
Introduction to MATLAB

Winter Semester 2019

Scott Congreve

Charles University,

Faculty of Mathematics and Physics,

Department of Numerical Mathematics,

Sokolovská 83, 18675 Praha

Contents

1 Introduction 1
1.1 Overview of the UI . 1
1.2 Basics of the Command Window . 2
1.3 Documentation & Help . 2

2 Basic Mathematics 3
2.1 Scalar Arithmetic . 3
2.2 Number Format & Special Constants . 4
2.3 Variables . 5
2.4 Complex Numbers . 5
2.5 Functions . 6

3 Vectors & Matrices 6
3.1 Defining Matrices & Vectors . 6
3.2 Indexing . 10
3.3 Vector & Matrix Operations . 11

3.3.1 Matrix/Vector Size . 11
3.3.2 Basic Arithmetic . 12
3.3.3 Element-wise Arithmetic . 13
3.3.4 Transpose . 14
3.3.5 Solving Linear Systems . 14

3.4 Functions . 15
3.4.1 Vector Functions . 15
3.4.2 Matrix Functions . 15

4 Strings 16
4.1 Formatting Numbers . 16
4.2 Displaying Text . 17

5 Graphics 17
5.1 Plot Basics . 18
5.2 Annotation . 19
5.3 3D Plots . 19

6 Programming 22
6.1 Scripts . 22
6.2 Functions . 23
6.3 Logical Operators . 26
6.4 Loops . 28

6.4.1 for Statement . 28
6.4.2 while Statement . 29

6.5 if-else Statement . 29
6.6 switch Statement . 30
6.7 Function Handles & Anonymous Functions . 31

7 Structures 32

8 Error Handling 33
8.1 Understanding Error Messages . 33
8.2 Generating Errors . 34
8.3 Debugging . 34

Literature & Resources 35

List of Code Examples

1 help Example . 3
2 Evaluating (22)3 and 22

3

. 3
3 Demonstration of requirement for multiplication symbol 3
4 Short format for real numbers . 4
5 Long format example; also demonstrates rounding error 4
6 MATLAB constants/special values . 4
7 Definition and usage of the variables x and y . 5
8 Clearing only the x and y variables from the workspace 5
9 Definition of complex number . 5
10 Example of calling a function . 6
11 Example of calling a function with multiple arguments 6
12 Generating matrices/vectors directly . 7
13 Matrix/vector concatenation . 7
14 Generating a vector containing a sequence . 7
15 Example usage of linspace . 8
16 Example usage of matrix construction functions . 8
17 Example usage of diag . 8
18 Generating a complex matrix . 9
19 Using reshape . 9
20 Basic matrix/vector indexing . 10
21 Vector indices for matrix/vector indexing . 10
22 Extracting a complete row or column from a matrix 10
23 Changing values in a matrix . 11
24 Deleting vector and matrix entries . 11
25 Obtaining matrix/vector size . 12
26 Basic arithmetic with matrices . 12
27 Matrix multiplication . 12
28 Element-wise arithmetic . 13
29 Matrix transposition . 14
30 Solving linear systems . 14
31 Handling multiple function returns (calculating eigenvalues/eigenvectors) 16
32 String example . 16
33 String concatenation . 16
34 Formatting numbers . 17
35 Displaying text . 17
36 Basic plotting . 18
37 Annotating a plot . 19
38 3D line (parametric) plot . 19
39 3D surface plot . 20
40 3D mesh/contour plot . 21
41 Sample script . 23
42 Sample script output . 23
43 Default function structure . 24
44 Simple function . 24
45 Calling the simple function . 25
46 Simple function changed for vector/matrix inputs 25
47 Calling functions with vector arguments . 25
48 Sub-function example . 25
49 Example of rounding error in comparisons . 26
50 Logical operations . 27
51 Using logical indexing . 27

