)) +O(τ2). (2.29)

Then
ϕ(t+ τ, t, x)− x = τf(t+ τ, ϕ(t+ τ, t, x)) +O(τ2); (2.30)

hence, neglecting the error, we define one-step method

ψ(t+ τ, t, x)− x = τf(t+ τ, ψ(t+ τ, t, x)). (2.31)

Let us define κ1 ∈ Rn such that

τκ1 = ψ(t+ τ, t, x)− x;

21

NUMERICAL SOLUTION OF ODES

then, from (2.31), we get
κ1 = f(t+ τ, x+ τκ1).

Definition 2.13 (Implicit Euler method). Let f be locally Lipschitz continuous on J × D,
assume that (t, x) ∈ J ×D, set κ1 = f(t+ τ, x+ τκ1); then, we define

ψ(t+ τ, t, x) ≡ x+ τκ1 (2.32)

for a given τ ≥ 0.

The formula (2.32) can be considered as a recipe of the type (2.6). However, we note that
the vector κ1 ∈ Rn is not explicitly defined (like in the Euler method, cf. κ1 = f(t, x)). The
vector κ1 ∈ Rn is defined implicitly, as a fixed point of the mapping

κ1 7−→ f(t+ τ, x+ τκ1)

for a given τ ≥ 0. We will appreciate the above method (in general, the class of the implicit
one-step methods) in Chapter 5 when solving stiff problems, see Section 5.3. for now, we will
just discuss whether the vector κ1 is defined correctly and how to compute it.
Remark 2.14. In order to show the existence of the fixed point, we make use of the Implicit
Function Theorem. Assume that f ∈ C1(J ×D,Rn), and let (t, x) ∈ J ×D be fixed; then, we
define the mapping

κ1 ∈ Rn, τ ≥ 0 7−→ G(κ1, τ) ≡ f(t+ τ, x+ τκ1)− κ1 ∈ Rn.

Since f ∈ C1 then G ∈ C1. Note that

1. G(κ1, τ) = 0 for κ1 = f(t, x) ∈ Rn and τ = 0

2. ∂G
∂κ1

(f(t, x), 0) = −I where I ∈ Rn×n is the identity matrix.

There exists a vector function κ1 : R 7−→ Rn, κ1 = κ1(τ), κ ∈ C1(∆,Rn), where ∆ is an open
interval containing τ = 0, such that

f(t+ τ, x+ τκ1(τ))− κ1(τ) = 0 ∈ Rn, κ1(0) = f(t, x). (2.33)

Corollary 2.15 (Order of the Implicit Euler method). Assume that f ∈ C1(J×D,Rn), and let us
apply one step of the Implicit Euler method (2.32) at an arbitrary (t, x) ∈ J×D; then d(t+τ, t, x) =
O(τ2). Therefore, the order of the Implicit Euler method is p = 1.

Proof. Follows from Remark 2.14.

Remark 2.16. We give a constructive proof of the existence of the fixed point. Consider the
iterations κ1 7−→ f(t + τ, x + τκ1). We exploit the local Lipschitz continuity of f with a
constant L > 0, see (1.20). If ϑ ∈ Rn and η ∈ Rn then

∥f(t+ τ, x+ τϑ)− f(t+ τ, x+ τη)∥ < L ∥τϑ− τη∥ = τL ∥ϑ− η∥ . (2.34)

If τL < 1 then the mapping κ1 7−→ f(t+ τ, x+ τκ1) is a contraction mapping. It can be shown
that the sequence {κ(k)1 }∞k=0 defined by the iteration

κ
(k+1)
1 = f(t+ τ, x+ τκ

(k)
1) (2.35)

converges to the fixed point κ1 = f(t + τ, x + τκ1) provided that the initial approximation
κ
(0)
1 is sufficiently close to κ1. This is called the local convergence.

22

ONE-STEP METHODS

The next two methods exploit the trapezoidal rule (2.19); i.e, N = 2, s1 = t, s1 = t +
τ , b1 = τ/2, b1 = τ/2. We derive one implicit (Definition 2.17) and one explicit method
(Definition 2.19) from this quadrature rule.

From the quadrature formula we derive the following approximation of the flow

ϕ(t+ τ, t, x)− x =
τ

2
(f(t, x) + f(t+ τ, ϕ(t+ τ, t, x))) +O(τ3). (2.36)

Neglecting the terms of order O(τ3), we derive the next formula for the discrete flow

ψ(t+ τ, t, x)− x =
τ

2
(f(t, x) + f(t+ τ, ψ(t+ τ, t, x))) . (2.37)

We set κ1 = f(t, x) and define κ2 such that

ψ(t+ τ, t, x)− x =
τ

2
κ1 +

τ

2
κ2;

then,
κ2 = f(t+ τ, x+

τ

2
κ1 +

τ

2
κ2).

Definition 2.17 (Implicit Trapezoidal method). Let f be locally Lipschitz continuous on J ×
D, assume that (t, x) ∈ J ×D, and set κ1 = f(t, x) and κ2 = f(t + τ, x + τ

2κ1 +
τ
2κ2); then,

we define
ψ(t+ τ, t, x) ≡ x+

τ

2
(κ1 + κ2) . (2.38)

Hence, the vector κ2 ∈ Rn is defined as the fixed point κ2 = f(t+ τ, x+ τ
2κ1 +

τ
2κ2). The

existence and the uniqueness of this fixed point is guaranteed for sufficiently small τ ≥ 0. If
f ∈ C2(J ×D,Rn) then it can be shown that the Implicit Trapezoidal method is of the order
p = 2.

Remark 2.18 (Crank-Nicholson, 1947). The Implicit Trapezoidal method (Definition 2.17) is
often called the Crank-Nicholson method.

We now derive an explicit version of the Implicit Trapezoidal method. We start with
(2.36) and consider the right-hand side. We note that the value of ϕ(t+ τ, t, x) is not known
explicitly; therefore, we have to approximate it using the (explicit) Euler method:

ϕ(t+ τ, t, x) = u(t) + τf(t, u(t)) +O(τ2).

Hence,
ϕ(t+ τ, t, x)− x =

τ

2
(f(t, x) + f(t+ τ, x+ τf(t, x))) +O(τ3). (2.39)

Neglecting the terms of order O(τ3) we get an explicit formula for the discrete flow.

Definition 2.19 (Heun method, 1900). Let f be locally Lipschitz continuous on J×D, assume
that (t, x) ∈ J ×D, and set κ1 = f(t, x) and κ2 = f(t+ τ, x+ τκ1); then, we define

ψ(t+ τ, t, x) ≡ x+
τ

2
(κ1 + κ2) . (2.40)

Let f ∈ C2(J ×D,Rn); then, the Heun method is of the order p = 2.

23

NUMERICAL SOLUTION OF ODES

At the end we introduce a crucial method.

Definition 2.20 (Runge-Kutta method, 1901). Let f be locally Lipschitz continuous on J×D,
assume that (t, x) ∈ J ×D, and set

κ1 = f(t, x),

κ2 = f(t+
τ

2
, x+

τ

2
κ1),

κ3 = f(t+
τ

2
, x+

τ

2
κ2),

κ4 = f(t+ τ, x+ τ κ3);

then, we define

ψ(t+ τ, t, x) ≡ x+ τ

(
1

6
κ1 +

1

3
κ2 +

1

3
κ3 +

1

6
κ4

)
. (2.41)

This is an explicit method of order p = 4.

In Section 2.4 we introduce the class of one-step methods called the Runge-Kutta methods
(RK). This class was inspired by the method in Definition 2.20. In principle, within the class
we can derive both explicit and implicit methods methods of an arbitrary order p ≥ 1. How-
ever, there is a practical restriction as we need to construct Taylor’s expansion of the flow of
a sufficiently high order, which can be complicated, see Remark 1.23.

The methods which were derived in this section (Euler, Implicit Euler, Runge, Crank-
Nicholson, and Heun) belong to the class of Runge-Kutta methods and are of order p ≤ 2.

2.2 Convergence analysis of one-step methods
We consider the initial value problem (IVP) on the interval [t0, T], T < t+(t0, x0), and aim
to solve the problem numerically by means of a chosen one-step method (2.4). During
the coarse of the iterations of the one-step method the local discretisation error, see Defini-
tion 2.5, from the previous time steps accumulate. In this section we study the error analysis
to estimate the global error, which is the accumulated local errors; cf. Theorem 2.23.

Definition 2.21 (Consistency function). Let f be locally Lipschitz continuous on J ×D and
ψ be the discrete flow of the vector field f , see Definition 2.1. For each t ∈ J, x ∈ D, τ ≥ 0 we
set

Ψ(t, x, τ) ≡ ψ(t+ τ, t, x)− x
τ

∈ Rn. (2.42)

The function Ψ is called the consistency function of the discrete flow ψ; i.e., of the relevant
one-step method ψ.

There exists a compact subset K ⊂ D such that

1. [t0, T]×K contains the whole trajectory

2. The right-hand side f is Lipschitz continuous on [t0, T]×K.

Let L be the constant of the Lipschitz continuity of f ; then, the domain of the consistency
function Ψ contains the compact set [t0, T] ×K × [0, τ0], provided that τ0 > 0 is sufficiently
small. In this domain, the consistency function Ψ is continuous; i.e.,

Ψ ∈ C([t0, T]×K × [0, τ0],Rn). (2.43)

24

ONE-STEP METHODS

Let assume that the consistency function Ψ = Ψ(t, x, τ) is additionally Lipschitz continuous
in the variable x; i.e., there exists Λ ≥ 0 such that

∥Ψ(t, x, τ)−Ψ(t, y, τ)∥ ≤ Λ ∥x− y∥ ∀x, y ∈ K, t ∈ [t0, T], τ ∈ [0, τ0]. (2.44)

We will show later the relationship between the constant Λ and the constant L. Note that the
assumption (2.44) is often automatically satisfied.

Definition 2.22. For each partition (2.1) of the interval [t0, T] we define the norm of the
partition:

τmax = max
j=0,...,N−1

(tj+1 − tj).

Theorem 2.23 (Global error estimate). Let f be locally Lipschitz continuous on J×D, and denote
u(t) = ϕ(t, t0, x0) the solution of the initial value problem (IVP) on the interval t ∈ [t0, T]. Consider
a one-step method (2.4) of order p ≥ 1, let ψ be the discrete flow of the vector field f , Ψ be the relevant
consistency function, and the condition (2.44) be satisfied. Assume that the local discretisation error
can be uniformly estimated: there exists a constants C > 0 and a sufficiently small τ1 > 0 such that

d(t+ τ, t, u(t)) ≤ Cτp+1 for each τ ≤ τ1, t ∈ [t0, T]. (2.45)

Consider the partition (2.1) of the interval [t0, T], and let the norm τmax of the partition be sufficiently
small; then, there exists the approximate solution {uj}Nj=1 defined by the recursion

u0 ≡ x0, uj+1 = ψ(tj+1, tj , uj), j = 0, . . . , N − 1. (2.46)

Additionally,

∥u(tj)− uj∥ ≤
eΛ(tj−t0)−1

Λ
Cτpmax, j = 0, . . . , N. (2.47)

Proof. We need to specify a neighbourhood of the trajectory. Due to the compactness of the
set K we can conclude that there exists a constant δK > 0 such that

{x ∈ Rn : ∥x− u(t)∥ ≤ δK} ⊂ K

for each t ∈ [t0, T]. Hence, the system of balls of diameter δK , with centre u(t), belong to K.
We assume that

∥u(tj)− uj∥ ≤ δK , j = 0, . . . , N. (2.48)

Therefore, the numerical solution belongs to the specified neighbourhood of the trajectory.
We now analyse the relationship of the exact and approximate solutions at the times

tj+1 and tj . We set τj = tj+1 − tj ; then, by definition, u(tj+1) = ϕ(tj + τj , tj , u(tj)), and
uj+1 = uj+τjΨ(tj , uj , τj); therefore, u(tj+1)−uj+1 = ϕ(tj+τj , tj , u(tj))−uj−τjΨ(tj , uj , τj).
By adding and subtracting suitable terms we get that

u(tj+1)− uj+1 = ϕ(tj + τj , tj , u(tj))− u(tj)− τjΨ(tj , u(tj), τj)

+ u(tj)− uj + τjΨ(tj , u(tj), τj)− τjΨ(tj , uj , τj) .

The triangle inequality yields

∥u(tj+1)− uj+1∥ ≤ ∥ϕ(tj + τj , tj , u(tj))− u(tj)− τjΨ(tj , u(tj), τj)∥
+ ∥u(tj)− uj∥+ τj ∥Ψ(tj , u(tj), τj)−Ψ(tj , uj , τj)∥ .

25

NUMERICAL SOLUTION OF ODES

According to the assumption (2.45) we have

∥ϕ(tj + τj , tj , u(tj))− u(tj)− τjΨ(tj , u(tj), τj)∥ ≡ d(ti + τj , ti, u(tj)) ≤ Kτp+1,

and the assumption (2.44) we estimate

∥Ψ(tj , u(tj), τj)−Ψ(tj , uj , τj)∥ ≤ Λ ∥u(tj) + uj∥ .
Therefore,

∥u(tj+1)− uj+1∥ ≤ (1 + τjΛ) ∥u(tj) + uj∥+ Cτp+1
j , j = 0, . . . , N − 1. (2.49)

Let us denote by Ej = ∥u(tj)− uj∥ the global error at the time tj , j = 0, . . . , N .
By induction, we can show that

Ej ≤
eΛ(tj−t0)−1

Λ
Cτpmax, j = 0, . . . , N. (2.50)

Base case (j = 0) . Due to the initial conditions (2.46) and (1.15) E0 = ∥u(t0)− u0∥ = 0, and
we note that from (2.50) that 0 ≤ E0 ≤ 0; therefore, the base case is true.

Induction step Assume that the statement (2.50) holds for j ∈ {0, . . . , N − 1} and we verify
that the statement holds also for j + 1. From (2.49) we deduce that

Ej+1 ≤ (1 + τjΛ)Ej + Cτp+1
j

≤ (1 + τjΛ)
eΛ(tj−t0)−1

Λ
Cτpmax + Cτpmaxτj

=
Cτpmax

Λ

(
(1 + τjΛ) e

Λ(tj−t0)−1
)
.

Since 1 + τjΛ ≤ eτjΛ,

(1 + τjΛ) e
Λ(tj−t0) ≤ eΛ(tj+τj−t0) = eΛ(tj+1−t0);

therefore, (2.50) also holds for j + 1.

Let us recall the initial assumption (2.48). We choose τ2 > 0 such that

Cτp2
Λ

(
eΛ(T−t0)−1

)
≤ δK , τ2 ≤ min(τ0, τ1).

We conclude that for an arbitrary partition (2.1) which satisfies τmax ≤ τ2, the condition (2.45)
holds. Consequently, the numerical solution (2.46) exists and the estimate (2.47) holds.

We now consider the assumption (2.44) and show that the value of Λ is related to the
value of the Lipschitz constant L.

Proposition 2.24. Let f be locally Lipschitz continuous on J×D, assume that [t0, T]×K ⊂ J×D,
where K is a compact set, and let L denote the appropriate constant of the Lipschitz continuity. For
the Euler method, Definition 2.3, and the Runge method, Definition 2.10, there exists a sufficiently
small τ0 > 0 such that the consistency function Ψ is Lipschitz continuous in the second variable, cf.
(2.44), on [t0, T]× Rn × [0, τ0], with continuity constant

Λ ≡

L for the Euler method,

L

(
1 +

τ0L

2

)
for the Runge method.

26

ONE-STEP METHODS

Proof. In the case of the Runge method, Ψ(t, x, τ) ≡ f
(
t+ τ

2 , x+ τ
2f(t, x)

)
; hence,∥∥∥f (t+ τ

2
, x+

τ

2
f(t, x)

)
− f

(
t+

τ

2
, y +

τ

2
f(t, y)

)∥∥∥ ≤ L∥∥∥x+
τ

2
f(t, x)− y − τ

2
f(t, y)

∥∥∥
≤ L ∥x− y∥+ τL

2
∥f(t, x)− f(t, y)∥

≤ L
(
1 +

τL

2

)
∥x− y∥

for each x, y ∈ K and each t ∈ [t0, T]. The restriction on τ ≤ τ0, τ0 sufficiently small, is
required to ensure we remain in the domainD. The proof for Euler method is analogous.

Proposition 2.25. Assume that f ∈ C([t0, T]×Rn,Rn) is Lipschitz continuous in the second vari-
able on [t0, T]×Rn with constant L. For the Implicit Euler, Definition 2.13, and Implicit Trapezoidal
method, Definition 2.17, there exists sufficiently small τ0 > 0 such that the consistency function Ψ
is Lipschitz continuous in the second variable, cf. (2.44), on [t0, T] × Rn × [0, τ0], with continuity
constant

Λ ≡


L (1− τ0L)−1 for the Implicit Euler method,

L

(
1 +

τ0L

2

)(
1− τ0L

2

)−1

for the Implicit Trapezoidal method.

Proof. In the case of the Implicit Euler method, Ψ(t, x, τ) ≡ κ1, where κ1 = f(t+ τ, x+ τκ1).
The fixed point κ1 exists for τ < 1/L, see (2.34). Note that κ1 is a function of t, x and τ ; i.e.,
κ1 = κ1(t, x, τ).

For each t ∈ [t0, T], each pair x, y ∈ Rn, and each τ < 1/L,

∥Ψ(t, x, τ)−Ψ(t, y, τ)∥ ≡ ∥κ1(t, x, τ)− κ1(t, y, τ)∥
= ∥f(t+ τ, x+ τκ1(t, x, τ))− f(t+ τ, y + τκ1(t, y, τ))∥
≤ L ∥x− y∥+ τL ∥κ1(t, x, τ)− κ1(t, y, τ)∥ .

Therefore, ∥κ1(t, x, τ)− κ1(t, y, τ)∥ ≤ L(1 − τL)−1 ∥x− y∥. We can choose τ0 = 1/2L. In the
case of Implicit Trapezoidal method we can proceed analogously.

2.3 Adaptive time-stepping
Recall the definition of the local discretisation error (2.10) and the order of the method (2.11).

Consider the Runge method, Definition 2.10; then, according to Corollary 2.11 it holds
that if f ∈ C2(J ×D,Rn) the local discretisation error is of the order two; i.e.,

∥ϕ(t+ τ, t, x)− ψ(t+ τ, t, x)∥ = d(t+ τ, t, x) = O(τ3).

If f is sufficiently smooth then there exists a Taylor expansion of the local discretisation error:
If f ∈ C3(J ×D,Rn) then

d(t+ τ, t, x) = K0τ
3 +O(τ4),

where K0 is a positive constant. If f ∈ Ck(J ×D,Rn), k ≥ 3, then

d(t+ τ, t, x) = K0τ
3 + · · ·+Kk−3τ

k +O(τk+1),

27

NUMERICAL SOLUTION OF ODES

where K0, . . . ,Kk−3 are constants. The constant K0 is called the leading term of the Taylor
expansion of the local discretisation error.

We consider two one-step methods, cf. Definition 2.4, which we will call, respectively,
the “low order” and of “high order” method:

low order: a one-step method of order p

t ∈ J, x ∈ D, τ ≥ 0 7−→ ψ(t+ τ, t, x) ∈ Rn, (2.51)

high order: a one-step method of order p+ 1

t ∈ J, x ∈ D, τ ≥ 0 7−→ ψ̄(t+ τ, t, x) ∈ Rn. (2.52)

We first consider the low order method. If f ∈ Cp(J ×D,Rn)

∥ϕ(t+ τ, t, x)− ψ(t+ τ, t, x)∥ = O(τp+1).

Additionally, if f ∈ Cp+1(J ×D,Rn) then

∥ϕ(t+ τ, t, x)− ψ(t+ τ, t, x)∥ = K0τ
p+1 +O(τp+2), (2.53)

where K0 is the leading term of the Taylor expansion of the local discretisation error. Simi-
larly, for the high order method, if f ∈ Cp+1(J ×D,Rn)∥∥ϕ(t+ τ, t, x)− ψ̄(t+ τ, t, x)

∥∥ = O(τp+2). (2.54)

Defining
∆(τ) = ψ̄(t+ τ, t, x)− ψ(t+ τ, t, x), (2.55)

we note that from (2.53) and (2.54) that

∥∆(τ)∥ = K0τ
p+1 +O(τp+2). (2.56)

It is important to note that ∆(τ) ∈ Rn is a computable quantity. Dropping the terms of the
order O(τp+2) in (2.54) and (2.57), we claim that

∥ϕ(t+ τ, t, x)− ψ(t+ τ, t, x)∥ = ∥∆(τ)∥ = K0τ
p+1. (2.57)

Using this result we can try to compute an optimal time step τ , which we denote by τopt.
Given a desired tolerance (error) tol, we require that

∥ϕ(t+ τopt, t, x)− ψ(t+ τopt, t, x)∥ = ∥∆(τopt)∥ = K0τ
p+1
opt = tol. (2.58)

Eliminating the constant K0 we can obtain a formula for the optimal time step

τopt = τ

(
tol

∥∆(τ)∥

) 1
p+1

. (2.59)

Algorithm 2.1 (Adaptive step size). Consider a low order (2.51) and high order (2.52) one-
step method; then, we can define a one-step method with adaptive step size for (t, x) ∈ J×D,
with time step τ > 0 from the previous step, as follows:

28

ONE-STEP METHODS

τ ← max(τ, tol)

δ ←
∥∥ψ̄(t+ τ, t, x)− ψ(t+ τ, t, x)

∥∥
while δ > tol do

τ ← τ
(
tol
δ

)1/(p+1)

δ ←
∥∥ψ̄(t+ τ, t, x)− ψ(t+ τ, t, x)

∥∥
end while
Accept τ ▷ it now holds that

∥∥ψ̄(t+ τ, t, x)− ψ(t+ τ, t, x)
∥∥ ≤ tol

t← t+ τ

x← ψ̄(t+ τ, t, x)

Remark 2.26. MATLAB (Shampine and Reichelt, 1997) includes solvers ode23 and ode45
for the numerical solution of (IVP). Both solvers can be classified as one-step methods with
an adaptive step size based on the principles formulated in Algorithm 2.1:

ode23 an explicit method (2.51) of order p = 2 and an explicit method (2.52) of order p+1 =
3 are used

ode45 an explicit method (2.51) of order p = 4 and an explicit method (2.52) of order p+1 =
5 are used

There are some rules which allow the optimisation of the coupling of the “low order” and
“high order” methods. In Section 2.4.1 we will talk about the so called embedded formulas.

