Numerical Solution of ODEs

Exercise Class

3rd October 2025

Exercises

1. Read about the following ODE systems:

 $\textbf{Population Growth } \texttt{http://en.wikipedia.org/wiki/Population_growth}$

Logistic http://en.wikipedia.org/wiki/Logistic_function

Pendulum http://en.wikipedia.org/wiki/Pendulum_%28mathematics%29

Harmonic Oscillator http://en.wikipedia.org/wiki/Harmonic_oscillator

2. Consider the logistic equation

$$x' = (a - bx)x - c,$$

$$x(t_0) = x_0$$

with non-negative constants a, b, and c. Solve using ode23 with the right hand side function logistic.m, and plot the results, with the following different values:

constants: a = b = 1 and c = 0

time range: t = [0, 3], [0, -1]initial condition: $x_0 = 1/2, 3/2, 1, -1/20$

3. Compare ode23 and ode15s for the logistic equation with a=b=1, c=1/5, t=[0,100], $x_0=0.7233$. Compare also to the known exact solution:

$$u(t) = \frac{\sqrt{5}}{10} \tanh\left((t - t_0)\frac{\sqrt{5}}{10} + \operatorname{arctanh}\left((2x_0 - 1)\sqrt{5}\right)\right) + \frac{1}{2}.$$

4. Use ode23 to solve the pendulum problem (pendulum.m)

$$x'' = -k\sin(x) \qquad \equiv \qquad \begin{cases} x_1' = x_2, \\ x_2' = -k\sin(x) \end{cases}$$

$$x(t_0) = x_0$$

with k = 1, $t = (0, 6\pi)$, and various initial conditions

$$x_0 = \begin{pmatrix} -1.5\\0 \end{pmatrix}, \begin{pmatrix} -3\\0 \end{pmatrix}, \begin{pmatrix} -\pi\\1 \end{pmatrix}.$$

5. Consider the harmonic oscillator

$$x'' + bx = c\cos(\omega t),$$

$$x(t_0) = x_0$$

1

(a) Transform into a system of first-order ODEs

(b) Attempt to derive an explicit solution. Consider the two cases $b \neq \omega^2$ and $b = \omega^2$ separately.

(c) Use ode23 (oscillator.m) to solve with:

constants: a = 0, b = 9, c = 10, $\omega = 2.5, 2.9, 3.1, 3, \sqrt{3}$

time range: t = [0, 50]

initial condition: $x_0 = (1,0)^{\top}$