52 find indices of all values < 0.02 in matrix . 28
53 for loop structure . 28
54 Factorial calculation with for loop . 28
55 Result of factorial calculation with for loop . 28
56 while loop structure . 29
57 while loop example . 29
58 Result of while loop example . 29
59 if-elseif-else structure . 29
60 if example . 30
61 switch structure . 30
62 switch example . 30
63 Taking and using function handle of sin . 31
64 Calling ezplot with function handle of sin . 31
65 Calling ezsurf with handle to own function . 31
66 3D mesh/contour plot using anonymous functions 31
67 Generating structure using struct function . 32
68 Generating and reading structure directly . 32
69 Accessing structure array . 32
70 Example error messages . 33
71 Function with error . 33
72 Running function with error . 33
73 Generating errors . 34
74 Executing a function with error checking . 34

List of Figures

1 Overview of the User Interface . 1
2 Basic plotting result . 18
3 Annotated plotting result . 19
4 3D line (parametric) plot . 20
5 3D surface plot . 21
6 Result of view(2) on 3D surface plot . 21
7 3D mesh/contour plot . 22
8 Debug tools . 35

INTRODUCTION TO MATLAB 1

1 Introduction

MATLAB is a high-level programming language and interactive environment designed for nu-
merical computation. It has both an interactive console for executing individual commands, and
support for writing full scripts (programs).

In this section, we shall give a brief overview of the MATLAB program. In Sections 2–5 we
shall cover various basic MATLAB commands, using only the interactive console. Section 6 will
cover using MATLAB to write scripts and functions. Finally, Sections 7 & 8 will cover a couple of
more advanced topics.

1.1 Overview of the UI

Command

Window

Command

History

Current

Folder

Menu Bar Layout Workspace

Figure 1: Overview of the User Interface

Upon launching MATLAB the main window is displayed. The main area of this window is
usually the Command Window, this is an interactive console where MATLAB commands can be
entered at the prompt and results seen immediately. The default MATLAB window also displays
a Workspace panel, which lists all the current variables (see Section 2.3), and a Current Folder panel
listing all files in the directory MATLAB considers “current” (see Section 1.2). Another useful
panel, which is often not shown by default, is the Command History panel, which lists all recent
commands entered into the Command Window. This can be shown from the Layout button on the
Home tab of the menu bar.

The MATLAB window is completely customisable. Panels can be shown or hidden from the
Layout button on the Home tab of the menu bar. Panels can also be dragged to different positions,
placed into tabs with each other and even undocked into separate windows. Each panel has a

2 INTRODUCTION TO MATLAB

small downward pointing arrow in the top right corner, which opens a menu containing various
customisation options.

1.2 Basics of the Command Window

The Command Window consists of a prompt (>>) at which MATLAB commands can be entered.
Results from each MATLAB command ran is also displayed in the Command Window. You can
clear the current command window of all output by entering the clc command into the Command
Window.

MATLAB keeps a history of all commands entered (these can be seen and selected to run again
from the Command History panel). You can also use the and arrow keys on the keyboard
to scroll backwards or forwards, respectively, through the history of commands entered. If you
start to type a command and then press the or arrow keys then MATLAB will only scroll
through commands which start with the text already entered.

When you try to execute a MATLAB function it searches in a list of paths for the a file con-
taining the definition of that function. By default this list consists of a set of built-in MATLAB
directories and also the current directory according to MATLAB. Usually when you start MATLAB
this will be the MATLAB subdirectory in your HOME or Documents folder. When we come to
write scripts and functions (see Section 6) your current directory will need to be the same as the
directory where you save these files in order to be able to run them. Entering the command, cd,
on its own lists the current directory. You can also change the current directory by using

>> cd path

where path is the path to change to. Directories in a path are separated by a / and a special ..
directory can be used to change to the parent directory. For example, if my current directory is
Users congreve Documents MATLAB then calling

>> cd ../TestFolder

will change the current directory to Users congreve Documents TestFolder. Note that if
any folder contains a space you should surround the path with single quotation marks:

>> cd ’../Folder With Space/Folder’

You can see a list of all files in the current directory with the ls command, or only MATLAB
specific files with the what command.

To exit MATLAB type exit at the prompt.