Remark 2.27. Algorithm 2.1 depends on a choice of one single parameter tol. In the more
recent versions of MATLAB, the adaptivity depends on a choice of n+ 1 parameters

AbsTol ∈ Rn, and RelTol ∈ R, (2.60)

which are the absolute and the relative tolerances, respectively.
We define δ ∈ Rn, with

δi = AbsToli +max
(
|xi|, |ψ̄i(t+ τ, t, x)|

)
RelTol, i = 1, . . . , n,

and the error function

err =

√√√√ 1

n

n∑
i=1

(
ψ̄i(t+ τ, t, x)− ψi(t+ τ, t, x)

δi

)
;

then

τopt = τ

(
1

err

) 1
(p+1)

. (2.61)

By default MATLAB uses

RelTol = 10−3, AbsToli = 10−6, i = 1, . . . , n.

29

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode45.html

NUMERICAL SOLUTION OF ODES

2.4 Runge-Kutta methods (RK)
We will now define a class of one-step methods inspired by the Runge-Kutta method, see
Definition 2.20 in Section 2.1, called the Runge-Kutta methods, often abbreviated as the RK
methods.

RK methods are defined by a set of constants (data)

A = (aij)
s
i,j=1 ∈ Rs×s, b ∈ Rs, c ∈ Rs, (2.62)

where the positive integer s is called the stage of the method.

Definition 2.28 (Butcher, 1972). Let f be locally Lipschitz continuous on J ×D, assume that
(t, x) ∈ J × D, τ ≥ 0; then, for the data (2.62) we consider κi ∈ Rn, i = 1, . . . , s, to be the
solutions of s nonlinear equations

κi = f

t+ τci, x+ τ

s∑
j=1

aijκj

 , i = 1, . . . , s, (2.63)

and we define the discrete flow by

ψ(t+ τ, t, x) ≡ x+ τ

s∑
i=1

biκi ∈ Rn. (2.64)

Definition 2.29 (Butcher Tableau). The data of the RK methods can be presented in the form
of the Butcher array (or Butcher tableau):

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

(2.65)

We can interpret this tableau as follows:

1. From the i-th row of the Butcher tableau we can construct the i-th equation of the
system (2.63), i = 1, . . . , s.

2. The formula for the discrete flow (2.64) is defined by means of the coefficients bi, i =
1, . . . , s in the last row of the Butcher tableau.

Consider the matrix A. If the entries aij = 0 for i ≤ j then A is a strictly lower trian-
gular matrix; therefore, the underlying RK method is explicit, which means that the vectors
κi ∈ Rn in (2.64) are defined by linear canonical formulas (2.63). Otherwise, we say that the
underlying RK method is implicit.

All the methods in Section 2.1 were RK methods.

30

ONE-STEP METHODS

Example 2.2 (Butcher tableaux). The Butcher tableaux of the Euler method (Definition 2.3),
the Runge method (Definition 2.10), the Implicit Euler method (Definition 2.13), the Implicit
Trapezoidal method or Crank-Nicholson method (Definition 2.17), and the Heun method
(Definition 2.19) are given by

0 0

1

0 0 0

1/2 1/2 0

0 1

1 1

1

0 0 0

1 1/2 1/2

1/2 1/2

0 0 0

1 1 0

1/2 1/2

Euler Runge Impl. Euler Crank-Nicholson Heun
For an explicit RK method we may, as a shortcut, skip the entries of A which are zero by

definition.
Example 2.3 (Classical Runge-Kutta). We can write the classical Runge-Kutta method, cf. Def-
inition 2.20, by the Butcher tableau

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

Given a stage s and a particular Butcher’s tableau (2.65) we want to find the order p of
the underlying RK method. Consider ψ(t+ τ, t, x) defined by (2.63)–(2.64); then, we need to
develop the Taylor expansion of ψ(t+ τ, t, x) at the point τ = 0. We proceed analogously as
for the expansion of the flow ϕ in Section 1.4, cf. (1.34)–(1.35). We get that

ψ(t+ τ, t, x) =
k∑

j=0

τ j

j!

∂j

∂τ j
ψ(t+ τ, t, x)

∣∣∣∣
τ=0

+O(τk+1). (2.66)

Note that ψ(t + τ, t, x)|τ=0 = x. The expansion is given by linear combinations of the ele-
mentary differentials, see Remark 1.23.

As an important special case we consider the expansion (2.66) for the autonomous ODE:
Let f(t, x) ≡ f(x), recall (1.17), and define

ψ(τ, x0) ≡ ψ(τ, 0, x0). (2.67)

As an exercise, we compute all terms of the expansion (2.66) up to the order 3.

Lemma 2.30. Let f(t, x) ≡ f(x), assume f ∈ C3(D,Rn), and consider the RK method defined by
the Butcher tableau (2.29). Choose x ∈ D, 0 ≤ τ ≤ τ0, where τ0 is sufficiently small; then

ψ(τ, x) = x+ τ

s∑
i=1

bif + τ2
s∑

i=1

bi

s∑
j=1

aijf
(1)[f] +

τ3

2

s∑
i=1

bi

 s∑
j=1

aij

(s∑
k=1

aik

)
f (2)[f, f]

+ τ3
s∑

i=1

bi

s∑
j=1

aij

s∑
k=1

ajkf
(1)[f (1)[f]] +O(τ4). (2.68)

31

NUMERICAL SOLUTION OF ODES

Proof. By definition,

ψ(τ, x) = x+ τ

s∑
i=1

biκi, (2.69)

and since the ODE is autonomous, κi = f(x+ τ
∑s

j=1 aijκj); hence, we have defined (explic-
itly or implicitly) a vector function κi = κi(τ, x) of argument τ .

We seek for the expansion (2.66); i.e.,

ψ(τ, x) = x+ τ
∂

∂τ
ψ(0, x) +

τ2

2

∂2

∂τ2
ψ(0, x) +

τ3

6

∂3

∂τ3
ψ(0, x) +O(τ4).

By definition (2.69),

∂

∂τ
ψ(τ, x) =

s∑
i=1

biκi + τ
s∑

i=1

bi
∂κi
∂τ

,

∂2

∂τ2
ψ(τ, x) = 2

s∑
i=1

bi
∂κi
∂τ

+ τ
s∑

i=1

bi
∂2κi
∂τ2

,

∂3

∂τ3
ψ(τ, x) = 3

s∑
i=1

bi
∂2κi
∂τ2

+ τ
s∑

i=1

bi
∂3κi
∂τ3

.

Computing the partial derivatives of κi = κi(τ, x) with respect to τ via the chain rule, eval-
uating at τ = 0, and assuming that f ∈ C3(D,Rn) completes the proof.

We can give a sufficient condition for a RK method to be of order p = 3; initially assuming
that the ODE is autonomous.

Lemma 2.31 (Autonomous ODE: RK method of order p = 3). Let f(t, x) ≡ f(x), f ∈
C3(D,Rn), and consider the RK method defined by the Butcher tableau (2.65); then, if

s∑
i=1

bi = 1, 2

s∑
i,j=1

biaij = 1, 3

s∑
i,j,k=1

biaijaik = 1, 6

s∑
i,j,k=1

biaijajk = 1, (2.70)

the RK method is of order p = 3 at each point x ∈ D.

Proof. For a given x ∈ D, we estimate the local discretisation error (2.13), and consider the
Taylor expansion of the vector field (1.38) and the discrete flow (2.68). Both expansions
are linear combinations of four elementary differentials f , f (1)[f], f (2)[f, f], f (1)[f (1)[f]].
Comparing the coefficients of the same elementary differentials we deduce that d(τ, x) =
O(τ4).

Let f be local Lipschitz continuous on J ×D. The initial value problem (1.14)–(1.15) can
be formulated as the initial value problem (1.30) for autonomous ODE. One step of the RK
method applied on the vector field f can be interpreted as one step of the same method (with
the same Butcher table) applied on the vector field (1.29). In the notation (2.67),

Ψ(τ, z) ≡ z + τ

s∑
i=1

biKi, Ki = F

z + τ

s∑
j=1

aijKj

 , i = 1, . . . , s. (2.71)

32

ONE-STEP METHODS

By definition of F ,

Ki =

[
1

f(z + τ
∑s

j=1 aijKj)

]
=

[
1
κi

]
, κi = f

t+ τ
s∑

j=1

aij , x+ τ
s∑

j=1

aijκj

 .

Comparing the resulting κi with the formula (2.63) it is clear that one step of the method
applied on the field f and one step of the method applied on the autonomous field F will be
the same provided that the following condition holds.

Lemma 2.32 (Invariance with respect to “autonomisation”). The RK method defined by the
Butcher tableau (2.65) is invariant with respect to the autonomisation if and only if

ci =
s∑

j=1

aij , i = 1, . . . , s. (2.72)

Corollary 2.33 (RK method of order p = 3). Assume that f ∈ C3(J ×D,Rn), consider the RK
method defined by the Butcher tableau (2.65) and let the condition (2.72) be satisfied (the autonomi-
sation); then, if

s∑
i=1

bi = 1, 2

s∑
i=1

bici = 1, 3

s∑
i=1

bic
2
i = 1, 6

s∑
i,j=1

biaijcj = 1, (2.73)

the RK method is of order p = 3 at each point (t, x) ∈ J ×D.

Proof. We have shown that RK method can be formulated as (2.71) for the autonomous vec-
tor field F provided that (2.72) holds. According to Lemma 2.31, the method is of the order 3,
provided that the conditions (2.70) hold; therefore, it is sufficient to check that the conditions
(2.70) and (2.73) are equivalent. Due to (2.72),

s∑
i,j=1

biaij =
s∑

i=1

bi

s∑
j=1

aij =
s∑

i=1

bici,

s∑
i,j,k=1

biaijaik =

s∑
i=1

bi

s∑
j=1

aij

s∑
k=1

aik =

s∑
i=1

bic
2
i ,

s∑
i,j,k=1

biaijajk =
s∑

i=1

bi

s∑
j=1

aij

s∑
k=1

ajk =
s∑

i=1

bi

s∑
j=1

aijcj ;

hence, (2.70) and (2.73) are equivalent.

We can naturally alter this result for different regularity assumptions on the right-hand
side f .

Corollary 2.34 (RK method of order p = 1). Assume that f ∈ C1(J ×D,Rn), consider the RK
method defined by the Butcher tableau (2.65) and let the condition (2.72) be satisfied; then, if

s∑
i=1

bi = 1, (2.74)

the RK method is of order p = 1 at each point (t, x) ∈ J ×D.

33

NUMERICAL SOLUTION OF ODES

Corollary 2.35 (RK method of order p = 2). Assume that f ∈ C2(J ×D,Rn), consider the RK
method defined by the Butcher tableau (2.65) and let the condition (2.72) be satisfied; then, if

s∑
i=1

bi = 1, 2

s∑
i=1

bici = 1, (2.75)

the RK method is of order p = 2 at each point (t, x) ∈ J ×D.

Corollary 2.36 (RK method of order p = 4). Assume that f ∈ C4(J ×D,Rn), consider the RK
method defined by the Butcher tableau (2.65) and let the condition (2.72) be satisfied; then, if

4

s∑
i=1

bic
3
i = 1, 8

s∑
i,j=1

biaijcicj = 1, 12

s∑
i,j=1

biaijc
2
j = 1, 24

s∑
i,j,k=1

biaijajkck = 1, (2.76)

the RK method is of order p = 4 at each point (t, x) ∈ J ×D.

2.4.1 Explicit RK methods

We first analyse explicit methods of stage s ≤ 4, with the aim to be to find the maximal
order of the method. It will be shown that for the methods of stage s ≤ 4 that the maximal
order p is equal to the stage s; i.e. p = s for s ≤ 4 (see Deuflhard and Bornemann, 2012,
Theorem 4.24).

Corollaries 2.35, 2.33, and 2.36, yield sufficient conditions for the method to be of order
at least p = 2, 3, 4, respectively. These conditions represent nonlinear constraints on various
constants from the Butcher tableau. In the following analysis we deduce only some of the
possible solutions.

c1

c2 a21

b1 b2

c1

c2 a21

c2 a31 a32

b1 b2 b3

c1

c2 a21

c2 a31 a32

c2 a41 a42 a43

b1 b2 b3 b4

Explicit RK (s = 2) Explicit RK (s = 3) Explicit RK (s = 4)

Explicit RK methods (s = 2)

We have five unknowns a21, b1, b2, c1, and c2 to compute, and from Corollary 2.35 we can
formulate the following system of four nonlinear equations:

b1 + b2 = 1

b1c1 + b2c2 =
1

2
c1 = 0

c2 = a21

34

ONE-STEP METHODS

Hence, we have a system of 5 unknowns with 4 conditions. Let c2 ̸= 0; then,

c1 = 0, b2 =
1

2c2
, b1 = 1− b2 = 1− 1

2c2
, a21 = c2. (2.77)

With this choice of parameters we get that p = 2.

Example 2.4 (Explicit RK methods (s = 2)). By setting c2 = 1/2 and c2 = 1 in (2.77) we get the
Runge and Heun method, respectively:

0

1/2 1/2

0 1

0

1 1

1/2 1/2

Runge Heun

Explicit RK methods (s = 3)

The Butcher tableau for the explicit RK method with s = 3 consists of nine unknown
coefficients a21, a31, a32, b1, b2, b3, c1, c2, and c3. From Corollary 2.33 we get:

b1 + b2 + b3 = 1 (2.78a)

b1c1 + b2c2 + b3c3 =
1

2
(2.78b)

b1c
2
1 + b2c

2
2 + b3c

2
3 =

1

3
(2.78c)

3∑
i,j=1

biaijcj =

3∑
k=1

ck

3∑
j=1

bjajk = c2b3a32 =
1

6
(2.78d)

c1 = 0 (2.78e)
c2 = a21 (2.78f)
c3 = a31 + a32 (2.78g)

Hence, we have a system of 9 unknowns with 7 conditions. We can define all the parameters
by selecting values for the parameters c2 ̸= 0 and c3 ̸= 0, such that c2 ̸= c3:

• c1 = 0 by (2.78e).

• We can compute b2 and b3 as the solution of the system[
c2 c3
c22 c23

] [
b2
b3

]
=

[
1/2
1/3

]
,

where the determinant is non-zero by the above requirement on the selection of c2 and
c3; hence,

b2 =
2− 3c3

6c2(c2 − c3)
, b3 =

2− 3c2
6c3(c3 − c2)

.

• Then from (2.78a), (2.78d),(2.78g), and (2.78f) we can simply calculate

b1 = 1− b2 − b3, a32 =
1

6b3c2
, a31 = c3 −

1

6b3c2
, a21 = c2.

35

NUMERICAL SOLUTION OF ODES

Referring to Remark 2.27 we shall seek for explicit methods of stage s = 2 with order
p = 2 and explicit methods of stage s = 3 with order p = 3, aiming to optimise the “low
order” and “high order” method. The resulting method will be called of ode23-type.

We are able to construct all explicit methods of stage s = 2, order p = 2 and all explicit
methods of stage s = 3, order p = 3. We need to consider the expense of one step of the ode23-
type method. If s = 2 then we need to evaluate the right-hand side twice; i.e., evaluate the
vector κi, i = 1, 2, cf. (2.63). Similarly, if s = 3 we need to evaluate the right-hand side three
times; i.e., evaluate the vector κi, i = 1, 2, 3, cf. (2.63). Therefore, the expense of one step of
the ode23-type method is the five evaluations of the right-hand side. However, it is possible
to reduce this expense by selecting κi, i = 1, 2, related to the “low order” s = 2 method and
the κi, i = 1, 2, related to “high order” s = 3 method the same; then, there are only three
evaluations of the right-hand side.

Example 2.5 (RK3(2) with Heun). Consider the Heun method, shown by the Butcher tableau
on the left below. Due to parameter analysis of explicit RK methods of stage s = 3, see (2.78),
we can construct the following explicit method (in the middle), of order p = 3:

0

1 1

1/2 1/2

0

1 1

1/2 1/4 1/4

1/6 1/6 2/3

0

1 1

1/2 1/4 1/4

1/2 1/2

1/6 1/6 2/3

Heun (s = 2) s = 3 Compact Form

In particular, we choose c1 = 0, c2 = 1 and c3 = 1/2. The key result is that the definition of
κi, i = 1, 2 is carried over from the Heun method, requiring that these are only computed
once and then used for both methods when doing adaptive time-stepping, cf. Section 2.3.
Additionally, we can use a compact form of the Butcher tableau to denote one step of the
adaptive time-stepping method, see above on the right. We say that the “high order” method
is embedded into the “low order” method.

Example 2.6 (RK3(2) with Runge). As another example of an ode23-type method we can
introduce the following embedded formula, using Runge for the “low order” method:

0

1/2 1/2

0 1

0

1/2 1/2

1 3 −2
1/6 2/3 1/6

0

1/2 1/2

1 3 −2
0 1

1/6 2/3 1/6

Runge (s = 2) s = 3 Compact Form

36

ONE-STEP METHODS

Definition 2.37 (Embedded RKp(p−1) methods). We can define ode23-type methods via em-
bedded formulas. Instead of ode23-type method we call these methods an embedded RK3(2)
method or just an RK3(2) method. This notation reflects the fact that

• we combine two explicit Runge-Kutta methods in the spirit of Algorithm 2.1,

• RK3(2) is defined via an embedded formula,

• the expenses of RK3(2) are essentially the same as for one step of the RK method of
order p = 3.

In general, we consider RKp(p− 1) methods, where p is a “high order” method and p− 1 is a
“low order” method. There is a whole class of Embedded Runge-Kutta methods, see Deuflhard
and Bornemann (2012).

Example 2.7 (RK2(1)). In the same spirit we can define embedded RK2(1) methods:

0

1/2 1/2

1

0 1

0

1 1

1

1/2 1/2

Explicit RK methods (s = 4)

The Butcher tableau for the explicit RK method with s = 3 consists of fourteen unknown
coefficients a21, a31, a32, a41, a42, a43, b1, b2, b3, b4, c1, c2, c3, and c4. From Definition 2.36 we
a system of twelve nonlinear equations, which since c1 = 0, reduces to

b1 + b2 + b3 + b4 = 1 (2.79a)

b2c2 + b3c3 + b4c4 =
1

2
(2.79b)

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1

3
(2.79c)

4∑
i,j=1

biaijcj = b3a32c2 + b4(a42c2 + a43c3) =
1

6
(2.79d)

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1

4
(2.79e)

4∑
i,j=1

biaijcicj = b3c3a32c2 + b4c4(a42c2 + a43c3) =
1

8
(2.79f)

4∑
i,j=1

biaijc
2
j = b3a32c

2
2 + b4(a42c

2
2 + a43c

2
3) =

1

12
(2.79g)

4∑
i,j,k=1

biaijajkck = b4a43a32c2 =
1

24
(2.79h)

37

NUMERICAL SOLUTION OF ODES

c2 = a21 (2.79i)
c3 = a31 + a32 (2.79j)
c4 = a41 + a42 + a43 (2.79k)

Hence, we have a system of 13 unknowns with 11 conditions. Consider the right-hand sides
of the equations (2.79a)–(2.79c) and (2.79e); these can be interpreted as integrals

∫ 1
0 t

k dt,
k = 0, 1, 2, 3:

4∑
i=1

bic
k
i =

∫ 1

0
tk dt, k = 0, 1, 2, 3. (2.80)

Recall the Lagrange quadrature formulae, Remark 2.1, with coefficients b = (b1, b2, b3, b4)
⊤ and

nodes c = (c1, c2, c3, c4)
⊤; i.e., the quadrature

4∑
i=1

big(ci) ≈
∫ 1

0
g(t) dt (2.81)

of a sufficiently smooth function g = g(t). According to quadrature theory, see (Quarteroni
et al., 2010, p. 372), the quadrature is of order 4 if and only if it is exact for the third order
polynomials; i.e. for functions g(t) = span

{
1, t, t2, t3

}
. Therefore, (2.80) is satisfied. In

Remark 2.1 we listed two quadratures of order 4: The Simpson rule (2.20) and 3/8-rule (2.21).