1.3 Documentation & Help

MATLAB has built-in documentation for all its commands, functions and syntax. This documen-
tation can be viewed in two different ways. The first way is a graphical help window which can
be launched by selecting the Help Documentation menu, or by entering the command doc into the
Command Window. The doc command can be followed by a name (usually of a MATLAB function),
in which case the documentation window is automatically launched to view the documentation
for that command. For example,

>> doc sin

will open the documentation for the sin function.
The second method is a text-based help displayed directly in the Command Window. To view

the contents for this help type help into the Command Window. Again you may add a name of a
function, command, toolbox, etc. to display the help for that command.

INTRODUCTION TO MATLAB 3

>> help sin
sin Sine of argument in radians.

sin(X) is the sine of the elements of X.

See also asin, sind.

Other functions named sin
Reference page in Help browser

doc sin

Code Example 1: help Example

2 Basic Mathematics

MATLAB is designed to perform mathematical operations on scalars, vector and matrices. We
shall start by looking at the basic scalar mathematics.

2.1 Scalar Arithmetic

In MATLAB you can enter mathematical statements to solve in an ALMOST identical way to how
you write them on paper. MATLAB supports five basic scalar mathematical operators. These are
+ (for addition), - (for subtraction), * (for multiplication), / (for division), and ^ (for raising to a
power). There is also a left division operator \ which divides the second term by the first. Using
these basic commands you can use MATLAB as a calculator; i.e., entering

>> 5^2+9.5-11*2
ans =

12.5000

displays the result of 52 + 9.5− 11× 2. MATLAB follows the basic mathematical rules for prece-
dence; ^ is evaluated first, then * and /, and then + and -. Operators of the same precedence
are evaluated with left-to-right associativity — the first operator from the left is evaluated first.
Brackets () can be used to specify order of evaluation.

>> 2^2^3
ans =

64

>> 2^(2^3)
ans =

256

Code Example 2: Evaluating (22)3 and 22
3

Note that unlike in normal mathematics the multiplication symbol must be used wherever mul-
tiplication is required.

>> 2(4+5)
2(4+5)
|

Error: Unbalanced or unexpected parenthesis or bracket.

>> 2*(4 + 5)
ans =

18

Code Example 3: Demonstration of requirement for multiplication symbol

4 INTRODUCTION TO MATLAB

2.2 Number Format & Special Constants

By default in MATLAB all numbers generated are of double type. The technically of what this
means exactly is beyond the scope of this course, but essentially each number is stored with the
computer’s memory as a 64-bit binary floating-point number. This means that it can represent
floating-point numbers, but we do have to allow for small rounding errors in computations as
not all decimal floating point numbers can be accurately represented within the number of bits
(the only real important point about this we shall discuss in Section 6.3).

MATLAB, like most programming languages, allows us to enter numbers in an exponential
(base 10) form. Essentially entering 1.5e-10 is short-hand for 1.5×10−10, and 7.95e5 is short-hand
for 7.95× 105.

When MATLAB displays a floating point number it usually displays it in short form (four
decimal places) in either normal or exponential form.

>> 190.2
ans =
190.2000

>> 1909.205
ans =

1.9092e+03

Code Example 4: Short format for real numbers

Notice that in the last case we lost some of the number in the display (it is still there but MAT-
LAB has not displayed the result). We can ask MATLAB to display all results in long form (15
decimal places) with the command format long, and we can switch back to short format with
format short. More formats exist as well, use help format to see the complete list. You can set
the default format in the Preferences window in MATLAB (under MATLAB Command Window).

>> format long
>> 19.2
ans =
19.199999999999999

>> 1909.205
ans =

1.909205000000000e+03

Code Example 5: Long format example; also demonstrates rounding error

MATLAB has a number of built-in constants and special values that can be used (and dis-
played). pi returns the constant value for π while eps returns the difference between 1 and next
largest double-precision floating-point number. Double-precision numbers have three special
numbers, inf/Inf and -inf/-Inf represent∞ and −∞, respectively, while nan/NaN represents a
special Not a Number value.

>> 0/0
ans =

NaN
>> 1/0
ans =

Inf
>> -1/0
ans =
-Inf

>> pi
ans =

3.141592653589793
>> eps
ans =

2.220446049250313e-16

Code Example 6: MATLAB constants/special values

INTRODUCTION TO MATLAB 5

2.3 Variables

As a programming language MATLAB has a concept of variables that be used to store values.
Assigning a value to a variable is done via the assignment = operator. When assigning a variable,
the value stored into the variable is output in the Command Window; this can be suppressed by
ending the command with a semicolon (;). Variables can be used in expressions similar to basic
mathematics and entering a variable name on its own at the prompt (without a trailing semicolon
at the end) will output the variables value.

>> x = 2^2
x =

4

>> 5*x+9
ans =

29

>> y = 9;
>> y
y =

9

Code Example 7: Definition and usage of the variables x and y

Note again that we need to explicitly use the multiplication operator for calculating 5x+ 9.
Variables names in MATLAB must start with a letter and can contain only letters, numbers

and the underscore (_) character. Note that by letter we mean the basic 26 English letters (so no
accented letters). Ideally, variable names should be self-explanatory where possible and also note
that all variable names are case sensitive; i.e., A and a are different variables. Note that defining
a variable with the same name as a built-in MATLAB constant (pi, eps, etc.) or functions will
hide the definition of that function or constant, so this should be avoided. There is also a special
variable called ans, which stores the result of the last command entered if the result is not saved
to a variable.

When working in the Command Window all variables defined are saved in the Workspace. You
can see the list of all variables in the Workspace panel or by entering the who or whos command. You
can clear all variables from the current workspace with the clear command; alternatively, you can
clear a single or list of variables by enter the names of the variables after the clear command.

>> clear x y

Code Example 8: Clearing only the x and y variables from the workspace

2.4 Complex Numbers

MATLAB supports complex numbers as well as real numbers. To specify an imaginary number
you use i or j either directly or as a suffix to a number. For example, to generate the complex
number z = 5 + 4i:

>> z = 5+4i
z =

5.0000 + 4.0000i

Code Example 9: Definition of complex number

When used in scripts (see Section 6) newer versions of MATLAB will produce warnings about
using i or j without a number prefix and will advise the use of 1i and 1j instead.

6 INTRODUCTION TO MATLAB

2.5 Functions

MATLAB has a large collection of built-in functions for mathematical operations. Functions are
called by giving the name of the function followed by the arguments within brackets after the
name. For example, to calculate sin π/2 we enter the command:

>> sin(pi/2)
ans =

1

Code Example 10: Example of calling a function

Some functions can take more than one argument; in this case, we enter the arguments separated
by a comma.

>> min(pi, 3)
ans =

3

Code Example 11: Example of calling a function with multiple arguments

You can store the results into a variable as normal. Some functions are able to return more than
one result, which we shall see in action in Section 3.4.2.

Below is a non-exhaustive list of basic mathematical functions (for complex and/or real num-
bers). Enter help elfun for a more complete list.

sin, cos, tan, cot, sec, csc Trigonometric functions
asin, acos, atan, acot, sec, csc Inverse trigonometric functions
sinh, cosh, tanh, coth, sech, csch Hyperbolic functions

asinh, acosh, atanh, acoth, asech, acsch Inverse hyperbolic functions
abs Absolute value |x|
exp Exponential function ex

log, log10, log2 Logarithmic function (base e, 10 and 2)
fix, floor, ceil, round Round: to zero, down, up, nearest integer.

sqrt, nthroot Square and nth root.
angle Phase angle of a complex number
conj Complex conjugate of a complex number

real, imag Real/imaginary parts of complex number

3 Vectors & Matrices

So far we have only dealt with scalar values; however, MATLAB supports matrices and vectors
as well. In this section we shall discuss the basics of the matrix support in MATLAB.

3.1 Defining Matrices & Vectors

The basic method to create a vector or matrix in MATLAB is to use square brackets [] containing
a list of numbers to place in the matrix. Each row of a matrix is a list of numbers separated by
either a space and/or a comma, and each row is separated by a semi-colon ;. For example, the
matrix, row vector and column vector,

A =

 1 9 7
−3 8 0
2 −7 −9

 , x =
(
5 −8 0

)
, and y =

−23
6

 ,

respectively, are generated with:

INTRODUCTION TO MATLAB 7

>> A = [1 9 7; -3 8 0; 2 -7 -9]
A =

1 9 7
-3 8 0
2 -7 -9

>> x = [5 -8 0 9]
x =

5 -8 0 9

>> y = [-2; 3; 6]
y =

-2
3
6

Code Example 12: Generating matrices/vectors directly

This notation is really a concatenation of matrices/vectors. The space/comma concatenates
columns and the semi-colon concentrates rows. It is, therefore, possible to concatenate matri-
ces into larger matrices using this notation, providing the sizes are compatible.