Lemma 2.38 (Simpson rule). If

c =

(
0,

1

2
,
1

2
, 1

)⊤
, b =

(
1

6
,
1

3
,
1

3
,
1

6

)⊤
; (2.82)

then, the equations (2.79a)–(2.79c) and (2.79e) of the system (2.79) are satisfied.

Lemma 2.39 (38 -rule). If

c =

(
0,

1

3
,
2

3
, 1

)⊤
, b =

(
1

8
,
3

8
,
3

8
,
1

8

)⊤
; (2.83)

then, the equations (2.79a)–(2.79c) and (2.79e) of the system (2.79) are satisfied.

We can then compute all the coefficients from (2.79) as follows:

• Fix the constants according to either (2.82) or (2.83).

• From equations (2.79d) and (2.79f) we can compute a32 and the linear combination
a42c2 + a43c4 as a solution the linear system[

b4c2 b4
b4c3c2 b4c4

] [
a32

a42c2 + a43c4

]
=

[
1/6
1/8

]
. (2.84)

This gives us a32.

• From equation (2.79h) we can then compute a43

38

ONE-STEP METHODS

• Then, we can compute the unknown a42 from the second solution component a42c2 +
a43c4 of (2.84).

• The unknowns a21, a31, a41 can be computed from (2.79i)–(2.79k).

We note that we have computed all the coefficients without using (2.79g); therefore, we have
to check that (2.79g) is linearly dependent. It can be shown that the above solutions aij ,
1 ≤ j < i < 4, satisfy (2.79g).
Example 2.8 (Explicit RK methods (s = 4)). By selecting the coefficients bi and ci, i = 1, . . . , 4,
via either the Simpson rule (2.82) or the 3/8-rule (2.83) we derive, respectively, the following
Butcher tableaux:

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

0

1/3 1/3

2/3 −1/3 1

1 1 −1 1

1/8 3/8 3/8 1/8

Classical RK 3/8-rule

If we want to construct an explicit method of order p ≥ 5 then we face issues. These are
related to the fact that an approximation of the vector field ϕ(t + τ, t, x) by means of Taylor
expansions “explode”, see Remark 1.23.

Theorem 2.40 (Butcher barrier). Consider an explicit method of stage s and order p; then,

• for p ≥ 5 it is necessary for s ≥ p+ 1,

• for p ≥ 7 it is necessary for s ≥ p+ 2,

• for p ≥ 8 it is necessary for s ≥ p+ 3,

etc.

Proof. see Hairer (1978).

Example 2.9 (Butcher method (1963)). One of the first methods which reached the barrier is
the following method, which is of stage s = 6 and order p = 5:

0

1/4 1/4

1/4 1/8 1/8

1/2 0 −1/2 1

3/4 3/16 0 0 9/16

1 −3/7 2/7 12/7 −12/7 8/7

7/90 0 32/90 12/90 32/90 7/90

(2.85)

39

NUMERICAL SOLUTION OF ODES

The existence of Butcher barriers results in an obvious complication in the construction
of embedded methods.

Example 2.10 (RK5(4) — Dormand-Prince (1980)). The Dormand-Prince (1980) method, also
called DOPRI5, is an embedded formula of RK5(4), see Definition 2.37, of stage s = 7.

0 0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 64448/6561 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656

1 35/384 0 500/1113 125/192 −2187/6784 11/84

35/384 0 500/1113 125/192 −2187/6784 11/84 0

5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

(2.86)

Note that the MATLAB function ode45 is related to the formula (2.86).

2.4.2 Implicit RK methods

So far, we have considered only two of implicit RK methods, see Example 2.2, namely
the Implicit Euler and Crank-Nicholson methods. We have shown that defining one step of
such a method is equivalent to finding the fixed point of a mapping. In case of the implicit
Euler method we have shown that this mapping is a contraction provided that the step size
τ > 0 is sufficiently small, see Remark 2.16. This result will hold for implicit RK methods in
general.

Implicit RK methods become important when solving stiff problems, see Section 5.3. Those
problems require the choice of extremely small step size τ .

We shall analyse the orders of implicit RK methods of stages s ≤ 3, where we will not
always require the maximal order of the resulting method. We use Corollaries 2.35, 2.33, and
2.36 to derive these methods.

c1 111

b1

c1 a11 a12

c2 a21 a22

b1 b2

c1 a11 a12 a23

c2 a21 a22 a23

c2 a31 a32 a13

b1 b2 b3

Implicit RK (s = 1) Implicit RK (s = 2) Implicit RK (s = 3)

Gauss method

We consider an implicit RK method of stage s = 1. The objective is to construct a method
with maximal order p; by applying Corollary 2.35 to prove that the method is of order p = 2

40

https://www.mathworks.com/help/matlab/ref/ode45.html

ONE-STEP METHODS

at least. We can construct a system of nonlinear equations for the unknown coefficients c1,
a11, b1:

1∑
i=1

bi = b1 = 1

1∑
i=1

bici = b1c1 =
1

2

1∑
j=1

a1j = a11 = c1

The system has the unique solution c1 = 1/2, a11 = 1/2 and b1 = 1. By analysing the con-
ditions from Corollary 2.33 we conclude that the method cannot be of order higher then
p = 2.

Example 2.11 (Gauss1). An implicit RK method, called Gauss1, of stage s = 1 of maximal
order p = 2 is defined by the following Butcher tableau:

1/2 1/2

1
(2.87)

The reason of the name “Gauss1” will become clear later.

We now consider an implicit RK method of order s = 2, with maximal order, which we
conjecture is p = 4. Due to Corollary 2.36 we check defining conditions on the constants

b1 + b2 = 1 (2.88a)

b1c1 + b2c2 =
1

2
(2.88b)

b1c
2
1 + b2c

2
2 =

1

3
(2.88c)

2∑
i,j=1

biaijcj = b1(a11c1 + a12c2) + b2(a21c1 + a22c2) =
1

6
(2.88d)

b1c
3
1 + b2c

3
2 =

1

4
(2.88e)

2∑
i,j=1

biaijcicj = b1c1(a11c1 + a12c2) + b2c2(a21c1 + a22c2) =
1

8
(2.88f)

2∑
i,j=1

biaijc
2
j = b1(a11c

2
1 + a12c

2
2) + b2(a21c

2
1 + a22c

2
2) =

1

12
(2.88g)

2∑
i,j,k=1

biaijajkck = (b1a11 + b2a21)

2∑
k=1

a1kck + (b1a12 + b2a22)
2∑

k=1

a2kck =
1

24
(2.88h)

c1 = a11 + a12 (2.88i)
c2 = a21 + a22 (2.88j)

41

NUMERICAL SOLUTION OF ODES

Therefore, we have a system of 8 unknowns and 10 equations; hence, it appears that the
problem is overdetermined. The right-hand sides of equations (2.88a)–(2.88c) and (2.88e) can
be interpreted as integrals

∫ 1
0 t

k dt, k = 0, 1, 2, 3; therefore, these equations can be written as

2∑
i=1

bic
k
i =

∫ 1

0
tk dt , k = 0, . . . , 3. (2.89)

Consider the quadrature formula

2∑
i=1

big(ci) ≈
∫ 1

0
g(t) dt (2.90)

with coefficients (weights) b = (b1, b2)
⊤ and nodes c = (c1, c2)

⊤.

Remark 2.41 (Gauss quadrature). From the theory of Gauss quadrature, cf., for example, Süli
and Meyers (2003, Example 10.1), it follows that the condition (2.89) holds if

c =

(
1

2
−
√
3

6
,
1

2
+

√
3

6

)⊤

, b =

(
1

2
,
1

2

)⊤
. (2.91)

In other words, the quadrature is exact for polynomials of degree three (i.e., order of the
quadrature is four).

It can be checked that remaining equations (2.88d) and (2.88f)–(2.88j) have the solution

a11 =
1

4
, a12 =

1

4
−
√
3

6
, a21 =

1

4
+

√
3

6
, a22 =

1

4
.

Example 2.12 (Gauss2). An implicit RK method, called Gauss2, of stage s = 2 of maximal
order p = 4 is defined by the following Butcher tableau:

1/2−
√
3/6 1/4 1/4−

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

(2.92)

In general, let us consider the Gauss quadrature formulae

k∑
i=1

big(ci) ≈
∫ 1

0
g(t) dt (2.93)

with coefficients (weights) b = (b1, . . . , bk)
⊤ and nodes c = (c1, . . . , ck)

⊤. If we assume k = 1
then we get Example 2.11. For k = 3, i.e. three quadrature nodes on the interval [0, 1], then

c =

(
1

2
−
√
15

10
, 1,

1

2
+

√
15

10

)⊤

, b =

(
5

18
,
4

9
,
5

18

)⊤
, (2.94)

is the solution of the Gauss interpolation problem. We will not give the corresponding
Butcher tableau, but it can be found in Hairer et al. (2009, Table 7.4). The method, called
Gauss3, is of order p = 6.

42

ONE-STEP METHODS

Remark 2.42 (Collocation methods). Analysing Gauss2, which is of order p = 4, is based on
verifying the assumptions of Corollary 2.36; i.e. defining conditions (2.88). For the method
Gauss3 of order p = 6 the analysis of the corresponding conditions requires analysing thirty-
six conditions; cf., Remark 1.23. As an alternative idea, the initial value problem (IVP) can be
approximated by numerical collocation, see Deuflhard and Bornemann (2012, Section 6.3).
This technique exploits Gauss-type quadratures, which simplifies the formulation of defining
conditions, and leads to a class of implicit Butcher methods.

By Gauss-type quadrature we mean Gauss quadrature with additional nodes. Here, we
consider Gauss-Radau and Gauss-Lobatto quadrature rules.

Radau method

We consider an RK method of stage s = 2, constructed to satisfy as many defining con-
ditions (2.88) as possible while imposing one of two different additional conditions on the
nodes c1 and c2:

Version I : c1 = 0, 0 < c2 ≤ 1 (2.95)
Version II : 0 ≤ c1 < 1, c2 = 1 (2.96)

We can satisfy (2.88a)–(2.88c); however, it is impossible to fulfil (2.88e).

Remark 2.43 (Gauss-Radau quadrature). Let us specify

Version I : c1 =

(
0,

2

3

)⊤
, b =

(
1

4
,
3

4

)⊤
, (2.97)

Version II : c1 =

(
1

3
, 1

)⊤
, b =

(
3

4
,
1

4

)⊤
, (2.98)

The quadrature is exact for second order polynomials; i.e., the quadrature is of order 3.

Example 2.13 (RadauI2 & RadauII2). Implicit RK methods of stage s = 2 with nodes specified
by (2.97) and (2.97) has maximal order p = 3 and are defined by the following Butcher
tableaux:

0 1/4 −1/4

2/3 1/4 5/12

1/4 3/4

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

RadauI2 RadauII2

Assuming k = 3, i.e., three quadrature nodes on interval [0, 1], the solution of the Gauss-
Radau interpolation problem are two pairs

Version I : c1 =

(
0,

6−
√
6

10
,
6 +
√
6

10

)⊤

, b =

(
1

9
,
16 +

√
6

36
,
16−

√
6

36

)⊤

,

Version II : c1 =

(
4−
√
6

10
,
4 +
√
6

10
, 1

)⊤

, b =

(
16−

√
6

36
,
16 +

√
6

36
,
1

9

)⊤

,

43

NUMERICAL SOLUTION OF ODES

The quadrature is exact for polynomials of order four (the quadrature is of order 5). We do
not give the corresponding Butcher tableau, cf. Hairer and Wanner (2010, Table 5.4 & Table
5.6), which we shall call RadauI3 and RadauII3.

Example 2.14 (RadauI1 & RadauII1). Implicit RK methods of stage s = 1 and order p = 1 are
defined by the following Butcher tableaux:

0 1

1

1 1

1

RadauI1 RadauII1

Note that RadauII1 is Implicit Euler.

Lobatto method

We consider implicit RK methods of stage s = 2 and s = 3, imposing additional condi-
tions on the nodes

s = 2 : c1 = 0, c2 = 1

s = 3 : c1 = 0, 0 < c2 < 1, c3 = 1

Remark 2.44 (Gauss-Lobatto quadrature). Let us specify

s = 2 : c = (0, 1)⊤ , b =

(
1

2
,
1

2

)⊤

s = 3 : c =

(
0,

1

2
, 1

)⊤
, b =

(
1

6
,
2

3
,
1

6

)
.⊤

The order of the quadrature is 2 for s = 2 and 3 for s = 3.

Example 2.15 (Lobatto). Implicit RK methods of stage s = 2 and s = 3 can be defined, via
Gauss-Lobatto quadrature, by the following Butcher tableaux:

0 0 0

1 1/2 1/2

1/2 1/2

0 0 0 0

1/2 5/24 1/3 −1/24

1 1/6 2/3 1/6

1/6 2/3 1/6

Lobatto2 Lobatto3

It can be shown that

1. the Lobatto2 method is of order p = 2,

2. the Lobatto3 method is of order p = 4.

Note that the Lobatto2 method is the Crank-Nicholson method.

44

CHAPTER 3

Multistep methods

In Chapter 2 we considered one-step methods to generate a numerical approximation of the
solution of the initial value problem (IVP), which work by computing the numerical solution
at the current time step based on the numerical solution at the previous time step; i.e., using
one-step of the numerical solution. In this chapter, we consider multistep methods which use
the numerical solution from multiple previous time steps.

3.1 Linear multistep method
The aim is to find a numerical solution of the initial value problem (IVP). We seek a phase
curve u(t) = ϕ(t, t0, x0) on a given finite closed interval t ∈ [t0, T], and assume that t0 < T <
t+(t0, x0) and that the right-hand side is sufficiently smooth; i.e, f ∈ Ck(J ×D,Rn), k ≥ 1.

We define an equidistant partition of the interval [t0, T] with step size τ > 0 as

{tj}Nj=0 , tj = tj−1 + τ, τ =
T − t0
N

. (3.1)

Algorithm 3.1 (Linear m-step method). A m-step method, for m ≥ 1, is defined by a choice
of real coefficients

{ai}mi=0 , {bi}mi=0 , am = 1 (3.2)

such that |a0| + |b0| ̸= 0. The iterative method is initialised with the first m values of the
numerical solution

{ui}m−1
i=0 , u0 ≡ x0. (3.3)

We then define the m-step recurrence as

amuj+m + am−1uj+m−1 + · · ·+ a0uj

= τ (bmf(tj+m, uj+m) + bm−1f(tj+m−1, uj+m−1) + · · ·+ b0f(tj , uj)) , (3.4)

for j = 0, . . . , N −m.

The initialisation (3.3) can be accomplished by performing a chain of one-step methods

uj = ψ(tj , t0, x0), j = 0, . . . ,m− 1. (3.5)

Algorithm 3.1 generates a sequence {uj}Nj=0. It is expected that if τ is sufficiently small
then the sequence {uj}Nj=0 will approximate the sequence {u(tj)}Nj=0 of the exact solution
evaluated at the points {tj}Nj=0.

Linear m-step methods can be distinguished as

45

NUMERICAL SOLUTION OF ODES

• explicit, if bm = 0, or

• implicit, if bm ̸= 0.

Example 3.1 (Multistep explicit method). Let m = 3, i.e. we consider a three step method,
with coefficients a3 = 1, a2 = −1, a1 = a0 = 0, b3 = 0, b2 = 23/12, b1 = −4/3, b0 = 5/12. Then,

uj+3 = uj+2 + τ

(
23

12
f(tj+2, uj+2)−

4

3
f(tj+1, uj+1) +

5

12
f(tj , uj)

)
(3.6)

Vector uj+3 ∈ Rn is explicitly defined by the formula (3.6) as a linear combination of the
previously computed values uj+2, uj+1, uj ∈ Rn, and three right-hand sides f(tj+2, uj+2),
f(tj+1, uj+1), f(tj , uj) ∈ Rn. The evaluation of these right-hand sides represents the sub-
stantial cost of the computation. In the next step we compute uj+4 ∈ Rn as

uj+4 = uj+3 + τ

(
23

12
f(tj+3, uj+3)−

4

3
f(tj+2, uj+2) +

5

12
f(tj+1, uj+1)

)
.

We notice here that we have to evaluate f(tj+3, uj+3); however, the values f(tj+2, uj+2) and
f(tj+1, uj+1) were evaluated in the previous step (the evaluation of uj+3), and hence can be
reused.

Linear multistep method can be interpreted as a stencil which is shifted at each step, and
at each step we only have to evaluate the right-hand side once.

Example 3.2 (Multistep implicit method). Let m = 2, i.e. we consider a two step method,
with coefficients a2 = 1, a1 = −1, a0 = 0, b2 = 5/12, b1 = 2/3, b0 = −1/12. Then,

uj+2 = uj+1 + τ

(
5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
. (3.7)

The formula (3.7) defines uj+2 ∈ Rn either as a root of a nonlinear system

uj+2 − uj+1 − τ
(

5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
= 0 ∈ Rn, (3.8)

or as a fixed point of the operator

uj+2 ∈ Rn 7−→ uj+1 + τ

(
5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
∈ Rn. (3.9)

In the former case the root uj+2 of the system (3.8) could be approximated via the Newton
method or its variations; while, in the latter case we could consider iterations of the type

unewj+2 = uj+1 + τ

(
5

12
f(tj+2, u

old
j+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
∈ Rn. (3.10)

If the step size τ is sufficiently small the iterations converge to the fixed point uj+2.
As a result finding uj+2 is not a simple substitution to a formula (as in the case of explicit

method), but instead we have to apply a numerical iterative method which is necessarily
reflected in the overheads (costs). However, for stiff problems, see Section 5.3, it may be
necessary to apply implicit methods.

46

MULTISTEP METHODS

Let us note that the m-step recurrence (3.4) can be formulated as an equation

m∑
i=0

aiuj+i − τ
m∑
i=0

bif(tj+i, uj+i) = 0 ∈ Rn, (3.11)

where uj+i approximates u(tj+i); i.e., u(t0 + τ(j + i)).
We want to define the local discretisation error. Let f ∈ C1(J ×D,Rn) and recall that for

each initial condition the solution is defined as

u(t+ τ) = ϕ(t+ τ, t, x), (3.12)

of the relevant initial problem, see Definition 1.11 of the flow of the vector field. The function
u(t+ τ) is continuously differentiable. We define

D(t+ τ, t, x) ≡
m∑
i=0

aiu(t+ iτ)− τ
m∑
i=0

bif(t+ iτ, u(t+ iτ)) ∈ Rn;

i.e., in the m-step recurrence we set the exact solution (3.12) for j = 0 with the initial con-
dition (t, x = u(t)). We can estimate the corresponding error by exploiting the differential
equation

u′(t+ iτ) = f(t+ iτ, u(t+ iτ)), i = 0, . . . ,m. (3.13)

Definition 3.1 (Local discretisation error, order of the method & consistency). Consider the
linear m-step method (3.4) with coefficients (3.2). Assume that f ∈ C1(J × D,Rn) and for
each (t, x) ∈ J ×D we define the local discretisation error as the vector function

D(t+ τ, t, x) =

m∑
i=0

aiu(t+ iτ)− τ
m∑
i=0

biu
′(t+ iτ). (3.14)

If there exists a positive integer p ≥ 1 such that

∥D(t+ τ, t, x)∥ = O(τp+1), for τ → 0, (3.15)

we say that the method is of order p at the point (t, x). If the method is of order at least p = 1,
we say that the method is consistent.

Theorem 3.2. Assume that f ∈ Cp(J ×D,Rn), p ≥ 1, and let

m∑
i=0

ai = 0,

m∑
i=0

iℓai = ℓ

m∑
i=0

iℓ−1bi, ℓ ∈ {1, . . . , p} , 00 ≡ 1. (3.16)

Then, the corresponding linear multistep method is at least of order p at each point (t, x) ∈ J ×D.

Proof. Consider the Taylor expansion

u(t+ iτ) =

p∑
ℓ=0

iℓ

ℓ!
τ ℓu(ℓ)(t) +O(τp+1)

47

NUMERICAL SOLUTION OF ODES

for i = 0, . . .m, see (1.34); additionally,

τu′(t+ iτ) =

p∑
ℓ=1

iℓ−1

(ℓ− 1)!
τ ℓu(ℓ)(t) +O(τp+1).

Then, by linear combination of these results we have that

aiu(t+ iτ)− τbiu′(t+ iτ) = aiu(t) +

p∑
ℓ=1

1

ℓ!
(iℓai − ℓiℓ−1bi)τ

ℓu(ℓ)(t) +O(τp+1).

Summing from i = 0, . . . ,m we obtain a result for the local discretisation error (3.14)

m∑
i=0

aiu(t+ iτ)− τ
m∑
i=0

biu
′(t+ iτ) =

p∑
ℓ=0

τ ℓ

ℓ!
Cℓu

(ℓ)(t) +O(τp+1),

where

C0 =
m∑
i=0

ai, Cℓ =
m∑
i=0

(iℓai − ℓiℓ−1bi), ℓ = 1, . . . , p. (3.17)

Hence, if Cℓ = 0 for ℓ = 0, . . . , p, then the method is at least of order p; this is equivalent to
the condition (3.16).