>> B = [A y; x]
B =

1 9 7 -2
-3 8 0 3
2 -7 -9 6
5 -8 0 9

Code Example 13: Matrix/vector concatenation

You can also generate a row vector of a sequence of numbers using the start:step:end or
start:end syntax, where start is the first number in the sequence, step is the difference between
elements in the sequence (in the form without step this defaults to 1), and end is the largest
number (for a positive step) or smallest number (for a negative step) that can be contained in the
sequence.

>> 1:4
ans =

1 2 3 4

>> 1:0.5:3
ans =

1.0000 1.5000 2.0000 2.5000 3.0000

>> 1:2:6
ans =

1 3 5

>> 1:-1:6
ans =

Empty matrix: 1-by-0

>> 7:-1:1
ans =

7 6 5 4 3 2 1

>> 0:0.2:1
ans =

0 0.2000 0.4000 0.6000 0.8000 1.0000

Code Example 14: Generating a vector containing a sequence

As can be seen the end value is not always included in the sequence. Generating a sequence of
equally distributed values, which includes both the start and end values can be done with the

8 INTRODUCTION TO MATLAB

linspace(start, end, no_points) function. Here, no_points is the number of items in the row
vector, including the start and end.

>> linspace(1,2,6)
ans =

1.0000 1.2000 1.4000 1.6000 1.8000 2.0000

>> linspace(1,0,6)
ans =

1.0000 0.8000 0.6000 0.4000 0.2000 0

Code Example 15: Example usage of linspace

MATLAB has several basic functions for generating matrices. The eye function generates an
identity matrix (ones on the diagonal, zero elsewhere), the zeros function generates a matrix of
zeros, and the ones function generates a matrix of ones. All three functions can take a single scalar
argument (N), in which case aN ×N matrix is generated, or two scalar arguments (N andM), in
which case a N ×M matrix is generated. These functions can also take a single vector argument
(where the vector contains two values [N M]), which also generates a N ×M matrix. The rand

and randn functions generate a matrix of uniformly or normally distributed random numbers,
respectively, between 0 and 1.

>> eye(4)
ans =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

>> zeros(3)
ans =

0 0 0
0 0 0
0 0 0

>> ones(4)
ans =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

>> ones(4,3)
ans =

1 1 1
1 1 1
1 1 1
1 1 1

Code Example 16: Example usage of matrix construction functions

A diagonal matrix can be generated with the diag function. This function takes a vector and
places the entries on the leading diagonal of a matrix. A second optional scalar integer argument
can also be specified, which allows the vector to be placed on a different diagonal. A value
of 0 indicates the leading diagonal, a positive number indicates a diagonal above the leading
diagonal (with 1 being the diagonal immediately above the leading diagonal) and a negative
number indicates a diagonal below the leading diagonal.

>> diag([1 2 3 4])
ans =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

INTRODUCTION TO MATLAB 9

>> diag([1 2 3 4],1)
ans =

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

>> diag([1 2 3 4],-1)
ans =

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

Code Example 17: Example usage of diag

You can create a complex vector/matrix from two real vector/matrices (representing the real
and imaginary parts) by using the complex(real,imag) function, where real and imag are real
matrices representing the real and imaginary parts.

>> complex(ones(3),eye(3))
ans =

1.0000 + 1.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i
1.0000 + 0.0000i 1.0000 + 1.0000i 1.0000 + 0.0000i
1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 1.0000i

Code Example 18: Generating a complex matrix

Matrices can be reshaped into a matrix of a different size using the reshape function. This
function takes a matrix to reshape as the first argument followed by a matrix size (as either a
single vector of two elements or as two arguments). In the form where the new size is specified
as two argument you can use an empty vector [] to allow MATLAB to automatically calculate
the size of that dimension. Note that the number of elements in the reshaped matrix must be the
same as in the original matrix. When reshaping a matrix MATLAB works down columns first
when reading the elements (and places them in the new matrix in the same way).