We can verify that the explicit three step method Example 3.1 is of order p = 3 by check-
ing that C0 = C1 = C2 = C3 = 0 and C4 ̸= 0. Similarly, we can verify that the two step
method Example 3.2 is of order p = 3 as well.

Corollary 3.3 (Consistency conditions). Assume that f ∈ C2(J×D,Rn); then, the linearm-step
method with coefficients (3.2) is consistent if and only if

m∑
i=0

ai = 0,

m∑
i=0

iai =

m∑
i=0

bi. (3.18)

Definition 3.4. Consider a linearm-step method with coefficients (3.2), then we can associate
the following complex polynomials of variable z ∈ C:

first characteristic polynomial

ρ(z) =
m∑
i=0

aiz
i, (3.19)

second characteristic polynomial

σ(z) =
m∑
i=0

biz
i. (3.20)

Remark 3.5. The method is consistent in the sense of (3.18) if and only if

ρ(1) = 0, ρ′(1) = σ(1). (3.21)

48

MULTISTEP METHODS

0 0.2 0.4 0.6 0.8 1

0

1

2

t

x

0 0.1 0.2 0.3

0

1

2

t

x

Figure 3.1: Comparison of exact solution and unstable multistep solution of the initial value
problem (3.23)

3.2 D-stability & Convergence
We consider an explicit two step method

uj+2 = −4uj+1 + 5uj + τ (4f(tj+1, uj+1) + 2f(tj , uj)) , (3.22)

which can be shown to be of order p = 3. Let us solve the following initial value problem

x′ = −x, x(0) = 1 (3.23)

using this method in the interval [0, 1] with step size τ = 0.01. This problem has a known
analytical solution, ϕ(t, 0, 1) = e−t. Figure 3.1 shows the comparison of the exact and nu-
merical solution; we observe that dramatic oscillation occur in the numerical solution. We
note that if we used the method (3.1) or (3.2) from Section 3.1, which are also of order p = 3,
with the same discretisation data τ = 0.01, the numerical and exact solutions would appear
(almost) identical.

In order to understand the potential issue we consider solving the scalar initial value
problem

x′ = 0, x(0) = x0 (3.24)

using the method (3.22). The method is initialized via (3.3) by choosing u0 = x0 and u1.
Since the right hand side of equation (3.24) is zero, the recurrence (3.22) is a linear recurrence
driven by the homogeneous linear difference equation

uj+2 + 4uj+1 − 5uj = 0. (3.25)

Using the theory of linear difference equations we can derive the general solution of (3.25).
The linear difference equation has the characteristic polynomial z2+4z− 5, which is, in fact,
the first characteristic polynomial ρ(z) = z2+4z−5 of the method (3.22). This polynomial has
the roots z1 = 1 and z2 = −5 and, hence, the general solution {uj}∞j=0 is a linear combination
of both fundamental solutions

{
1j
}∞
j=0

and
{
(−5)j

}∞
j=0

. Therefore,

{uj}∞j=0 =
{
c11

j + c2(−5)j
}∞
j=0

,

49

NUMERICAL SOLUTION OF ODES

where c1 and c2 are arbitrary constants. These constants can be deduced from the initial
values u0 and u1 by means of a linear transformation[

c1
c2

]
=

1

6

[
5 1
1 −1

] [
u0
u1

]
.

Consider the initial condition u0 = x0 = 1 and let u1 be defined via the Runge method
with step size τ , cf. (3.5). Evaluating the relevant Butcher tableau it yields κ1 = f(0, x0) = 0,
κ2 = f(0+τ/2, x0+τκ1/2) = 0 and u1 = u0+τκ2 = 1. Hence, the numerical solution {uj}∞j=0 ≡{
1j
}∞
j=0

of the corresponding initial value problem is a constant solution as expected.
We now simulate the influence of the rounding errors on the actual computation. We

assume that u0 = 1 and u1 = 1 + τε, where ε is very small, e.g. it is comparable to the
machine precision. The simulated solution is given by the formula

{uj}∞j=0 =
1

6

{
6 + τε(1− (−5)j)

}∞
j=0

, for {tj}∞j=0 = {τj}
∞
j=0 .

For a given fixed time T > 0, we consider the partition (3.1), where N is a parameter satisfy-
ing N → ∞, and set the time step to τ = T/N . We can then compute the numerical solution
at time T

uN =
1

6
(6 + τε(1− (−5)N));

hence, |uN | → ∞ for N → ∞. In contrast, the exact solution at time T is equal to one,
ϕ(T, 0, 1) = 1.

In conclusion, we considered a numerical experiment which illustrated instability of a
particular multistep method (3.22), cf. Figure 3.1. This is a consistent method of order p = 3,
but an instability of the method appeared when solving the simplest problem (3.24) due to
rounding errors while performing the computation. The reason for this instability is due to
the fact that one of the roots z2 = −5 of the polynomial ρ(z) = z2 + 4z − 5, lies outside the
unit circle. Is it possible to characterise a stable multistep method?

Definition 3.6 (D-stability (G. Dahlquist (1956))). A linear m-step method with coefficients
(3.2) is D-stable provided that each root z ∈ C of the first characteristic polynomial ρ(z) = 0
satisfies either

• |z| < 1, or

• |z| = 1 and ρ′(z) ̸= 0 (i.e., the algebraic multiplicity of the root z is equal to 1).

Both the explicit method (3.1) and the implicit method (3.2) from Section 3.1 are D-stable:

explicit method (3.1): the first characteristic polynomial ρ(z) = z2(z− 1) has roots ρ(1) = 0,
ρ′(1) = 1 ̸= 0 and the multiple root ρ(0) = 0, ρ′(0) = 0.

implicit method (3.2): the first characteristic polynomial ρ(z) = z(z − 1) has roots ρ(1) = 0,
ρ′(1) = 1 ̸= 0 and ρ(0) = 0.

Theorem 3.7 (The global error estimate). Assume that f ∈ Cp(J × D,Rn), p ≥ 1 and let
u(t) = ϕ(t, t0, x0) be the solution of the initial value problem (IVP) in the interval t ∈ [t0, T]. We

50

MULTISTEP METHODS

consider a D-stable m-step method (3.4) of order p ≥ 1 on the equidistant partition (3.1), with
coefficients (3.2) and initialisation (3.3), which generates the sequence {uj}Nj=0.

There exists a positive constant C > 0 such that for sufficiently large N

∥u(tj)− uj∥ ≤ C(ε0 + τp), j = 0, . . . , N, τ =
T − t0
N

, (3.26)

where
ε0 ≡ max

ℓ=0,...,m−1
∥u(tℓ)− uℓ∥.

is the initialisation error for (3.3).

Proof. see Deuflhard and Bornemann (2012, Theorem 7.23).

In order to initialise Algorithm 3.1, it is suitable to use the one step method (3.5) of order
k, where k ≥ p. In this case ε0 = O(τk) and the initialisation does not effect the order p of
the error estimate (3.26).

There are theoretical limits to the maximum achievable order of the D-stable m-step
method:

Remark 3.8 (Dahlquist Barrier). Consider the D-stable m-step method of the order p ≥ 1 on
the equidistant partition (3.1); then, it is necessary that

p ≤


m+ 2 if m is even,
m+ 1 if m is odd,
m if bm/am ≤ 0 (in particular if the method is explicit i.e., bm = 0).

Proof. see Hairer et al. (2009, Theorem 3.5).

Example 3.3 (Implicit 2-step method with maximal order p = 4). We will derive a two step
method with the highest order. The linear two step method is defined by choosing six coef-
ficients a2, a1, a0, b2, b1, b0 satisfying (3.2). From the proof of Theorem 3.2, namely (3.17),

C0 = a0 + a1 + a2

C1 = a1 + 2a2 − b0 − b1 − b2

C2 =
1

2
a1 + 2a2 − b1 − 2b2

C3 =
1

3
a1 +

8

3
a2 − b1 − 4b2

C4 =
1

4
a1 + 4a2 − b1 − 8b2

C5 =
1

5
a1 +

32

5
a2 − b1 − 16b2

...

We require that a2 = 1, see (3.2), and if C0 = C1 = C2 = C3 = C4 = 0 then the method is
of the order p ≥ 4. We can compute the coefficients a1, a0, b2, b1, and b0 as a solution of the

51

NUMERICAL SOLUTION OF ODES

system 
1 1 0 0 0
0 1 −1 −1 −1
0 1/2 0 −1 −2
0 1/3 0 −1 −4
0 1/4 0 −1 −8



a0
a1
b0
b1
b2

 =


−1
−2
−2
−8/3
−4

 . (3.27)

The solution of this system is uniquely determined as

a2 = 1, a1 = 0, a0 = −1, b2 =
1

3
, b1 =

4

3
, b0 =

1

3
,

and additionally we can check that C5 ̸= 0 for these coefficients to show that p = 4 is the
highest order possible. This method is D-stable as the first characteristic polynomial ρ(z) ≡
a2z

2 + a1z+ a0 = z2− 1 has the simple roots {1,−1} on the unit circle. We conclude that the
method

uj+2 = uj+1 + τ

(
1

3
f(tj+2, uj+2) +

4

3
f(tj+1, uj+1) +

1

3
f(tj , uj)

)
(3.28)

defines an implicit (b2 ̸= 0) D-stable two step method of maximal order. From Remark 3.8
we see that the method hits the barrier exactly as the method satisfies p = m + 2 for even
m = 2.

Example 3.4 (Explicit 2-step method with maximal order p = 3). We are derive an explicit two
step method with the highest order. The linear two step method is defined by choosing six
coefficients a2, a1, a0, b2, b1, and b0 satisfying (3.2), i.e. a2 = 1. We want the method to be
explicit, i.e., we require that b2 = 0. We consider the expansion (3.17) subject to the constraint
a2 = 1 and b2 = 0. We propose that the maximal order will be p = 3; i.e., C0 = C1 = C2 =
C3 = 0, and C4 ̸= 0. The unknown coefficients a1, a0, b2, b1 are given as the solution of the
system 

1 1 0 0
0 1 −1 −1
0 1/2 0 −1
0 1/3 0 −1



a0
a1
b0
b1

 =


−1
−2
−2
−8/3

 . (3.29)

The solution of this system is uniquely determined as

a2 = 1, a1 = 4, a0 = −5, b2 = 0, b1 = 4, b0 = 2

This is actually the method (3.22), which was shown to not be D-stable. According to Re-
mark 3.8, any explicit D-stable two-step method is of the order p ≤ 2.

3.3 Construction of multistep methods
The aim is to derive m-step methods (3.4) which approximates the sequence {u(tj)}Nj=0 of
exact solutions of the initial value problem (IVP) on an equidistant partition (3.1) of the
interval [t0, T].

3.3.1 Adams methods

We start by defining the coefficients (3.2) such that

am = 1, am−1 = −1, am−2 = · · · = a0 = 0, (3.30)

52

MULTISTEP METHODS

which satisfies the first condition from Theorem 3.2. Then, for j = 0, . . . , N − m, we have
that

uj+m − uj+m−1 = τ (bmf(tj+m, uj+m) + bm−1f(tj+m−1, uj+m−1) + · · ·+ b0f(tj , uj)) . (3.31)

We then compute the unknown coefficients bm, . . . , b0 in order to obtain the highest order
possible, using the sufficient condition from Theorem 3.2. These yield the so-called Adams
methods. The first characteristic polynomial for these methods is

ρ(z) = zm − zm−1 = (z − 1)zm−1, (3.32)

which means that the method is is D-stable for all values of m.
We give two examples:

Example 3.5 (Adams method: m = 2, implicit). A linear two step method (m = 2), satisfying
(3.31), of the highest order is given by

uj+2 = uj+1 + τ

(
5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
.

In order to derive this method we consider the second condition from Theorem 3.2 with
a2 = 1, a1 = −1, and a0 = 0, cf. (3.30), and attempt to derive a method of order p = 3; hence,
we have that

a1 + 2ℓa2
ℓ

= 0ℓ−1b0 + 1ℓ−1b1 + 2ℓ−1b2, ℓ = 1, . . . , 3.

Hence, we can compute b2, b1, and b0 as the unique solution of the system1 1 1
0 1 2
0 1 4

b0b1
b2

 =

 a1 + 2a2
a1/2 + 2a2
a1/3 + 8a2/3

 .
Hence,

a2 = 1, a1 = −1, a0 = 0, b2 =
5

12
, b1 =

2

3
, b0 = −

1

12
.

We note that (3.16) does not hold for ℓ = 4; hence, the highest order of the method is p = 3.

Example 3.6 (Adams method: m = 2, explicit). An explicit linear two step method (m = 2),
satisfying (3.31), of the highest order is given by

uj+2 = uj+1 + τ

(
3

2
f(tj+1, uj+1)−

1

2
f(tj , uj)

)
.

In order to derive this formula we proceed similarly as in Example 3.5. We first require that
a2 = 1, a1 = −1, and a0 = 0, cf. (3.30), and additional as we are search for an explicit method
we require that b2 = 0. We consider (3.16) for ℓ = 1, 2, and hence can compute the coefficients
b1 and b0 as the unique solution of the system[

1 1
0 1

] [
b0
b1

]
=

[
a1 + 2a2
a1/2 + 2a2

]
.

Hence,

a2 = 1, a1 = −1, a0 = 0, b2 = 0, b1 =
3

2
, b0 = −

1

2

gives a method of order p = 2, as (3.16) does not hold for ℓ = 2.

53

NUMERICAL SOLUTION OF ODES

These methods create two classes of methods for different m:

• explicit Adams methods, called Adams-Bashfort methods, and

• implicit Adams methods, called Adams-Moulton methods.

Example 3.7 (Explicit Adams methods — Adams-Bashfort (m = 1, 2, 3, 4)). Adams-Bashfort
methods, which are explicit Adams methods, for m = 1, 2, 3, 4 are given by the following
formulas, respectively:

uj+1 = uj + τf(tj , uj), (ab1)

uj+2 = uj+1 + τ

(
3

2
f(tj+1, uj+1)−

1

2
f(tj , uj)

)
, (ab2)

uj+3 = uj+2 + τ

(
23

12
f(tj+2, uj+2)−

4

3
f(tj+1, uj+1) +

5

12
f(tj , uj)

)
, (ab3)

uj+4 = uj+3 + τ

(
55

24
f(tj+3, uj+3)−

59

24
f(tj+2, uj+2) +

37

24
f(tj+1, uj+1)−

3

8
f(tj , uj)

)
(ab4)

Them-step Adams-Bashfort method is of the order p = m. Note that ab1 is the Euler method.

Example 3.8 (Implicit Adams methods — Adams-Moulton (m = 1, 2, 3, 4)). Adams-Moulton
methods, which are implicit Adams methods, for m = 1, 2, 3, 4 are given by the following
formulas, respectively:

uj+1 = uj +
1

2
τ (f(tj+1, uj+1) + f(tj , uj)) , (am1)

uj+2 = uj+1 + τ

(
5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
, (am2)

uj+3 = uj+2 + τ

(
3

8
f(tj+3, uj+3) +

19

24
f(tj+2, uj+2) (am3)

− 5

24
f(tj+1, uj+1) +

1

24
f(tj , uj)

)
,

uj+4 = uj+3 + τ

(
251

720
f(tj+4, uj+4) +

646

720
f(tj+3, uj+3)−

264

720
f(tj+2, uj+2) (am4)

+
106

720
f(tj+1, uj+1)−

19

720
f(tj , uj)

)
.

The m-step Adams-Moulton method is of the order p = m+ 1. Note that am1 is the Crank-
Nicholson method.

For the practical implementation of multistep methods, it may be convenient to shift the
stencil; i.e, alter the indexing of {uj}Nj=0 and {tj}Nj=0. For example, the method (ab4)

uj+4 = uj+3 + τ

(
55

24
f(tj+3, uj+3)−

59

24
f(tj+2, uj+2) +

37

24
f(tj+1, uj+1)−

3

8
f(tj , uj)

)
can be formulated as a 4-step recurrence (m = 4)

uj+1 = uj + τ

(
55

24
f(tj , uj)−

59

24
f(tj−1, uj−1) +

37

24
f(tj−2, uj−2)−

3

8
f(tj−3, uj−3)

)
,

54

MULTISTEP METHODS

for j = 3, . . . , N − 1, with the initialisation u0 ≡ x0, u1, u2, u3. Similarly, the method (am2)

uj+2 = uj+1 + τ

(
5

12
f(tj+2, uj+2) +

2

3
f(tj+1, uj+1)−

1

12
f(tj , uj)

)
could be equivalently formulated as a two step recurrence (m = 2)

uj+1 = uj + τ

(
5

12
f(tj+1, uj+1) +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
, (3.33)

for j = 1, . . . , N − 1, with the initialisation u0 ≡ x0, u1.
More formally, the original m-step recurrence (3.4) can be equivalently formulated as the

m-step recurrence

amuj+1 + am−1uj + · · ·+ a0uj−m+1

= τ (bmf(tj+1, uj+1) + bm−1f(tj , uj) + · · ·+ b0f(tj−m+1, uj−m+1)) , (3.34)

for j = m− 1, . . . , N − 1. with the initialisation u0 ≡ x0, u1, . . . , um−1.

Remark 3.9. For example, in Quarteroni et al. (2010), algorithms related to linear multistep
methods are reported in a shifted version, such as (3.34). In general, our presentation follows
Deuflhard and Bornemann (2012) and thus uses (3.4).

Adams methods were originally derived by numerical integration. We consider the ini-
tial value problem (IVP) and by the integral definition of the solution (1.16) we can derive
for the equidistant partition (3.1) the identity

u(tj+1) = u(tj−k) +

∫ tj+1

tj−k

f(s, u(s)) ds, k = 0, 1, 2, (3.35)

We can approximate f(s, u(s)) using Lagrange interpolation of f(·, u(·)) at the nodes ti, i =
j − q, . . . , j + ℓ, q ∈ N0, ℓ ∈ {0, 1}, given by

f(s, u(s)) ≈ Lj−q(s)fj−q + · · ·+ Lj(s)fj + · · ·+ Lj+ℓ(s)fj+ℓ (3.36)

where
fi = f(ti, u(ti)), i = j − q, . . . , j + ℓ,

and

Lj−q+i(s) =

q+ℓ∏
k=0
k ̸=i

s− tj−q+k

tj−q+i − tj−q+k
∈ Pq+ℓ−1, tj−k ≤ s ≤ tj+1, i = 0, . . . , q + ℓ (3.37)

are the Lagrange basis functions. Then, we can define the multistep method as

uj+1 − uj−k =

∫ tj+1

tj−k

f(s, u(s)) ds ≈
q+ℓ∑
i=0

fj−q+i

∫ tj+1

tj−k

Lj−q+i(s) ds. (3.38)

We note that ℓ = 0 defines an explicit method and ℓ = 1 defines an implicit method. Letting
q = 1, k = 0 and ℓ = 1 we get the 3-step recurrence

uj+1 − uj = fj+1

∫ tj+1

tj

Lj+1(s) ds+ fj

∫ tj+1

tj

Lj(s) ds+ fj−1

∫ tj+1

tj

Lj−1(s) ds, (3.39)

55

NUMERICAL SOLUTION OF ODES

By introducing the substitution w = (s−tj−q)/τ into (3.36) we can define

Li(w) =

2∏
k=0
k ̸=i

w − k
i− k ∈ P2, 0 ≤ w ≤ 2, w =

1

τ
(s− tj−q), i = 0, 1, 2; (3.40)

then ∫ tj+1

tj

Lj+1(s) ds = τ

∫ 2

1
L2(w) dw = τ

5

12
,∫ tj+1

tj

Lj(s) ds = τ

∫ 2

1
L1(w) dw = τ

2

3
,∫ tj+1

tj

Lj−1(s) ds = τ

∫ 2

1
L0(w) dw = −τ 1

12
.

These are the coefficients b2 = 5
12 , b1 = 2

3 , b0 = − 1
12 of the method am2 from Example 3.8

with shifted stencil; cf. (3.33).

3.3.2 Predictor/Corrector methods

In Example 3.2 we found that to evaluate the j-th step of the method it is necessary to
solve either a nonlinear problem (3.8) or find a fixed point (3.9). Both procedures only solv-
able the non-linearity approximatively at an extra cost. In this section, we discuss the third
alternative to evaluating the j-th step of the implicit method, called the Predictor/Corrector
technique. We demonstrate this with an example, using the shifted stencil (3.34) versions of
the two-step Adams-Bashfort method (ab2) as a predictor and the two-step Adams-Moulton
method (am2) as the corrector:

ab2 (Predictor): uj+1 = uj + τ

(
3

2
f(tj , uj)−

1

2
f(tj−1, uj−1)

)
,

am2 (Corrector): uj+1 = uj + τ

(
5

12
f(tj+1, uj+1) +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
.

We then consider three different predictor/corrector algorithms:

Algorithm 3.2 (PECE). At the time step tj+1 the following steps are performed:

Predict compute the predictor (ab2):

uPj+1 = uj + τ

(
3

2
f(tj , uj)−

1

2
f(tj−1, uj−1)

)
,

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
P
j+1),

Correct compute the corrector (am2):

uCj+1 = uj + τ

(
5

12
fEj+1 +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
,

56

MULTISTEP METHODS

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
C
j+1).

Then, we can define uj+1 = uCj+1 and f(tj+1, uj+1) = fEj+1 for the next time step.

In the next algorithm we save one evaluation on the right-hand side:

Algorithm 3.3 (PEC). At the time step tj+1 the following steps are performed:

Predict compute the predictor (ab2):

uPj+1 = uj + τ

(
3

2
f(tj , uj)−

1

2
f(tj−1, uj−1)

)
,

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
P
j+1),

Correct compute the corrector (am2):

uCj+1 = uj + τ

(
5

12
fEj+1 +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
,

Then, we can define uj+2 = uCj+1 and f(tj+1, uj+1) = fEj+1 for the next time step.

In the next variant we will iterate the corrector twice:

Algorithm 3.4 (PECECE = P (EC)2E). At the time step tj+1 the following steps are per-
formed:

Predict compute the predictor (ab2):

uPj+1 = uj + τ

(
3

2
f(tj , uj)−

1

2
f(tj−1, uj−1)

)
,

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
P
j+1),

Correct compute the corrector (am2):

uCj+1 = uj + τ

(
5

12
fEj+1 +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
,

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
C
j+1).

Correct compute the corrector (am2):

uCj+1 = uj + τ

(
5

12
fEj+1 +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
,

57

NUMERICAL SOLUTION OF ODES

Evaluate evaluate the right-hand side:

fEj+1 = f(tj+1, u
C
j+1).

Then, we can define uj+1 = uCj+1 and f(tj+1, uj+1) = fEj+1 for the next time step.

These algorithms can be modified in several ways:

• Instead of choosing ab2 (predictor) and am2 (corrector), respectively, we can consider
an arbitrary m-step Adams-Bashfort method (predictor) and m-step Adams-Moulton
method (corrector), respectively.

• The evaluate-correct steps can be repeated multiple times as convenient. Hence, we can
consider algorithms P (EC)kE and P (EC)k, where k ∈ N is a positive integer.

Remark 3.10 (Order of Predictor/Corrector methods). Let us consider an arbitrary m-step
Adams-Bashfort method and m-step Adams-Moulton method with either the P (EC)kE or
P (EC)k Predictor/Corrector algorithm, where k is a positive integer. We will assume thatN
defining the equidistant partition (3.1) is sufficiently large; i.e., the time step τ is sufficiently
small. Then, it holds that the Predictor/Corrector method is of the order p = m+1, see Deu-
flhard and Bornemann (2012, Lemma 7.38). Therefore, the order of the Predictor/Corrector
method is equal to the order of the corrector.

The above statement holds asymptotically for sufficiently small τ . There is no theoretical
guidance on how to choose k. We can also consider Predictor/Corrector methods combining
Adams-Bashfort and Adams-Moulton with different choice of m; e.g.,

ab1 (Predictor): uj+1 = uj + τf(tj , uj),

am2 (Corrector): uj+1 = uj + τ

(
5

12
f(tj+1, uj+1) +

2

3
f(tj , uj)−

1

12
f(tj−1, uj−1)

)
.

3.3.3 BDF methods

In this section, we define the BDF methods. We first start by defining two-step BDF
method:

Example 3.9 (BDF2). We aim to derive a two step method (m = 2) of the highest order sat-
isfying the constraint b0 = b1 = 0. As a2 = 1, then we need to derive the coefficients a0, a1,
and b2. From Theorem 3.2 we can show that for p = 2 the coefficients can be found as the
solution of the linear system 1 1 0

0 1 −1
0 1/2 −2

a0a1
b2

 =

−1−2
−2

 .
Hence, the coefficients of the method are

a2 = 1, a1 = −
4

3
, a0 =

1

3
, b2 =

2

3
, b1 = 0, b0 = 0.

It can be shown that the conditions of Theorem 3.2 are not satisfied for p = 3. This then gives
an implicit method defined by the recurrence relation

uj+2 =
4
3uj+1 − 1

3uj +
2
3τf(tj+2, uj+2) .

58

MULTISTEP METHODS

The first characteristic polynomial of this method is ρ(z) = 1/3−4z/3+z2, which has the roots
1 and 1

3 ; therefore, the method is D-stable.

We can define a class of linear m-step methods of the highest order satisfying the con-
straints

b0 = · · · = bm−1 = 0, (3.41)

which we call the m-step BDF methods.

Example 3.10 (BDF methods (m = 1, . . . , 6)).

uj+1 − uj = τf(tj+1, uj+1), (BDF1)

uj+2 −
4

3
uj+1 +

1

3
uj =

2

3
τf(tj+2, uj+2), (BDF2)

uj+3 −
18

11
uj+2 +

9

11
uj+1 −

2

11
uj =

6

11
τf(tj+3, uj+3), (BDF3)

uj+4 −
48

25
uj+3 +

36

25
uj+2 −

16

25
uj+1 +

3

25
uj =

12

25
τf(tj+4, uj+4), (BDF4)

uj+5 −
300

137
uj+4 +

300

137
uj+3 −

200

137
uj+2 +

75

137
uj+1 −

12

137
uj =

60

137
τf(tj+5, uj+5), (BDF5)

uj+6 −
360

147
uj+5 +

450

137
uj+4 −

400

147
uj+3 +

225

147
uj+2

− 72

147
uj+1 +

10

147
uj =

60

147
τf(tj+6, uj+6), (BDF6)

The m-step BDF methods are of the order p = m, and BDF1 is the Implicit Euler method.
The methods listed here are D-stable; however, m-step BDF methods are not D-stable when
m ≥ 7 (Hairer et al., 2009, Theorem 3.4).

We can derive the formula for BDF2 in an alternative way. We consider the Lagrange
polynomial with nodes tj , tj+1, tj+2, which interpolates the exact solution u(tj), u(tj+1),
u(tj+2). Using the Lagrange basis (3.37), then

u(s) ≈ Lj+2(s)u(tj+2) + Lj+1(s)u(tj+1) + Lj(s)u(tj), s ∈ [t0, T]. (3.42)

In this case, the Lagrange basis (3.37) are quadratic functions and, hence, their derivatives
d
dsLj+i(s) are linear functions. We differentiate the formula (3.42) with respect to s:

d

ds
u(s) = f(s, u(s)) ≈ u(tj+2)

d

ds
Lj+2(s) + u(tj+1)

d

ds
Lj+1(s) + u(tj)

d

ds
Lj(s), (3.43)

for s ∈ [t0, T]. We evaluate (3.43) at the point s = tj+2 = tj + 2τ :

f(tj+2, u(tj+2)) ≈
3

2τ
u(tj+2)−

2

τ
u(tj+1) +

1

2τ
u(tj). (3.44)

Instead of the exact solutions u(tj+i) we consider their approximations uj+i. These approxi-
mations are defined by the recurrence

f(tj+2, uj+2) =
3

2τ
uj+2 −

2

τ
uj+1 +

1

2τ
uj . (3.45)

The formulas (3.45) and (BDF2) are equivalent.

59

NUMERICAL SOLUTION OF ODES

It can be shown that BDF methods from the Example 3.10 can be equivalently defined by
means of Backward Differentiation Formulas; hence, why the methods are called BDF. We elab-
orate on the example of the method BDF2. We have shown that (3.45) and (BDF2) are equiv-
alent; but we can alternatively define the Lagrange interpolation polynomial with nodes
tj , tj+1 and tj+2 via backward differences, using the Newton representation of the Lagrange
interpolation polynomial. Therefore,

u(s) ≈ u(tj+2) +
1

τ
(s− tj+2)∇u(tj+2) +

1

2τ2
(s− tj+2)(s− tj+1)∇2u(tj+2) , (3.46)

where∇ is the operator of the backward difference,

∇u(tj+2) = u(tj+2)− u(tj+1),

and
∇2u(tj+2) = ∇u(tj+2)−∇u(tj+1) = u(tj+2)− 2u(tj+1)− u(tj).

We differentiate the formula (3.46) with respect to s and evaluate it at the point s = tj+2 =
tj + 2τ ; which yields the same recurrence formula (3.45).

3.3.4 Adaptive time-stepping

We have defined the Adams and BDF methods, and presented them as linear multistep
methods of the highest order which satisfy the required constraints. The assumption (3.1) on
the equidistant partition is important to this derivation. However, we provided two alter-
native derivations using Lagrange interpolation polynomials; namely, a numerical integration
definition (3.38) for Adams methods and numerical differentiation (3.43) for BDF methods. In this
respect, the main numerical technique is the construction of Lagrange interpolation polyno-
mial; to this end, the nodal points need not be equidistant.

Adaptive time-stepping from Section 2.3 can also be applied within the framework of
multistep methods. The techniques of adaptive step refinement are based on adaptive interpo-
lation, the main principles can be seen in Deuflhard and Bornemann (2012, Section 7.4 —
Adaptive Control of Order and Step Size). The adaptivity form-step method is substantially
more complicated then the adaptivity for one step methods.

MATLAB contains two functions which implement this adaptivity:

ode113 is based on the PECE implementation, where the predictor and corrector are m-
step Adams-Bashfort and m-step Adams-Moulton methods, respectively, where the
number of steps m can be changed adaptively in the range m = 1, . . . , 13

ode15s is based on the implementation of m-step BDF, where the number of steps m can
be changed adaptively in the range m = 1, . . . , 5

60

https://www.mathworks.com/help/matlab/ref/ode113.html
https://www.mathworks.com/help/matlab/ref/ode15s.html

CHAPTER 4

Dynamical systems

We consider an autonomous ODE, see Definition 1.5, and the corresponding initial value
problem

x′ = f(x), x(0) = x0. (4.1)

Let f ∈ C1(D,Rn), whereD ⊂ Rn is an open set containing x0 and let ϕ be the corresponding
flow of the vector field f , cf. Definition 1.17. The vector function

u(t) = ϕ(t, x0) (4.2)

solves the initial value problem on the maximal solution interval.
We have interpreted the original initial value problem (IVP) and the autonomous initial

value problem (4.1) as a model of evolution in a state space; namely in Rn. The models of
evolution are called in general dynamical systems; see, e.g., Katok and Hasselblatt (1995). We
restrict ourself to the dynamical systems systems which are defined (modelled) by the initial
problems (IVP) and (4.1), respectively.

The following remark may be skipped.

Remark 4.1. The characteristic feature of the flow ϕ is the following property:

ϕ(t1 + t2, x0) = ϕ(t2, ϕ(t1, x0))

for t1 ∈ R and t2 ∈ R. Consider the linear dynamical system x′ = ax, x(0) = x0. For the
corresponding flow it means that ea(t1+t2) x0 = eat1 eat2 x0. We say that the operator ϕ is a
representation of the additive group of the state space.

There is another view: Operator ϕ is the representation of a one-parameter group of
diffeomorphisms where time t is the parameter. Let Ω be open subdomain Ω ⊂ D; then,
we are interested in changes of Ω in time; namely, the mapping Ω 7−→ ϕ(t,Ω) ≡ Ωt, t ≥ 0.
Denote meas(Ω) and meas(Ωt) as the corresponding Lebesgue measures; then, the question
is what is the rate meas(Ω)/meas(Ωt)?

In case of linear dynamical systems the answer was formulated by J. Liouville (1838):
ConsiderA ∈ Rn×n, x′ = Ax. We will learn in the sequel, see (4.11), that ϕ(t, x) = etA x; then,
the rate is given by the formula

meas(Ω)

meas(ϕ(t,Ω))
= det etA = et tr(A),

where tr(A) =
∑n

i=1 aii is the trace of matrix A.

61

NUMERICAL SOLUTION OF ODES

−4 −2 0 2 4
−10

0

10

x1

x
2

γ(1, 1)

γ(−1, 6)

(a) Orbits

−4 −2 0 2 4
−10

0

10

x1

x
2

ω(1, 1)

ω(−1, 6)

(b) Limit sets

Figure 4.1: Van der Pol oscillator — orbits and limit sets for a = 1.1

4.1 Asymptotics of the time evolution
We first introduce several notions from the theory of dynamical systems.

Definition 4.2 (Orbit = Phase curve). Let x0 ∈ D; then, the set

γ(x0) =
⋃

t∈(t−(x0),t+(x0))

ϕ(t, x0)

is called the orbit of the point x0.

Definition 1.12 of the phase curve and Definition 4.2 of the orbit are equivalent.

Definition 4.3 (The positive & negative orbit). Let x0 ∈ D; then, the sets

γ+(x0) =
⋃

t∈[0,t+(x0))

ϕ(t, x0), γ−(x0) =
⋃

t∈(t−(x0),0]

ϕ(t, x0)

are the positive and negative orbit of the point x0, respectively.

Example 4.1 (Van der Pol oscillator). Let us consider the dynamical system

x′1 = x2

x′2 = −x1 + 2ax2 − x21x2,

where a ∈ R is a parameter.

In Figure 4.1 we analyse the Van der Pol oscillator for the parameter a = 1.1. Figure 4.1(a)
displays the orbits γ(1, 1) and γ(−1, 6), with the positive orbits γ+(1, 1) and γ+(−1, 6) dis-
played as a solid line and the negative orbits γ−(1, 1) and γ−(−1, 6) are plotted with dashed
lines. Note that the orbit γ−(1, 1) contains the origin (0, 0), which is the unstable stationary
state (cf. Section 4.2, Definition 4.11).

62

DYNAMICAL SYSTEMS

−4 −2 0 2

0

5

10

x1

x
2

γ+(1, 1)

γ−(1, 1)

(a) Positive and negative orbit

−1 0 1

−1

0

1

x1

x
2

(b) Positive orbit

Figure 4.2: Van der Pol oscillator — orbit for a = −0.1. Note the ω-limit is a single point:
ω(1, 1) = {(0, 0)}

Definition 4.4 (ω-limit set). Let x0 ∈ D; then the set

ω(x0) =
⋂
τ≥0

γ+(ϕ(τ, x0))

is called the ω-limit set of the orbit γ+(x0).

Definition 4.5 (α-limit set). Let x0 ∈ D; then, the set

α(x0) =
⋂
τ≤0

γ−(ϕ(τ, x0))

is called the α-limit set of the orbit γ−(x0).

Figure 4.1(b) displays the ω-limit sets of the points (1, 1) and (−1, 6); i.e., ω(1, 1) and
ω(−1, 6). In this particular case, ω(1, 1) = ω(−1, 6). The set α(1, 1) reduces to just the single
point, α(1, 1) = {(0, 0)} (not shown in Figure 4.1(b)), which is the unstable steady state, cf.
Section 4.2.

Remark 4.6. The object ω(1, 1) is well defined mathematically. In Figure 4.1(b), you can just
see the numerical approximation of ω(1, 1). This particular ω(1, 1) is related to a periodic solu-
tion of the initial value problem (4.1), where we had to guess the period; which can be done
via a trial and error procedure. Nevertheless, there exists numerical methods and specialised
software1 which rigorously approximate periodic solutions and compute the period.

4.2 The steady state
Figure 4.2 shows an example of the ω-limit set consisting of just a single point. This is the
case of the steady state.

1Matcont. https://matcont.sourceforge.io/

63

https://matcont.sourceforge.io/

NUMERICAL SOLUTION OF ODES

Definition 4.7 (The steady state). Let x∗ ∈ D; then, if f(x∗) = 0 ∈ Rn we say that x∗ is the
steady state.

Remark 4.8 (The steady state: synonyms). The steady state = stationary point = equilibrium =
stationary solution.

Remark 4.9. Let x∗ ∈ D and f(x∗) = 0; then, the solution of the initial value problem (4.1) is
constant in time:

u(t) = ϕ(t, x∗) = x∗, t ∈ R.

Definition 4.10 (Stability, Asymptotic stability = A-stability). Let x∗ ∈ D and f(x∗) = 0;
then, we say that the steady state x∗ ∈ D is stable provided that for all ε > 0 there exists a
δ > 0 such that for all x ∈ Bδ(x

∗) := {x ∈ D : ∥x− x∗∥ < δ} it holds that

∥ϕ(t, x)− x∗∥ < ε for all t ≥ 0.

If, additionally, there exists an r > 0 such that for all x ∈ Br(x
∗) := {x ∈ D : ∥x− x∗∥ < r} it

holds that
lim

t→+∞
ϕ(t, x) = x∗,

then x∗ is asymptotically stable or, simply, A-stable.

Definition 4.11 (Instability). Let x∗ ∈ D and f(x∗) = 0. We say that the steady state x∗ is
unstable if it is not stable; i.e., there exists a ε > 0 such that for all δ > 0 it holds that there
exists an x ∈ Bδ(x

∗) := {x ∈ D : ∥x− x∗∥ < δ} and t > 0 such that

∥ϕ(t, x)− x∗∥ ≥ ε.

Example 4.2 (Linear dynamical system). We consider the linear dynamical system

x′1 = x2

x′2 = −x1.

In matrix notation, we can write this as

x′ = Ax, where A =

[
0 1
−1 0

]
.

It can be shown that

ϕ(t, x) = etA x =

[
cos t sin t
− sin t cos t

]
x.

Hence the orbit γ(x) of a point x ∈ R2 is a circle with centre at the origin (0, 0) and radius
∥x∥. Therefore, x∗ = (0, 0) is the steady state, which is not A-stable.

Our aim is to formulate a sufficient condition for the A-stability. To this end we need to
recall the following definitions.

64

DYNAMICAL SYSTEMS

Remark 4.12 (Spectrum of a real matrix). Let A ∈ Rn×n be a real matrix; then, the set

σ(A) = {λ ∈ C : det(λI −A) = 0}

is called the spectrum of the matrix A. The elements of σ(A) are called eigenvalues which, in
general, we denote them by λ; hence λ ∈ σ(A), λ ∈ C. We write λ = λ(A) to emphasize the
fact that λ is an eigenvalue of the particular matrix A. Additionally, complex eigenvalues
appear in couples; i.e., if λ ∈ σ(A) then λ ∈ σ(A).
Definition 4.13. Let A ∈ Rn×n and λ ∈ σ(A); then, ℜ(λ) denotes the real part of the eigen-
value λ.

Theorem 4.14 (Lyapunov, 1892). Let f ∈ C1(D,Rn), x∗ ∈ D, f(x∗) = 0, and

A =

(
∂fi
∂xj

(x∗)

)n

i,j=1

∈ Rn×n

be the Jacobian of f at the point x∗. If

max
λ∈σ(A)

ℜ(λ) < 0, (4.3)

then x∗ is A-stable. If there exists a λ ∈ σ(A), ℜ(λ) > 0, then x∗ is unstable.

Proof. Deuflhard and Bornemann (2012, Theorem 3.30).

In Example 4.1, there is only one steady state x∗ = (0, 0), which is available for any value
of the parameter a. The Jacobian at the point x∗ = (0, 0) is

A =

[
0 1
−1 2a

]
. (4.4)

In order to discuss stability, we look for roots of the quadratic equation λ2− 2aλ+1 = 0. For
a = −0.1, cf. Figure 4.2 the steady state x∗ = (0, 0) is A-stable as σ(A) = {−0.1± i0.995};
whereas, for a = 1.1, cf. Figure 4.1 the steady state x∗ = (0, 0) is unstable as σ(A) =
{1.5583, 0.6417}.

We will not give the proof of Theorem 4.14, but just outline the idea which is based on the
principle of linearised stability. Let the assumptions of Theorem 4.14 be satisfied. We consider
the dynamical system and Taylor expansion of the function f at the steady state x∗:

x′ = f(x) = f(x∗) +A(x− x∗) + g(x− x∗) = A(x− x∗) + g(x− x∗), (4.5)

where A is the Jacobian. Note that f(x∗) = 0. The vector function g : Rn → Rn describes the
higher order terms of the Taylor expansion g(x− x∗) = o(x− x∗).

We consider the linear change of coordinates x = x∗+y; then, the transformed dynamical
system reads as

y′ = f(x∗ + y) = Ay + g(y), (4.6)

where y∗ = 0 ∈ Rn is the steady state and g(y) = o(y).
We now consider the dynamical system which stems from (4.6) neglecting the higher

order terms g(y) = o(y):
z′ = Az, (4.7)

where z∗ = 0 ∈ Rn is obviously the steady state.

65

NUMERICAL SOLUTION OF ODES

−1 0 1

−1

0

1

2

x1

x
2

(a) Van der Pol oscillator

−1 0 1

−1

0

1

2

x1

x
2

(b) Linearised dynamical system

Figure 4.3: Van der Pol oscillator — phase portraits for system and linearised system for
a = −0.1 around A-stable steady state x∗ = (0, 0)

−4 −2 0 2 4
−10

0

10

x1

x
2

(a) Phase portrait

−1 −0.5 0 0.5 1

−2

0

2

x1

x
2

(b) Detail in neighbourhood of steady state

Figure 4.4: Van der Pol oscillator — phase portraits for a = 1.1 around unstable steady state
x∗ = (0, 0)

Remark 4.15 (Linearisation). The transition from the dynamical system (4.5) with the steady
state x∗ to the linear dynamical system (4.7) with the steady state 0 ∈ Rn is called linearisation.