>> A = rand(4,2)
A =

0.7363 0.4423
0.3947 0.0196
0.6834 0.3309
0.7040 0.4243

>> reshape(A,[3,3])
Error using reshape
To RESHAPE the number of elements must not change.

>> reshape(A,[2 4])
ans =

0.7363 0.6834 0.4423 0.3309
0.3947 0.7040 0.0196 0.4243

>> reshape(A,3,[])
Error using reshape
Product of known dimensions, 3, not divisible into total number of elements, 8.

>> reshape(A,2,[])
ans =

0.7363 0.6834 0.4423 0.3309
0.3947 0.7040 0.0196 0.4243

Code Example 19: Using reshape

10 INTRODUCTION TO MATLAB

3.2 Indexing

Each element in a vector can referred to by using an index notation starting from 1 for the first
value (note that this is different to some other programming languages which start from 0). In order to
access an item of the vector you place the index to access within brackets after the variable name.
Matrices require two indices, the first is the row index and the second is the column index (It is
possible to use only one index for matrices, in this case the index counts down the first column,
then the second, etc.). A special value of end can be used to index the last value.

>> A = rand(4)
A =

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 0.9649 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5469 0.9706 0.1419

>> A(5)
ans =

0.6324

>> A(2,3)
ans =

0.9649

>> x = 1:5
x =

1 2 3 4 5

>> x(3)
ans =

3

>> x(end)
ans =

5

Code Example 20: Basic matrix/vector indexing

For an index you can also specify a vector of indices, in which case the result is a vector con-
taining just those values. This vector index can be specified as a normal index or using the
start:step:end/start:end notation. The special end value can be used in this range specifier.

>> x([1 3])
ans =

1 3

>> A(2:3,2:3)
ans =

0.0975 0.9649
0.2785 0.1576

>> A(2,2:end)
ans =

0.0975 0.9649 0.4854

>> A(2,end:-1:2)
ans =

0.4854 0.9649 0.0975

Code Example 21: Vector indices for matrix/vector indexing

You can also use a single colon : in an index location to indicate all values.

>> A(2,:)
ans =

0.9058 0.0975 0.9649 0.4854

INTRODUCTION TO MATLAB 11

>> A(:,3)
ans =

0.9575
0.9649
0.1576
0.9706

Code Example 22: Extracting a complete row or column from a matrix

You can also change individual elements in a matrix by indexing as above and using as the
left-hand side of the assignment operator =. When indexing more than one element the value you
assign must either by a scalar (value is assigned to all elements) or a vector/matrix of the same
size as the indexed sub-matrix.

>> A(2,3) = 1
A =

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 1.0000 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5469 0.9706 0.1419

>> A(end,2:3) = 0.5
A =

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 1.0000 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5000 0.5000 0.1419

>> A(end,2:3) = [0.25 0.2 1]
Subscripted assignment dimension mismatch.

>> A(end,2:3) = [0.25 0.7]
A =

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 1.0000 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.2500 0.7000 0.1419

Code Example 23: Changing values in a matrix

You can also delete values from a vector/matrix by assigning to them the empty matrix (the
brackets [] with no contents). In the case of a matrix you can only delete complete rows or
columns.

>> A(1,:) = []
A =

0.9058 0.0975 1.0000 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.2500 0.7000 0.1419

>> x(2:3) = []
x =

1 4 5

Code Example 24: Deleting vector and matrix entries

3.3 Vector & Matrix Operations

We shall now discuss the basic operations that be used on matrices or vectors.

3.3.1 Matrix/Vector Size

MATLAB has a built-in function size which returns a vector containing the dimension of a ma-
trix. The first value in the vector is the number of rows in the matrix, and the second is the

12 INTRODUCTION TO MATLAB

number of columns. When run on a vector one of these values will be 1 (dependant on if the
vector is a column or row vector). MATLAB also has a length function, which returns a single
value denoting the size of the largest dimension of the matrix. This function is most useful for
vectors, as it returns the length of the vector.

>> size(A)
ans =

3 4

>> size(x)
ans =

1 3

>> length(A)
ans =

4

>> length(x)
ans =

3

Code Example 25: Obtaining matrix/vector size

Note that as size returns a two-value vector you can use the result as an argument to the matrix
construction functions (see Section 3.1) to construct a matrix the same size as an existing matrix.

3.3.2 Basic Arithmetic

Addition + and - are defined as normal for vectors and matrices. It is important to note that
an error will occur if you try to apply these operators to matrix/vectors of different size. You
can, however, apply these operators to a scalar and a vector/matrix. In this case the scalar is
automatically converted into a matrix/vector of the correct size filled with the scalar value

>> B = rand(size(A))
B =

0.4218 0.9595 0.8491 0.7577
0.9157 0.6557 0.9340 0.7431
0.7922 0.0357 0.6787 0.3922

>> A+B
ans =

1.3276 1.0570 1.8491 1.2431
1.0427 0.9342 1.0916 1.5434
1.7056 0.2857 1.3787 0.5341

>> A+1
ans =

1.9058 1.0975 2.0000 1.4854
1.1270 1.2785 1.1576 1.8003
1.9134 1.2500 1.7000 1.1419

Code Example 26: Basic arithmetic with matrices

The multiplication operator * can be used to multiply every value of a matrix/vector by a scalar
value, or to perform matrix multiplication (providing the two matrices are of compatible sizes).
Note that the sequence vector notation generates row vectors, so these may need to be transposed
(Section 3.3.4).

>> A*2
ans =

1.8116 0.1951 2.0000 0.9708
0.2540 0.5570 0.3152 1.6006
1.8268 0.5000 1.4000 0.2838

INTRODUCTION TO MATLAB 13

>> A*B
Error using *
Inner matrix dimensions must agree.

>> C = rand(4,3)
C =

0.6555 0.2769 0.6948
0.1712 0.0462 0.3171
0.7060 0.0971 0.9502
0.0318 0.8235 0.0344

>> A*C
ans =

1.3319 0.7522 1.6272
0.2677 0.7223 0.3539
1.1402 0.4493 1.3840

>> z = [1;2;3;4]
z =

1
2
3
4

>> A*z
ans =

6.0424
4.3579
4.0809

Code Example 27: Matrix multiplication

The division / and left division \ operators can be used to divide each element of a matrix by a
scalar (see Section 3.3.5 for another use of these operators). The power operator ^ can be used
to raise a matrix by a scalar value (we shall only worry about positive integers here — in which
case this operator is equivalent to repeated matrix multiplication of the matrix with itself)

3.3.3 Element-wise Arithmetic

MATLAB also supports element-wise arithmetic operators. When applied to two matrices/vec-
tors of the same size they apply the matching scalar operation to the elements with the same
index. If only one of the arguments of the element-wise operator is a scalar then the scalar is
automatically converted into a matrix/vector of the correct size filled with the scalar value. The
element-wise operators are multiplication (.*), division (./), left division (.\) and power (.^).
Notice that these are similar to the scalar operators but prefixed with a period.

>> A.*B
ans =

0.3820 0.0936 0.8491 0.3678
0.1163 0.1826 0.1472 0.5947
0.7236 0.0089 0.4751 0.0557

>> A./B
ans =

2.1476 0.1017 1.1777 0.6406
0.1387 0.4247 0.1688 1.0769
1.1530 7.0005 1.0313 0.3617

>> A.^B
ans =

0.9591 0.1072 1.0000 0.5783
0.1511 0.4325 0.1781 0.8474
0.9307 0.9517 0.7850 0.4649

Code Example 28: Element-wise arithmetic

14 INTRODUCTION TO MATLAB

3.3.4 Transpose

MATLAB has two matrix suffix operators (and matching built-in functions) to take the transpose
of a matrix. The complex conjugate transpose operator (single-quote ’ or the ctranspose function)
takes the transpose of a matrix and the complex conjugate in one operation; whereas, the transpose
operator (.’ or the transpose function) just takes the transpose. For real-valued matrices these
two operators are equivalent.