It is intuitive that the solution of the initial value problems (4.1), i.e.

x′ = A(x− x∗) + g(x− x∗), x(0) = x0, (4.8)

and the solution of the linearized initial value problem

z′ = Az, z(0) = z0, (4.9)

are “similar” provided that x0 ≈ x∗ and z0 ≈ 0 ∈ Rn, respectively.
In Figure 4.3 we compare the phase portraits for the van der Pol oscillator from Exam-

ple 4.1 (Figure 4.3(a)) to the linearised dynamical system (4.9) with matrix (4.4) (Figure 4.3(b))

66

DYNAMICAL SYSTEMS

for a = −0.1. Note, that σ(A) = {−0.1± i 0.995}. It is important to realise that the “similar-
ity” of both dynamical systems (4.8) and (4.9) is a local property; namely, we have to restrict
to sufficiently small neighbourhoods of the stationary states x∗ and 0 ∈ Rn. In Figure 4.4 we
consider Example 4.1 for a = 1.1. Figure 4.4(a) displays the phase portrait, and demonstrates
a limit cycle which is part of the ω-limit set; cf. Figure 4.1(a). Figure 4.4(b) displays the detail
of the phase portrait in the neighbourhood of the unstable steady state.

By the end of this section we will have a mathematical formulation of the relationship
between (4.8) and (4.9); cf. Theorem 4.22. We will first develop some preliminary results.
Namely, we give an important formula for solution of the initial value problem (4.9). Let the
state variable be denoted by x ∈ Rn; then, we solve the initial value problem

x′ = Ax, x(0) = x0, (4.10)

where A ∈ Rn×n. We will show that the flow of the vector field

t ∈ R, x0 ∈ Rn 7−→ ϕ(t, x0) ∈ Rn

is defined by the explicit formula

ϕ(t, x0) = etA x0, (4.11)

where etA ∈ Rn×n is a matrix.

Theorem 4.16 (The matrix exponential). Let A ∈ Rn×n, t ∈ R. The matrix exponential is
defined by the power series

etA =
+∞∑
k=0

(tA)k

k!
. (4.12)

The series (4.12) converges uniformly and absolutely on each interval −T ≤ t ≤ T , T > 0 and the
following holds:

1. If AB = BA then et(A+B) = etA etB .

2. Let A ∼ B (matrix similarity), i.e., ∃Z ∈ Rn, detZ ̸= 0 such that ZA = BZ; then

Z etA = etB Z.

3.
d

dt
etA = A etA

Proof. Following the Weierstrass criterion, the number series

+∞∑
k=0

(T∥A∥)k
k!

= eT∥A∥ < +∞

is the majorant of the series (4.12) for−T ≤ t ≤ T . The remaining properties 1-3 follows from
the definition of (4.12).

67

NUMERICAL SOLUTION OF ODES

From Theorem 4.16 it follows that

d

dt

(
etA x0

)
= A etA x0;

hence, x = etA x0 satisfies the initial value problem (4.10), which confirms the result (4.11).

Remark 4.17 (Complex matrix exponential). If A ∈ Cn×n is a complex matrix then we can
extend definition (4.12) naturally to the complex field.

Remark 4.18. The exponential etA ∈ Rn×n can be approximated numerically (Higham, 2008).
However, this is quite costly.

Theorem 4.19. The steady state x∗ = 0 ∈ Rn of the linear dynamical system (4.10) is asymptotically
(A-stable) if and only if

max
λ∈σ(A)

ℜ(λ) < 0. (4.13)

Proof. Deuflhard and Bornemann (2012, Theorem 3.23).

We already knew that the spectral property (4.13) is a sufficient condition for A-stability,
cf. Theorem 4.14. Example 4.2 provides a counterexample that (4.13) is also the necessary
condition for A-stability. Nevertheless, the above quoted proof uses tools of linear algebra,
namely the transformation of A ∈ Rn×n to Jordan canonical form.

Corollary 4.20. Let the spectral property (4.13) be satisfied; then for all x ∈ Rn

etAx −→ 0 ∈ Rn. (4.14)

Compare Definition 4.10 of a asymptotically stable steady state with the property (4.14).
Referring to Definition 4.10, the second property should hold for a chosen positive r; note,
that the linearity of the dynamical system (4.10) implies that this property holds for any
chosen positive r.

Definition 4.21. Consider a mapping h : U ⊂ Rn → V ⊂ Rn where U and V are open
subsets. The mapping is called a homeomorphism if

a) h is bijection and

b) there exists the continuous inverse h−1 : V ⊂ Rn → U ⊂ Rn.

In other words, the image V is a continuous deformation of the preimage U . We now
consider the linearisation again, see Remark 4.15; namely, we consider the relationship of
both the original dynamical system (4.8) and the linearized problem(4.9).

Theorem 4.22 (Hartman-Grobman). There exists a homeomorphism h : U ⊂ Rn → V ⊂ Rn with
the properties

• U and V are open sets containing 0 = z∗ and x∗, respectively,

• h(0) = x∗, h−1(x∗) = z∗ = 0,

• ∀z ∈ U
ϕ(t, h(z)) = h(etA z), 0 ≤ t < +∞,

68

DYNAMICAL SYSTEMS

• ∀x ∈ V
h−1(ϕ(t, x)) = etA h−1(x), 0 ≤ t < +∞.

Proof. Katok and Hasselblatt (1995, Theorem 6.3.1)

The above homeomorphism maps

• the positive orbit of point z ∈ U on the positive orbit of point h(z) ∈ V ,

• the positive orbit of point x ∈ V on the positive orbit of point h−1(x) ∈ U .

Let us comment on Figure 4.3 in view of Theorem 4.22. There exists a homeomorphism
h, i.e. a continuous deformation of coordinates, that transforms the picture Figure 4.3(a) to
the picture Figure 4.3(b) and vice versa.

4.3 Discrete-time dynamical systems
Let us consider the Runge-Kutta methods (RK), see Definition 2.28, where

t ∈ J, x ∈ D, τ ≥ 0 7−→ ψ(t+ τ, t, x) ∈ Rn

is the discrete flow of the vector field. As we are investigating the autonomous ODE we
consider the discrete flow of the vector field independent of t; i.e.,

x ∈ D, τ ≥ 0 7−→ ψ(τ, x) ∈ Rn (4.15)

Specifically, we consider the Runge method as an example. We set κ1 = f(x), κ2 =
f(x+ τ

2κ1), and define

ψ(τ, x) ≡ x+ τκ2 = x+ τf(x+
τ

2
f(x)). (4.16)

From the initial condition x ∈ Rn at time 0 ∈ R we move to the new state ψ(τ, x) ∈ Rn at
time τ ∈ R. Hence,

0 7−→ τ, x 7−→ ψ(x). (4.17)

The aim is to model the development of the state variable in discrete time snapshots. We
consider the recurrence

x 7−→ ψ(τ, x) 7−→ ψ2(τ, x) 7−→ · · · 7−→ ψj(τ, x) 7−→ . . . , (4.18)

where ψj(τ, x) is defined recursively via superposition of a mapping:

ψj(τ, x) = ψ(τ, ψj−1(τ, x)), j ∈ N. (4.19)

The development of the initial condition (0 ∈ R, x ∈ Rn) is defined by the iterations

j ∈ N0 7−→ tj = τj, uj = ψj(τ, x). (4.20)

This defines the sequence of discrete times and states

{tj}+∞
j=0 , {uj}+∞

j=0 . (4.21)

69

NUMERICAL SOLUTION OF ODES

Let us recall the convergence analysis from Theorem 2.23 for the one-step methods and
Theorem 3.7 for the multistep methods. We considered a finite interval [t0, T] and assumed
that T < t+(t0, x0). For an equidistant partition it implied that the approximating sequences
{tj}Nj=0, {uj}Nj=0 have the finite length N = (T−t0)/τ .

We aim, for a given step size τ , to investigate the sequences (4.21) up to the “very end”,
which is ω-limit point ω(x). More precisely, we compute a numerical approximation of this
limit point.

Let us consider the most simple ω-limit point, which is the steady state. We show that
the steady state is related to the fixed point of the numerical method.

Proposition 4.23. Let x∗ ∈ D, τ > 0. If f(x∗) = 0 then

x∗ = ψ(τ, x∗); (4.22)

hence, x∗ is a fixed point of the mapping x 7−→ ψ(τ, x).

Proof. We consider only the method (4.16), i.e. the iterations

x 7−→ ψ(τ, x) ≡ x+ τf(x+
τ

2
f(x)).

If f(x∗) = 0 then τf(x∗ + τ
2f(x

∗)) = 0 and hence

x∗ = x∗ + τf(x∗ +
τ

2
f(x∗)).

The proof can be generalized to all Runge-Kutta methods (RK), see (2.64) and also to linear
m-step methods.

Let x∗ ∈ D be an A-stable steady state, see Definition 4.10. If the initial condition x ∈ D
is sufficiently close to x∗ then ϕ(t, x) → x∗. If we consider the orbit γ+(x) of the point x we
conclude that ω(x) = x∗. Each numerical method for solving the initial value problem (4.1)
generates a sequence of iterations x 7−→ ψ(τ, x), see (4.20) and (4.21). The sequence (4.21)
is a discrete approximation of the orbit γ+(x). According to Proposition 4.23, the above
mentioned x∗ is the fixed point x∗ = ψ(τ, x∗) of the mapping x 7−→ ψ(τ, x). Performance of
the appropriate numerical method depends on the step size τ .

We now define the stability and instability of a fixed point x∗ = ψ(τ, x∗). Compare
the following Definition 4.24 and Definition 4.25 with Definition 4.10 and Definition 4.11,
respectively.

Definition 4.24 (A-stability of a fixed point). Let x∗ = ψ(τ, x∗) ∈ D be a fixed point of
the mapping x ∈ D 7−→ ψ(τ, x) ∈ Rn for a given τ > 0. We say that the fixed point
x∗ = ψ(τ, x∗) is stable provided that for all ε > 0 there exists a δ > 0 such that for all
x ∈ Bδ(x

∗) := {x ∈ D : ∥x− x∗∥ < δ} it holds that

∥ψj(τ, x)− x∗∥ < ε for all j ∈ N0.

If, additionally, there exists an r > 0 such that for all x ∈ Br(x
∗) := {x ∈ D : ∥x− x∗∥ < r} it

holds that
ψj(τ, x)→ x∗, for j → +∞,

then x∗ is an A-stable fixed point.

70

DYNAMICAL SYSTEMS

−1 0 1

−1

0

1

2

x1

x
2

(a) τ = 0.05

−1 0 1

−1

0

1

2

x1

x
2

(b) τ = 0.4

Figure 4.5: Van der Pol oscillator, a = −0.1 — positive orbit for (1, 1) compared to numerical
approximation using Euler

−1 0 1

−1

0

1

2

x1

x
2

(a) τ = 0.05

−1 0 1

−1

0

1

2

x1

x
2

(b) τ = 0.4

Figure 4.6: Van der Pol oscillator, a = −0.1 — positive orbit for (0.5, 0) compared to numeri-
cal approximation using Euler

Definition 4.25 (Instability). Let x∗ = ψ(τ, x∗) ∈ D be a fixed point of the mapping x ∈
D 7−→ ψ(τ, x) ∈ Rn for a given τ > 0. We say that the fixed point x∗ = ψ(τ, x∗) is unstable
if it is not stable; i.e., there exists a ε > 0 such that for all δ > 0 it holds that there exists an
x ∈ Bδ(x

∗) := {x ∈ D : ∥x− x∗∥ < δ} and j > 0 such that

∥ϕj(τ, x)− x∗∥ ≥ ε.

We illustrate the above notions in Figure 4.5 and Figure 4.6 where we consider the dy-
namical system from Example 4.1 with a = −0.1 which has a A-stable steady state x∗ = 0 ∈
R2. We consider two orbits, γ+(1, 1) and γ+(0.5, 0) along with their numerical approximation
by the Euler method; i.e., by the iterations x 7−→ ψ(τ, x) ≡ x + τf(x). The approximation
depends on step size τ . If τ is comparatively small namely τ = 0.05 then the fixed point

71

NUMERICAL SOLUTION OF ODES

−1 0 1

−1

0

1

2

x1

x
2

(a) Implicit Euler

−1 0 1

−1

0

1

2

x1

x
2

(b) Crank-Nicholson

Figure 4.7: Van der Pol oscillator, a = −0.1 — positive orbit for (1, 1) compared to numerical
approximation using implicit one-step methods

x∗ = ψ(τ, x∗) is classified as an A-stable fixed point of the iterations x 7−→ ψ(τ, x) according to
Definition 4.24; cf., the numerical solution in Figure 4.5(a) and Figure 4.6(a). For τ compara-
tively large, namely τ = 0.4, then the fixed point x∗ = ψ(τ, x∗) of the iterations x 7−→ ψ(τ, x)
is classified as an unstable fixed point according to Definition 4.25; cf., the numerical solution
in Figure 4.5(b) and Figure 4.6(b). These iterations are actually attracted to the so called limit
cycle. This invariant object disappears if the step size is sufficiently small (e.g., τ = 0.05).
This analysis is due to experimental observations. The instability of a fixed point is often
manifested by chaotic behaviour of the iterations.

For the above we stated that τ = 0.4 is comparatively large. If we use an implicit method,
as in Figure 4.7, then the step size τ = 0.4 is adequate to declare that the corresponding fixed
point is actually an A-stable fixed point.

Remark 4.26. The A-stability and the instability of a fixed point is a qualitative property. Fig-
ure 4.7 is instructive — we are not primarily interested in the orbit of the point (1,1) and its
numerical approximation (i.e., the relationship between the blue and the black lines) in de-
tail. Instead we interested in the asymptotic tendency and the affinity. On the other hand, from
Theorem 2.23 and Theorem 3.7 we know that if we restrict ourself to an interval 0 ≤ t ≤ T
of a finite length T we can estimate the error of the exact and the numerical solution with
respect to the step size τ > 0.

72

CHAPTER 5

Domain of stability & stiff systems

We consider the the initial value problem (4.1) for an autonomous ODE. Let x∗ ∈ D be a
steady state; i.e., f(x∗) = 0. Let us denote by

A =

(
∂fi
∂xj

(x∗)

)n

i,j=1

∈ Rn×n (5.1)

the Jacobian at the point x∗. Let us assume that

max
λ∈σ(A)

ℜ(λ) < 0. (5.2)

As a consequence of Theorem 4.14, the steady state x∗ is A-stable.
We consider the approximation of the initial value problem (4.1) via a chosen discrete

dynamical system x 7−→ ψ(τ, x). Due to Proposition 4.23, the steady state x∗ is a fixed point
of the iterations x∗ = ψ(τ, x∗). Is this fixed point A-stable? By Definition 4.24 we know the
mapping, and hence stability, depends on step size τ . The question is whether there exists
any recommendations for the choice of τ > 0?

In order to simplify the analysis we consider the linearisation, see Remark 4.15. Namely,
we consider initial value problem

x′ = Ax, x(0) = x0, (5.3)

where A is the Jacobian (5.1). We stress that the assumption (5.2) is assumed to hold, and
hence, the origin 0 ∈ Rn is an A-stable steady state.

Due to Corollary 4.20 it holds that for all x(0) = x0 ∈ Rn

etAx0 −→ 0 ∈ Rn for t→ +∞. (5.4)

We will consider a numerical solution of the initial value problem (4.1). Following Propo-
sition 4.23, each numerical solution can be interpreted as a discrete dynamical system; i.e.,
the iterations x 7−→ ψ(τ, x). The steady state 0 ∈ Rn is interpreted as the fixed point
0 = ψ(τ, 0) of the iterations x 7−→ ψ(τ, x). We will check whether for all x(0) = x0 ∈ Rn

it holds that
ψj(τ, x0) −→ 0 ∈ Rn for j → +∞. (5.5)

In other words, whether 0 = ψ(τ, 0) is an A-stable fixed point of the iterations x 7−→ ψ(τ, x).
In general it will be true if the step size τ > 0 will be sufficiently small. We will analyse how
large the step size τ should be in order to preserve the A-stability of the fixed point.

73

NUMERICAL SOLUTION OF ODES

This is essentially the meaning of the notion of the domain of stability. In Section 5.1
and Section 5.2 we will define the domains of stability for the Runge-Kutta (RK) and linear
multistep methods, respectively.

In Section 5.3 we will talk about so called stiff problems. The definition is rather vague, but
is related to a class of ODE’s. Adequate solvers for stiff problems require either extremely
small step size τ or the application of implicit methods.

5.1 Domain of stability: one-step method
We consider five one-step methods

0 0

1

0 0 0

1/2 1/2 0

0 1

0 0 0

1 1 0

1/2 1/2

1 1

1

0 0 0

1 1/2 1/2

1/2 1/2

Euler Runge Heun Impl. Euler Crank-Nicholson

We will solve the linear dynamical system (5.3) where A ∈ Rn×n. We define one step of the
above methods:

Example 5.1 (Euler for linearised ODE). We evaluate the relevant Butcher tableau, see Defi-
nition 2.28. We exploit the fact that the right-hand side f does not depend on time; hence,
κ1 = f(x) = Ax. Then ψ(τ, x) = x+ τAx = (I + τA)x; therefore,

x 7−→ ψ(τ, x) ≡ (I + τA)x (5.6)

is the formula for one iteration of the Euler method.

Example 5.2 (Runge for linearised ODE). κ1 = f(x) = Ax, κ2 = f(x + τ
2κ1) = A(x + τ

2Ax),
and ψ(τ, x) = x+ τ(Ax+ τ

2A
2x) = (I + τA+ τ2

2 A
2)x; therefore,

x 7−→ ψ(τ, x) ≡
(
I + τA+

τ2

2
A2

)
x. (5.7)

Example 5.3 (Heun for linearised ODE). κ1 = f(x) = Ax, κ2 = f(x+ τκ1) = A(x+ τAx), and
ψ(τ, x) = x+ τ

2Ax+ τ
2 (A(x+ τAx)) = (I + τA+ τ2

2 A
2)x. Therefore,

x 7−→ ψ(τ, x) ≡
(
I + τA+

τ2

2
A2

)
x. (5.8)

In fact, the formulae (5.7) and (5.8) are the same as the linearisation of an autonomous
ODE for both methods are identical.

Let us recall the exponential of a matrix, see (4.11),

etAx =

(
I + τA+

τ2

2
A2 + ...+

τ j

j!
Aj + ...

)
x.

The formulae formulae (5.7) and (5.8) correspond to the second order approximation of the
above exponential. By analogy,

74

DOMAIN OF STABILITY & STIFF SYSTEMS

Example 5.4 (Classical Runge-Kutta for linearised ODE).

x 7−→ ψ(τ, x) ≡
(
I + τA+

τ2

2
A2 +

τ3

6
A3 +

τ4

24
A4

)
x. (5.9)

Linearisation of the classical RK and the 3/8-rule, see Example 2.8, are the same.
Next we consider the implicit methods:

Example 5.5 (Implicit Euler for linearised ODE). We evaluate the relevant Butcher tableaux:

κ1 = f(x+ τκ1) = A(x+ τκ1) =⇒ (I − τA)κ1 = Ax =⇒ κ1 = (I − τA)−1Ax.

Then,

ψ(τ, x) = x+ τ(I − τA)−1Ax = (I − τA)−1 ((I − τA)x+ τAx) = (I − τA)−1x;

therefore,
x 7−→ ψ(τ, x) ≡ (I − τA)−1x. (5.10)

Example 5.6 (Crank-Nicholson for linearised ODE). Evaluating the relevant Butcher tableaux
yields κ1 = f(x) = Ax and

κ2 = f

(
x+ τ

(
1

2
κ1 +

1

2
κ2

))
= A

(
x+

τ

2
Ax+

τ

2
κ2

)
=⇒ κ2 =

(
I − τ

2
A
)−1 (

I +
τ

2
A
)
Ax.

Then
ψ(τ, x) = x+

τ

2
Ax+

τ

2

(
I − τ

2
A
)−1 (

I +
τ

2
A
)
Ax.

Taking (I − τ
2A)

−1 as a factor, we derive the iteration formula

x 7−→ ψ(τ, x) ≡
(
I − τA

2

)−1(
I +

τA

2

)
x. (5.11)

The matrix A ∈ Rn×n of our dynamical system is real; nevertheless, it may have com-
plex eigenvalues. Next, we will define a simple dynamical system which will depend on a
complex parameter λ ∈ C; later, the parameter λwill play the role of an eigenvalue λ ∈ σ(A).

For a given λ ∈ C, we consider the initial value problem

z′ = λz, z(0) = z0 ∈ C (5.12)

in the complex plane. The corresponding flow is defined by the complex exponential

z(t) = etλ z0 for t ∈ R. (5.13)

Assume that
ℜ(λ) < 0; (5.14)

then, for all z(0) = z0 ∈ C

etλz0 −→ 0 ∈ C for t→ +∞. (5.15)

In other words, 0 ∈ C is an A-stable steady state of the dynamical system (5.12).
We will consider a numerical solution of the initial value problem (5.12), which are iter-

ations z 7−→ ψ(τ, z) of a chosen one-step method. For example,

75

NUMERICAL SOLUTION OF ODES

• the Euler method, see (5.6), corresponds to the iterations

z ∈ C 7−→ ψ(τ, z) ≡ (1 + τλ)z ∈ C, (5.16)

• the Runge method, see (5.8), is defined by the iterations

z ∈ C 7−→ ψ(τ, z) ≡
(
1 + τλ+

τ2

2
λ2
)
z ∈ C, (5.17)

• the Implicit Euler method, see (5.10), is defined by the iterations

z ∈ C 7−→ ψ(τ, z) ≡ (1− τλ)−1z ∈ C, (5.18)

• and the Crank-Nicholson method, see (5.11), is defined by the iterations

z ∈ C 7−→ ψ(τ, z) ≡
(
1− τ

2
λ
)−1 (

1 +
τ

2
λ
)
z ∈ C. (5.19)

The steady state 0 ∈ C is interpreted as the fixed point 0 = ψ(τ, 0) of the iterations z 7−→
ψ(τ, z) according to Proposition 4.23; hence, we will check whether for all z(0) = z0 ∈ C

ψj(τ, z0) −→ 0 ∈ C for j → +∞. (5.20)

For example, in case of the Runge method, for all z(0) = z0 ∈ C(
1 + τλ+

τ2

2
λ2
)j

z0 −→ 0 ∈ C for j → +∞,

and in case of Crank-Nicholson, for all z(0) = z0 ∈ C(
1 + τ

2λ

1− τ
2λ

)j

z0 −→ 0 ∈ C for j → +∞,

In other words, we will check whether 0 = ψ(τ, 0) is an A-stable fixed point of the iterations
z 7−→ ψ(τ, z).

We are now approaching the key notion of this section, namely the domain of stability,
which pertains to each particular numerical method. Let us consider the Euler method, i.e.,
the iterations (5.6).

Definition 5.1 (Domain of stability for the Euler method). We define the set

S = {µ ∈ C : |1 + µ| < 1} . (5.21)

The set is called domain of stability for the Euler method.

Consider the iterations (5.16) of the Euler method. Then, we require τ > 0 to be chosen
such that for all z(0) = z0 ∈ C

(1 + τλ)j z0 −→ 0 ∈ C for j → +∞; (5.22)

i.e., we require A-stability of the fixed point. This will be satisfied provided that |1+ τλ| < 1;
i.e., provided that τλ ∈ S. The domain S can be explicitly constructed as it is the interior of
the circle centred at point −1 ∈ C with radius r = 1, see Figure 5.1.

76

DOMAIN OF STABILITY & STIFF SYSTEMS

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

Re

Im

Euler
λi

τλi, τ = 0.2

Figure 5.1: Domain of stability for Euler (interior of circle at −1 ∈ C with radius r = 1)
compared to spectrum σ(A) = {λ1, λ2, λ3}, where λ1 = −2.75, λ2 = −1 + 2i, λ3 = −1 − 2i,
and spectral transformation λi 7→ τλi, for τ = 0.2

Example 5.7 (Choice of τ > 0 for Euler). We consider a matrix A ∈ R3×3 with spectrum
σ(A) = {λ1, λ2, λ3}, where λ1 = −2.75, λ2 = −1 + i2, and λ3 = −1 − i2. The objective
is to choose τ > 0 such that τλi ∈ S for i = {1, 2, 3}. For example, the choice of τ =
0.2 satisfies this requirement. Figure 5.1 illustrates the spectrum σ(A) and the transformed
spectral points τλi. In summary, if τ = 0.2 then (5.22) holds for λ := λi, i = {1, 2, 3}. The
Euler method defines iterations (5.6), x ∈ R3 7−→ ψ(τ, x) ≡ (I + τA)x ∈ R3. Matrix A can be
transformed to the Jordan canonical form as the matrix A is diagonalisable; hence, there exists
a Q ∈ C3×3 such that

AQ = QD,

where D a diagonal matrix with the diagonal entries λ1, λ2 and λ3. Then, for all x0 ∈ R3

(I + τA)j x0 −→ 0 ∈ R3 for j → +∞;

i.e., 0 = ψ(τ, 0) is an A-stable fixed point of the iteration x 7−→ ψ(τ, x).

Definition 5.2 (Domain of stability for the Runge method). We define the set

S =

{
µ ∈ C :

∣∣∣∣1 + µ+
µ2

2

∣∣∣∣ < 1

}
. (5.23)

The set is called the domain of stability for the Runge method.

77

NUMERICAL SOLUTION OF ODES

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

Re

Im

Euler
Runge

(a) Runge

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

Re

Im

Euler
Classical RK

(b) Classical Runge-Kutta

Figure 5.2: Domains of stability for Runge and Classical Runge-Kutta compared to Euler

Consider the iterations (5.17) of the Runge method. We require τ > 0 to be chosen such
that for all z(0) = z0 ∈ C(

1 + τλ+
τ2λ2

2

)j

z0 −→ 0 ∈ C for j → +∞; (5.24)

i.e., we require A-stability of the fixed point. This will be satisfied provided that∣∣∣∣1 + τλ+
τ2λ2

2

∣∣∣∣ < 1;

i.e., provided that τλ ∈ S. Domain S can be explicitly constructed as an ellipse, or ap-
proximated numerically by incremental techniques using the Newton method. Figure 5.2(a)
displays the domain of stability for the Runge method as the interior of the blue ellipse com-
pared with the domain of stability for the Euler method (the interior of the red circle).

Definition 5.3 (Domain of stability for the classical RK method). We define the set

S =

{
µ ∈ C :

∣∣∣∣1 + µ+
µ2

2
+
µ3

6
+
µ4

24

∣∣∣∣ < 1

}
(5.25)

The set is called the domain of stability for the classical RK method.

Consider the iterations (5.9) of the classical RK method. We require that τ > 0 to be
chosen such that for all z(0) = z0 ∈ C(

1 + τλ+
τ2λ2

2
+
τ3λ3

6
+
τ4λ4

24

)j

z0 −→ 0 ∈ C for j → +∞; (5.26)

78

DOMAIN OF STABILITY & STIFF SYSTEMS

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Re

Im

Classical RK
λi

τλi, τ = 0.4

Figure 5.3: Domain of stability for Classical Runge-Kutta compared to spectrum σ(A) =
{λi}7i=1, and spectral transformation λi 7→ τλi, for τ = 0.4, for Example 5.8

i.e., we require A-stability of the fixed point. This will be satisfied provided that∣∣∣∣1 + τλ+
τ2λ2

2
+
τ3λ3

6
+
τ4λ4

24

∣∣∣∣ < 1;

i.e., provided that τλ ∈ S. Figure 5.2(b) displays the domain of stability for the classical
Runge-Kutta method as the interior of the green curve compared with the domain of stability
for the Euler method (the interior of the red circle).

Example 5.8 (Choice of τ > 0 for classical Runge-Kutta). We consider a matrix A ∈ R7×7

with spectrum σ(A) = {λi}7i=1, where λ1 = −8/3 + 16i/3, λ2 = −8/3 − 16i/3, λ3 = −2/3 + 4i,
λ4 = −2/3 − 4i, λ5 = −11/3, λ6 = −5/3, and λ7 = −4/3. The objective is to choose τ > 0 such
that τλi ∈ S for i = 1, . . . , 7. For example, the choice of τ = 0.4 satisfies this requirement.
Figure 5.3 illustrates the spectrum σ(A) and the transformed spectral points τλi compared
to the domain of stability. Then, for all x0 ∈ R7

ψj(τ, x0) −→ 0 ∈ R7 for j → +∞;

i.e., 0 = ψ(τ, 0) is an A-stable fixed point of the iterations

x 7−→ ψ(τ, x) ≡
(
I + τA+

τ2

2
A2 +

τ3

6
A3 +

τ4

24
A4

)
x.

We can simply follow the arguments applied in Example 5.7.

Next we define the domains of stability for two implicit methods.

79

NUMERICAL SOLUTION OF ODES

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Re

Im

Implicit Euler
Crank-Nicholson

Figure 5.4: Domain of stability for Implicit Euler (exterior of circle at 1 ∈ C with radius
r = 1) and Crank-Nicholson ({µ ∈ C : ℜ(µ) < 0}) compared to spectrum σ(A) = {λi}7i=1 for
Example 5.9

Definition 5.4 (Domain of stability for the implicit Euler method). We define the set

S =

{
µ ∈ C :

1

|1− µ| < 1

}
. (5.27)

The set is called the domain of stability for the implicit Euler method.

Consider the iterations (5.18) of the implicit Euler method. We require τ > 0 to be chosen
such that for all z(0) = z0 ∈ C(

1

1− τλ

)j

z0 −→ 0 ∈ C for j → +∞; (5.28)

i.e., we require A-stability of the fixed point. This will be satisfied provided that |1− τλ|−1 <
1; i.e., provided that τλ ∈ S. The domain of stability S is the exterior of the circle centred at
the point 1 ∈ C with radius r = 1, see Figure 5.4. In summary, the condition (5.28) is satisfied
for all τ > 0.

Definition 5.5 (Domain of stability for the Crank-Nicholson method). We define the set

S =

{
µ ∈ C :

|1 + µ
2 |

|1− µ
2 |
< 1

}
. (5.29)

The set is called the domain of stability for the Crank-Nicholson method.

80

DOMAIN OF STABILITY & STIFF SYSTEMS

Consider the iterations (5.19) of the Crank-Nicholson method. We require τ > 0 to be
chosen such that for all z(0) = z0 ∈ C(

1 + τλ
2

1− τλ
2

)j

z0 −→ 0 ∈ C for j → +∞; (5.30)

i.e., we require A-stability of the fixed point. This will be satisfied provided that 1 + τλ
2 | <

|1 − τλ
2 |; i.e., provided that τλ ∈ S. The domain of stability S is the left half of the complex

plane; i.e, S = {µ ∈ C : ℜ(µ) < 0}, see Figure 5.4. In summary, the condition (5.28) is satisfied
for all τ > 0.

Example 5.9 (Choice of τ > 0 for implicit one-step). We consider a matrix A ∈ R7×7 with the
spectrum σ(A) = {λi}7i=1, as in Example 5.8. Let us analyse the implicit Euler method and
the Crank-Nicholson — the domains of stability of both methods are shown in (5.28) along
with the spectrum σ(A). Notice that τλi ∈ S, i = 1, . . . , 7, for all τ > 0. In other words, the
domain S is invariant with respect to the homotetic transformation for all τ > 0. Hence, for
all τ > 0, the fixed point 0 = ψ(τ, 0) is an A-stable fixed point of both the iterations (5.10)

x 7−→ ψ(τ, x) ≡ (I − τA)−1x,

and the iterations (5.11)

x 7−→ ψ(τ, x) ≡
(
I − τA

2

)−1(
I +

τA

2

)
x.

We can now define the general definition of the domain of stability for the class of Runge-
Kutta (RK) methods. We consider the Butcher tableau of the chosen RK method, see Defi-
nition 2.28. We solve the initial value the problem (5.3); i.e., the linearised problem with
matrix A ∈ Rn×n, by means of the chosen RK method. Consequently, we solve (5.12), where
λ ∈ σ(A).

It can be shown that one iteration of the chosen method has the form

z ∈ C 7−→ ψ(τ, z) ≡ R(τλ)z ∈ C, (5.31)

see Deuflhard and Bornemann (2012, Lemma 6.30). We set µ ≡ τλ and define the function
µ ∈ C 7−→ R(µ) ∈ C, where

1. R(µ) is a polynomial, with R(0) = 1, in case of an explicit method, and

2. R(µ) = P (µ)/Q(µ) is a rational function, with P (0) = Q(0) = 1, in case of an implicit
method.

Compare (5.31) with the methods we came across so far:

• the classical Runge-Kutta method,

R(µ) = 1 + µ+
µ2

2
+
µ3

6
+
µ4

24

• the implicit Euler method,

R(µ) =
1

1− µ

81

NUMERICAL SOLUTION OF ODES

• the Crank-Nicholson method,

R(µ) =
1 + µ

2

1− µ
2

.

Definition 5.6 (Domain of stability for RK method). We define the set

S = {µ ∈ C : |R(µ)| < 1} . (5.32)

The set is called the domain of stability for RK method.

Consider the iterations (5.31) of the RK method. We require τ to be chosen such that for
all z(0) = z0 ∈ C

(R(τλ))j z0 −→ 0 ∈ C for j → +∞; (5.33)

i.e., we require A-stability of the fixed point. This will be satisfied provided |R(τλ)| < 1; i.e.,
provided that τλ ∈ S.

Definition 5.7 (A-stable RK method). Let us consider a RK method and let S be its domain
of stability. Then, we say that the RK method is A-stable if the domain of stability contains
the left half-plane of the complex plane; i.e.,

{µ ∈ C : ℜ(µ) < 0} ⊂ S. (5.34)

Hence, the condition (5.33); namely, the A-stability of the fixed point 0 = ψ(τ, 0), is
satisfied regardless of the step size τ > 0 for a A-stable RK method.

Consequently, the implicit Euler method and the Crank-Nicholson method are A-stable
methods. It can be shown that the implicit RK methods from Section 2.4.2 which are based on
Gauss quadrature and Radau quadrature are A-stable methods, see Deuflhard and Bornemann
(2012, Lemma 6.50 & Theorem 6.51).

It can also be shown that there is no explicit A-stable method, see Deuflhard and Borne-
mann (2012, Lemma 6.11). The domain of stability for an explicit RK method is a bounded
set.

Theorem 5.8. Consider the linear dynamical system (5.3) and let the spectral condition (5.2) be sat-
isfied. We consider a particular RK method x ∈ Rn 7−→ ψ(τ, x) ∈ Rn and let S be the corresponding
domain of stability. Assume that τ > 0 is chosen such that

λ ∈ σ(A) =⇒ τλ ∈ S;

then, for all x(0) = x0 ∈ Rn

ψj(τ, x) −→ 0 ∈ Rn for j → +∞; (5.35)

i.e., 0 ∈ Rn is an A-stable fixed point of the iteration x ∈ Rn 7−→ ψ(τ, x) ∈ Rn.

We skip the proof, noting that Examples 5.7, 5.8, and 5.9 illustrate the statement of Theo-
rem 5.8.

82

DOMAIN OF STABILITY & STIFF SYSTEMS

Theorem 5.9. Consider the initial value problem (4.1) for an autonomous ODE. Let x∗ ∈ D,
f(x∗) = 0 be the steady state and let the spectral condition (5.2) be satisfied. We consider a par-
ticular RK method x ∈ Rn 7−→ ψ(τ, x) ∈ Rn, define the domain of stability S by means of the
linearisation (5.3) around the steady state x∗, and assume that τ > 0 is chosen such that

λ ∈ σ(A) =⇒ τλ ∈ S;

then, x∗ ∈ Rn is an A-stable fixed point of the iterations x ∈ Rn 7−→ ψ(τ, x) ∈ Rn.

We skip the proof here.

Remark 5.10. We note that the constraint on the step size τ > 0 formulated above is under-
stood locally; e.g., for points x from a sufficiently small neighbourhood of the steady state
x∗, see Definition 4.24.

5.2 Domain of stability: multistep method
We consider the linear dynamical system (5.3) with matrix A ∈ Rn×n. Let the spectral prop-
erty (4.3) be satisfied. Hence, the origin 0 ∈ Rn is an A-stable steady state. In order to
solve the initial value problem (5.3), we use an m-step method, namely Algorithm 3.1, (3.2)–
(3.4). We will analyse asymptotic properties of the numerical solution; i.e., we will generate
{tj}+∞

j=0 and {uj}+∞
j=0 .

In Section 3.3 we have shown that the m-step recurrence (3.4) can be formulated as the
equation (3.11)

m∑
i=0

aiuj+i − τ
m∑
i=0

bif(tj+i, uj+i) = 0 ∈ Rn, j ∈ N0.

Due to linearity, f(tj+i, uj+i) = Auj+i; therefore, Algorithm 3.1 represents the m-step recur-
rence

m∑
i=0

(aiI − τbiA)uj+i = 0 ∈ Rn, j ∈ N0, (5.36)

where I ∈ Rn×n is the identity matrix. The algorithm is initialized by the choice of vectors

{ui}m−1
i=0 , u0 ≡ x0. (5.37)

In order to initialise (5.37), we can exploit an arbitrary one step method.
We formulate the scalar model problem, see (5.12), and let (5.14) be satisfied. Therefore,

the exact solution of the model problem is damped exponentially for each initial condition;
i.e., (5.15) holds. We require the numerical solution of the model problem behaves similarly.

The numerical solution is a sequence of discrete times {tj}+∞
j=0 , tj+1 = tj + τ , and discrete

states {zj}+∞
j=0 , zj ∈ C, which are defined by the initialisation condition {zi}m−1

i=0 and the
m-step recurrence

m∑
i=0

(ai − τλbi) zj+i = 0, j ∈ N0. (5.38)

We require that for all {zi}m−1
i=0 (for all initialisations) it holds

zj → 0 for j → +∞. (5.39)

83

NUMERICAL SOLUTION OF ODES

Let us note that the m-step recurrence (5.38) is a linear difference equation (Deuflhard and
Bornemann, 2012, Example 3.39). The general solution of this difference equation is deter-
mined by the roots of the characteristic polynomial

η(z) =
m∑
i=0

(ai − τλbi) zi, (5.40)

which is called the third characteristic polynomial. By recalling Definition 3.4,

η(z) = ρ(z)− τλσ(z). (5.41)

According to Deuflhard and Bornemann (2012, Theorem 3.40) the linear difference equation
(5.38) satisfies the conditions (5.39) if and only if for all z ∈ C

ρ(z)− τλσ(z) = 0 ∈ C =⇒ |z| < 1. (5.42)

Definition 5.11 (Domain of stability). Let us consider a linear m-step method with coeffi-
cients (3.2). We call the set

S = {µ ∈ C : ∀z ∈ C, ρ(z)− µσ(z) = 0 ∈ C =⇒ |z| < 1} (5.43)

the domain of stability for the m-step method.

If the step size τ > 0 is chosen such that τλ = µ ∈ S, then (5.39) holds.

Remark 5.12 (Boundary of stability, Jordan curve). Let S is be an open set; then, we define
∂S ≡ S \ S to be the boundary of S. The boundary ∂S can be parametrised and explicitly
constructed

θ ∈ [0, 2π)→ eiθ → ρ(eiθ)− µσ(eiθ) = 0→ µ =
ρ(eiθ)

σ(eiθ)
∈ ∂S. (5.44)

The mapping (5.44) defines a positively oriented curve in the complex plane. If this mapping
is a bijection then we call the curve a Jordan curve. In this case, we define the open sets int(∂S)
and ext(∂S) as the interior and the exterior of the curve ∂S, respectively. The Jordan curve
is a simple curve (it does not cross itself).

Example 5.10 (Domain of stability for explicit Adams method). We consider the m-step ex-
plicit Adams methods (m-step Adams-Bashfort methods) (ab1), (ab2), (ab3), and (ab4); see
Example 3.7. The corresponding boundaries of stability are shown in Figure 5.5(a). The first
three are Jordan curves and the corresponding domains of stability are S = int(∂S) for (ab1),
(ab2), and (ab3). The fourth boundary, for (ab4), is not a Jordan curve and the corresponding
domain of stability consists of three connected pieces.

Example 5.11 (Domain of stability for implicit Adams method). We consider the m-step im-
plicit Adams methods (m-step Adams-Moulton methods) (am1), (am2), (am3), and (am4);
see Example 3.8. The corresponding boundaries of stability are shown in Figure 5.5(b). The
method am1 is the Crank-Nicholson method and, hence, the domain of stability is the left
half of the complex plane. The boundaries for(am2), (am3), and (am4) are Jordan curves
and, hence, the corresponding domains of stability are S = int(∂S).

84

DOMAIN OF STABILITY & STIFF SYSTEMS

−3 −2 −1 0

−1

0

1

Re

Im

ab1
ab2
ab3
ab4

(a) Explicit Adams (Adams-Bashfort)

−8 −6 −4 −2 0
−4

−2

0

2

4

Re

Im

am1
am2
am3
am4

(b) Implicit Adams (Adams-Moulton)

Figure 5.5: Domains of stability for Adams methods (interior of curves)

−10 −5 0 5 10

−5

0

5

Re

Im

BDF1
BDF2
BDF3
BDF4

(a) Domains of Stability

−10 1

−5

0

5

Re

Im

(b) Zoom

−5 0 5 10

−10

0

10

Re

Im

(c) BDF4 A(α) stability

Figure 5.6: Domains of stability for BDF (exterior of curves)

It is useful to compare Figure 5.5(a) and Figure 5.5(b), namely the sizes of stability do-
mains. The larger the domain of stability, the larger step size can be afforded.

Definition 5.13 (A-stable multistep method). Let us consider a linear m-step method and let
S be its domain of stability. We say that this method is A-stable if the domain of stability
contains the left half of the complex plane; i.e.,

{µ ∈ C : ℜ(µ) < 0} ⊂ S. (5.45)

The A-stability of the multistep method is a very rare property. It can be proven that the
only A-stable methods are (am1), (BDF1), and (BDF2). The first two are one step methods:
(am1) is the Crank-Nicholson method and (BDF1) is the Implicit Euler method.

Example 5.12 (Domain of stability for BDF). We consider the BDF methods (BDF1), (BDF2),
(BDF3), and (BDF4); see Example 3.10. The corresponding boundaries of stability are shown

85

NUMERICAL SOLUTION OF ODES

in Figure 5.6, and the domains of stability S = ext(∂S) are the exteriors of the corresponding
curves.

BDF1 and BDF2 are A-stable methods. We have already noted that BDF methods are
not D-stable for m > 6. For the methods BDF3–BDF6 we introduce a weaker concept of
A-stability. We say that the method is A(α)-stable if the domain of stability S contains the
sector

{µ ∈ C : | arg(−µ)| < α, µ ̸= 0} ⊂ S, (5.46)

where arg is the principal value of the argument of the complex number µ. Measuring the
angles α in degrees then the m-step BDF is A(α)-stable for the following angles α:

m 3 4 5 6

α 86.03◦ 73.35◦ 51.84◦ 17.84◦

For example, see Figure 5.6(c), where the infinite purple arc denotes the sector (5.46) with
angle α = 73.35◦ and the boundary of the domain of stability for (BDF4) is also shown.

Finally, we formulate two assertions which are analogous to Theorem 5.8 and Theo-
rem 5.9.

Theorem 5.14. We consider the linear dynamical system (5.3) and let the spectral condition (5.2)
be satisfied. We consider the m-step method from Algorithm 3.1; i.e., (5.36)–(5.37) and let S be the
corresponding domain of stability. Assume that time step τ > 0 is chosen such that

λ ∈ σ(A) =⇒ τλ ∈ S;

then, for each initialisation for all {ui}m−1
i=0 such that

m∑
i=0

(aiI − τbiA)uj+i = 0 ∈ Rn, j ∈ N0, (5.47)

it holds that
uj → 0 ∈ Rn for j → +∞. (5.48)

Theorem 5.15. We consider the initial value problem (4.1) for the autonomous ODE. Let x∗ ∈ D,
f(x∗) = 0, be a steady state and let the spectral condition (5.2) be satisfied. We consider the m-step
method from Algorithm 3.1 which generates a sequence of discrete times and states

j ∈ N0 7−→ tj = τj, {tj}+∞
j=0 , {uj}+∞

j=0 . (5.49)

Let S be the domain of stability of the corresponding method and assume that the time step τ > 0 is
chosen such that

λ ∈ σ(A) =⇒ τλ ∈ S.
There exists a constant r > 0 such that for every initial condition x0 ∈ D which satisfies the condition

∥x0 − x∗∥ < r;

the following holds: for each initialisation {ui}m−1
i=0 , u0 ≡ x0, which is obtained via the one-step

method (3.5) with an initial condition x0, the method converges to a steady state; i.e.,

uj → x∗ for j → +∞. (5.50)

In summary, the method converges locally.

86

DOMAIN OF STABILITY & STIFF SYSTEMS

0 2 4 6

−4

−2

0

2

x1

x
2

(a) State variable x

0 2 4 6 8 10

0

5

10

y1

y 2

(b) State variable y with y0 = V −1x0

Figure 5.7: Orbit of Example 5.13 for x0 = (6, 3)

5.3 Stiff problems
We consider a damped linear oscillator[

x′1
x′2

]
=

[
0 1

−c −k

][
x1
x2

]
, (5.51)

where c > 0 and k > 0 are constants representing the damping and stiffness, respectively, of
the spring. Let A ∈ R2×2 be the matrix of the system.

Example 5.13 (Damped linear oscillator). We consider (5.51) with c = 10 and k = 11. Then,
σ(A) = {λ1 = −1, λ2 = −10}. Hence, we can transform A ∈ R2×2 to its Jordan normal form
J ; i.e., there exists a nonsingular matrix V ∈ R2×2 such that

J =

[
λ1 0

0 λ2

]
, AV = V J, V =

[
0.7071 −0.0995
−0.7071 0.9950

]
. (5.52)

We solve two equivalent problems in the state variables x ∈ R2 and y ∈ R2:

x′(t) = Ax(t), x(0) = x0 = V y0,

y′(t) = Jy(t), y(0) = y0 = V −1x0,

where x(t) = V y(t), y(t) = V −1x(t) for t ∈ R. Note that due to the form of the matrix J we
actually solve two independent problems in the state variable y; namely,

y′1(t) = λ1y1(t), y1(0) = y01,

y′2(t) = λ2y2(t), y2(0) = y02.

Nevertheless, the time t is synchronized in both systems.
In Figure 5.7 we compare the two orbits of the state variables x and y with initial condi-

tion x0 = (6, 3) on the time interval t ∈ [0, T], T = 6. In Figure 5.8 and Figure 5.9 we depict

87

NUMERICAL SOLUTION OF ODES

0 2 4 6

0

2

4

6

t

x
1

(a) x1

0 2 4 6

−4

−2

0

2

t

x
2

(b) x2

Figure 5.8: Trajectories of Example 5.13 for state variable x

0 2 4 6

0

5

10

t

y 1

(a) y1; slow damping λ1 = −1

0 2 4 6

0

5

10

t

y 2

(b) y2; fast damping λ2 = −10

Figure 5.9: Trajectories of Example 5.13 for state variable y

the corresponding trajectories in x and y, respectively, on the same time interval. Introduc-
ing y, we notice qualitative differences of the solution components y1 and y2 are more visible
— in Figure 5.9(a) the state variable y1 decreases slowly in time; whereas, in Figure 5.9(b)
the state variable y2 decreases much more rapidly. This is related to the fact that |λ1| is
comparatively small (the case for Figure 5.9(a)) and |λ2| is comparatively large (the case for
Figure 5.9(b)). The length T > 0 of the analysed time interval is also important in order to
allow enough time for qualitative differences in Figure 5.9 to develop.

Example 5.13 illustrates the phenomenon which is called the stiffness. The stiffness char-
acterises the mathematical problem: a dynamical system which is defined by (5.51) is stiff
for specific values of parameters (c and k in our case). The stiffness is also an issue for the
numerical solution, as it requires selection of a extremely small step length.

Definition 5.16 (stiffness ratio). Consider the linear dynamical system (5.3) and assume that

88

DOMAIN OF STABILITY & STIFF SYSTEMS

0 2 4 6

0

2

4

6

8

t

y 1

(a) y1; slow damping λ1 = −1

0 2 4 6

0

5

t

y 2

(b) y2; very fast damping λ2 = −1000

Figure 5.10: Trajectories of Example 5.14 for state variable y

A ∈ Rn×n satisfies the spectral condition (5.2); then, we define the stiffness ratio as

L =
maxi=1,...,n |ℜ(λi)|
mini=1,...,n |ℜ(λi)|

, (5.53)

where λi ∈ σ(A), i = 1, . . . , n. We say that the stiffness ratio is large if L≫ 1.

We can generalize the definition of the stiffness ratio by means of the linearisation.

Remark 5.17 (stiffness ratio for nonlinear equations). Let us consider the initial value problem
(4.1) for an autonomous ODE, let x∗ ∈ D, f(x∗) = 0, be the steady state, and the Jacobian
A ∈ Rn×n, see (5.1), satisfy the spectral condition (5.2). Then, the stiffness ratio L is defined
by the formula (5.53), where λi ∈ σ(A), i = 1, . . . , n. The analysis of the stiffness ratio L is
restricted to a sufficiently small neighbourhood of the steady state.

The problem defined in Example 5.13 is not classified as a stiff problem since L = 10 is
small.

Example 5.14 (Stiff damped linear oscillator). Consider the damped linear oscillator (5.51)
with c = 1000 and k = 1001; then, σ(A) = {λ1 = −1 , λ2 = −1000}.

In the analysis we proceed as in Example 5.13. We transform A ∈ R2×2 to Jordan normal
form, see (5.52), with eigenvalues λ1 = −1, λ2 = −1000, and transformation matrix

V =

[
0.7071 −0.0010
−0.7071 1.0000

]
∈ Rn×n.

In the numerical experiment, which is similar to Example 5.13, we choose the same initial
condition x0 = (6, 3). In Figure 5.10 we investigate the time evolution of the state variable
y ∈ R2; we note that y2, see Figure 5.10(b), is damped almost immediately.

Example 5.14 can be classified as a stiff problem as L = 1000 is large.
So, what is the issue with the numerical solution of a stiff problem? Consider the problem

formulated in Example 5.14 and apply the Euler method with step size τ > 0. Recall the

89

NUMERICAL SOLUTION OF ODES

0 2 4 6

0

2

4

6

8

t

y 1

ode23
ode23s

(a) y1

0 2 4 6

0

5

t

y 2

ode23
ode23s

(b) y2

Figure 5.11: Comparison of ode23 and ode23s for Example 5.14

domain of stability (5.21), cf. Example 5.7; then, in the context of Example 5.14 we have to
require that

τλ1 = −τ ∈ S, τλ2 = −1000τ ∈ S.
Hence, we have to choose τ < 2/1000 = 0.002. This restriction of the time step is necessary
for the numerical solution to converge to the correct fixed point. However, if we observe the
initial stages of the trajectory in Figure 5.10 the solution changes dramatically; then, in order
to capture this tendency we need to decrease the step size ten times to τ = 0.0002. Since we
are integrating on large interval 0 ≤ t ≤ 6, the computational overhead is astronomical.

To solve the problem formulated in Example 5.14, we used ode23; i.e., the adaptive step
refinement based on explicit methods. After the initial stages when the time step τ was dra-
matically reduced and settles down to τ ≈ 10−3. For a stiff problem it is more reasonable to
use implicit methods; namely,A-stable methods. MATLAB provides the function ode23s to
solve stiff problems with adaptive step refinement. Using this method for numerical compu-
tation shows that the time step is τ ≈ 10−1 in the stages when the solution does not change
much. Figure 5.11 shows the numerical solution of the state variable y for Example 5.14
using both ode23 and ode23s, where each computed point (and hence each time point) is
indicated by a circle on the plot. Notice, that for ode23 the time step size is so small that it
is impossible to see the individual points.

Let us cite Hairer and Wanner (2010, pg. 2):

“Stiff equations are problems for which explicit methods don’t work.”

The label “Stiff equations” covers “stiff problems” and hence, among other things, the prob-
lems with a large stiffness ratio according to Definition 5.16 or Remark 5.17. We also speak
of stiff ODEs.

Hairer and Wanner (2010) admit that a rigorous definition of stiff problems does not ex-
ist; nevertheless, whatever the stiffness might be, the following solution strategy is recom-
mended: If your favourite explicit method fails then try an implicit method. It may work.

The classical examples of stiff problems are the problems which originate by discretiza-
tion of partial differential equations (PDE).

90

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode23s.html
https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode23s.html
https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode23s.html
https://www.mathworks.com/help/matlab/ref/ode23.html

DOMAIN OF STABILITY & STIFF SYSTEMS

Example 5.15 (Heat equation). We seek for a function u = u(x, t) on the domain Ω =
{(x, t) : 0 ≤ x ≤ 1, 0 ≤ t < +∞} such that

∂u

∂t
=
∂2u

∂x2
on Ω, (5.54)

assuming the homogeneous Dirichlet boundary condition

u(0, t) = u(1, t) = 0, for t ≥ 0,

and the initial condition
u(x, 0) = u0(x) for 0 ≤ x ≤ 1,

where u0 = u0(x) is a given function on the interval 0 ≤ x ≤ 1.
As the discretization technique we use the method of lines, also called the semi-discretisation

in the space variable, by considering a finite difference discretisation in space. To this end,
define a mesh on the space domain 0 ≤ x ≤ 1 by a uniform partition into n+ 2 nodes

xj = jh, h =
1

n+ 1
, j = 0, . . . , n+ 1,

and the vector function u(t) = (u0(t), u1(t), . . . , un(t), un+1(t))
⊤, where each component ap-

proximates u(xj , t), j = 0, . . . , n+1. In particular, we approximate the space derivatives via
the central difference:

∂u

∂x
(xj , t) ≈

uj−1(t)− 2uj(t) + uj+1(t)

h2
, j = 1, . . . , n.

Hence, we approximate the heat equation by means of the ODE system

u′j(t) =
uj−1(t)− 2uj(t) + uj+1(t)

h2
, j = 1, . . . , n,

u0(t) = un+1(t) = 0,

with the naturally defined initial condition

u0(0) = un+1(0) = 0, uj(0) = u0(xj), j = 1, . . . , n, .

Finally, we reduce the vector function to

u(t) = (u1(t), . . . , un(t))
⊤ ∈ Rn (5.55)

by cutting off the solution components u0(t) = un+1(t) = 0.
Therefore, we conclude that the heat equation is approximated by the linear initial value

problem
u′ = Au, u(0) ≡ u0 ∈ Rn, u0j = u0(xj), j = 1, . . . , n , (5.56)

where A ∈ Rn×n is the tri-diagonal matrix

A =
1

h2



−2 1 0 . . . 0

1 −2 1
...

0
.

...
... 1 −2 1

0 . . . 0 1 −2


∈ Rn×n. (5.57)

91

NUMERICAL SOLUTION OF ODES

The eigenvalues λj ∈ σ(A), j = 1, . . . , n, are real and satisfy the spectral condition (5.2).
Both the eigenvalues λj ∈ σ(A) and the corresponding eigenvectors vj ∈ Rn, Avj = λjvj , are
known explicitly. In particular,

λj = −4
sin(jπh/2)

h2
, 0 > λ1 > · · · > λj > · · · > λn. (5.58)

Then, the stiffness ratio is given as

L =
sin(nπh/2)

sin(πh/2)
. (5.59)

So, depending on the dimension of the space discretisation we get a different stiffness:

1. if n = 100, then λ100 ≈ −4.0794× 104, λ1 ≈ −9.8688 and, hence, L ≈ 4.1336× 103,

2. if n = 1000, then λ1000 ≈ −4.0080× 106, λ1 ≈ −9.8696 and, hence, L ≈ 4.0610× 105.

Even in the case n = 100, the problem (5.57) is not reasonably solvable by an explicit method
with a fixed time step τ .

92

Bibliography

P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations.
Texts in Applied Mathematics. Springer, New York, 2012. DOI: 10.1007/978-0-387-21582-
2.

E. Hairer. A Runge-Kutta Method of Order 10. IMA Journal of Applied Mathematics, 21(1):
47–59, 1978. DOI: 10.1093/imamat/21.1.47.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin, 2nd
edition, 2010. DOI: 10.1007/978-0-387-21582-2.

E. Hairer, G. Wanner, and S. P. Nørsett. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd
edition, 2009. DOI: 10.1007/978-0-387-21582-2.

N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.

A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1995.

J. Kurzweil. Obyčejné diferenciální rovnice. SNTL, Praha, 1973.

J. Kurzweil. Ordinary Differential Equations. Studies in Applied Mechanics. Elsevier, Amster-
dam, 1986.

A. Quarteroni and F. Saleri. Scientific Computing with MATLAB. Texts in Computational
Science and Engineering. Springer, Berlin, 2004. DOI: 10.1007/978-3-642-59339-0.

A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Texts in Applied Mathematics.
Springer, Berlin, 2nd edition, 2010. DOI: 10.1007/b98885.

L. F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman & Hall/CRC,
London, 1994.

L. F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SIAM Journal on Scientific
Computing, 18(1):1–22, 1997. DOI: 10.1137/S1064827594276424.

E. Süli and D. F. Meyers. An Introduction to Numerical Analysis. Cambridge University Press,
Cambridge, 2003. DOI: 10.1017/CBO9780511801181.

93

http://dx.doi.org/10.1007/978-0-387-21582-2
http://dx.doi.org/10.1007/978-0-387-21582-2
http://dx.doi.org/10.1093/imamat/21.1.47
http://dx.doi.org/10.1007/978-0-387-21582-2
http://dx.doi.org/10.1007/978-0-387-21582-2
http://dx.doi.org/10.1007/978-3-642-59339-0
http://dx.doi.org/10.1007/b98885
http://dx.doi.org/10.1137/S1064827594276424
http://dx.doi.org/10.1017/CBO9780511801181

Index

Adaptive time-stepping, 60
adaptive time-stepping, 28, 28, 36
autonomous ODE, see ordinary differential

equations, autonomous

backward differentiation formula, see also
multistep methods, BDF, 59

Butcher, 30
barrier, 39
Butcher method, 39
tableau, 30, 30, 31, 34–37, 39–44

central difference, see finite difference
characteristic polynomial, 48, 49, 84
consistency, 24, 47, 48

D-stability, 49, 50, 51, 52
Dahlquist barrier, 51, 52
direction field, 2, 6
domain of stability, 73, 76–78, 80, 82, 84, 85
dynamical systems, 61

elementary differentials, 13
embedding formula, 36, 37, 37

Dormand-Prince, 40
equilibrium, see steady state
error

global, 25, 50, 69, 70
local discretisation, 18, 27, 47

finite difference, 91
fixed point, 22, 46, 70, 73, 76

A-stable, 70, 82
stable, 70
unstable, 71

immediate velocity, 9
initial value problem, 5, 6, 10, 61, 66, 67, 73

existence, 7, 7
global solution, 8

linearisation, 65, 65–67, 73
equivalence, 68
Hartman-Grobman theorem, 68

maximal solution, 8
interval, 8

solution, 6
uniqueness, 7, 7

integral formulation, 6
IVP, see initial value problem

Jacobian, 65, 65, 73
Jordan curve, 84

Lagrange interpolation, 55, 59
Lipschitz continuity, 7, 25–27

m-step methods, see multistep methods
MATLAB

ode113, 60
ode15s, 4, 60
ode23, 3, 4, 29, 40, 90
ode23s, 90
ode45, 29

matrices, 65
exponential, 67, 74, 75
spectrum, 65

method of lines, 91
multistep methods, 45, 49, 55, 83

A-stable, 85
A(α)-stable, 86
Adams-Bashfort, 52, 53, 54, 54, 84
Adams-Moulton, 52, 53, 54, 54, 55, 84
BDF, 58, 59, 59, 85
initialisation, 45, 51
integral formulation, 55

numerical quadrature, 19
Gauss, 42, 42
Lagrange, 19, 38

94

INDEX

ODE, see ordinary differential equations
one-step methods, 15, 16, 17

3/8-rule, 39, 75
Crank-Nicholson, 23, 27, 30, 54, 74–76,

80
Euler, 17, 18, 20, 26, 30, 54, 71, 74, 76, 89
Heun, 23, 74
Implicit Euler, 22, 22, 27, 30, 71, 74–76,

80
Implicit Trapezoidal, see Crank-Nicholson
Runge, 20, 20, 26, 27, 30, 69, 74, 76, 77
Runge-Kutta, see also RK methods

classical, 24, 31, 39, 75, 78
orbit, 62, 64, 87

α-limit, 63
ω-limit, 62, 70
negative, 62
positive, 62, 70

order of method, 18, 18, 20, 22, 31–33, 47, 58
ordinary differential equations, 5

autonomous, 7, 9, 10, 12, 18, 31, 32, 61,
69

flow, 10
phase shift, 10

autonomous ODE, 73
damped linear oscillator, 87, 89
linear dynamical system, 64
linear oscillator, 4, 5
logistic, 1
van der Pol oscillator, 62, 65, 66, 71

partial differential equations
Heat equation, 91

partition, 15, 17, 25
adaptive step size, see adaptive time-

stepping
equidistant, see uniform
non-equidistant, see non-uniform
non-uniform, 15
time step, 16
uniform, 15, 45

PDE, see partial differential equations
phase curve, 5, 9, see also orbit
phase shift, see ordinary differential equa-

tions, autonomous, phase shift
Picard-Lindelöf theorem, 7
predictor/corrector, 56–58

RK methods, 30, 69
A-stable, 82
Butcher, see Butcher method
embedding, see embedding formula
explicit, 31, 34, 35, 37, 39
implicit, 40

Gauss, 40, 41, 42
Lobatto, 44
Radau, 43, 43, 44

order, 32, 33
rounding errors, 50
Runge-Kutta, see RK methods, see also one-

step methods, Runge-Kutta, classi-
cal

semi-discretisation, 91
slope field, see direction field
state space, 5, 5
state variable, 5
stationary point, see steady state
stationary solution, 2, see also steady state
steady state, 63, 70, 73

A-stable, 64, 65, 68, 75
asymptotic stable, see A-stable
Lyapunov theorem, 65, 73
stable, 64
unstable, 64, 64, 65, 68

stiff problems, 4, 40, 87–89, 90, 92
numerical issues, 89
stiffness ratio, 88, 92

Taylor expansion, 11–13, 27, 31, 65
trajectory, 1, 3, 5, 9, 15, 88

vector field, 7
discrete flow, 16, 69
flow, 8, 10

95

	Title page
	Contents
	List of Figures
	List of Examples
	List of Algorithms

	1 Mathematical modelling of evolution
	1.1 Motivation examples
	1.2 Formulation of the problem
	1.3 Flow of a vector field
	1.4 Taylor expansion of the flow

	2 One-step methods
	2.1 Discretisation of the vector field
	2.2 Convergence analysis of one-step methods
	2.3 Adaptive time-stepping
	2.4 Runge-Kutta methods (RK)
	2.4.1 Explicit RK methods
	2.4.2 Implicit RK methods

	3 Multistep methods
	3.1 Linear multistep method
	3.2 D-stability & Convergence
	3.3 Construction of multistep methods
	3.3.1 Adams methods
	3.3.2 Predictor/Corrector methods
	3.3.3 BDF methods
	3.3.4 Adaptive time-stepping

	4 Dynamical systems
	4.1 Asymptotics of the time evolution
	4.2 The steady state
	4.3 Discrete-time dynamical systems

	5 Domain of stability & stiff systems
	5.1 Domain of stability: one-step method
	5.2 Domain of stability: multistep method
	5.3 Stiff problems

	Bibliography
	Index