>> A’
ans =

0.9058 0.1270 0.9134
0.0975 0.2785 0.2500
1.0000 0.1576 0.7000
0.4854 0.8003 0.1419

>> A.’
ans =

0.9058 0.1270 0.9134
0.0975 0.2785 0.2500
1.0000 0.1576 0.7000
0.4854 0.8003 0.1419

>> Z = complex(A,B)
Z =

0.9058 + 0.4218i 0.0975 + 0.9595i 1.0000 + 0.8491i 0.4854 + 0.7577i
0.1270 + 0.9157i 0.2785 + 0.6557i 0.1576 + 0.9340i 0.8003 + 0.7431i
0.9134 + 0.7922i 0.2500 + 0.0357i 0.7000 + 0.6787i 0.1419 + 0.3922i

>> Z’
ans =

0.9058 - 0.4218i 0.1270 - 0.9157i 0.9134 - 0.7922i
0.0975 - 0.9595i 0.2785 - 0.6557i 0.2500 - 0.0357i
1.0000 - 0.8491i 0.1576 - 0.9340i 0.7000 - 0.6787i
0.4854 - 0.7577i 0.8003 - 0.7431i 0.1419 - 0.3922i

>> Z.’
ans =

0.9058 + 0.4218i 0.1270 + 0.9157i 0.9134 + 0.7922i
0.0975 + 0.9595i 0.2785 + 0.6557i 0.2500 + 0.0357i
1.0000 + 0.8491i 0.1576 + 0.9340i 0.7000 + 0.6787i
0.4854 + 0.7577i 0.8003 + 0.7431i 0.1419 + 0.3922i

Code Example 29: Matrix transposition

3.3.5 Solving Linear Systems

MATLAB has built-in support for solving linear systems by use of the left division (\) and divi-
sion (/) operators. Given two matrices A,B and a vector of unknowns x; then, x = A\B gives the
solution to the equation Ax = B and x = B/A gives the solution to the equation xA = B. Note
that in the first case A and B require the same number of rows and in the second case A and B
require the same number of columns.

>> A = [3 1 -1; 1 1 1; 0 1 -1]
A =

3 1 -1
1 1 1
0 1 -1

>> B = [0;0;1]
B =

0
0
1

INTRODUCTION TO MATLAB 15

>> A\B
ans =

-0.3333
0.6667
-0.3333

>> B’/A
ans =

-0.1667 0.5000 -0.3333

Code Example 30: Solving linear systems

3.4 Functions

All basic mathematical functions in Section 2.5 can be applied (usually element-wise) to matrices
and vectors.

3.4.1 Vector Functions

Below is a non-exhaustive list of functions for vectors. These can also be applied to matrices, in
which case each column of the matrix is treated as a different vector by default, returning a row
vector of the results.

min, max Minimum/maximum value in the vector
sum Sum of all values
prod Product of all values

mean, median Mean/median of the values
std, var Standard deviation/variance of the values
cumsum Cumulative sum of the values
cumprod Cumulative product of the values
sort Sorts the values in the vector

3.4.2 Matrix Functions

Below is a non-exhaustive list of functions for matrices. All basic mathematical functions in
Section 2.5 can also be applied (usually element-wise) to the matrix.

inv Inverse a matrix (do not use for solving linear systems, see Section 3.3.5)
det Calculate the determinant of a matrix
trace Calculate the trace of a matrix
norm Calculate a norm of the matrix (defaults to 2-norm)
rank Calculate the rank of the matrix
eig Calculate eigenvalues and eigenvectors of the matrix
poly Calculate characteristic polynomial of the matrix
cond Calculate the condition number of the matrix

expm, logm Matrix exponential and logarithm
sqrtm Square root of the matrix

Some functions in MATLAB return more than one value. One such example is eig. By default
a multiple function will return a single result (sometimes the first result only). In the case of eig
this will be a column vector containing the eigenvalues of the matrix. In order to obtain all the
results from the function you need to assign the result directly to multiple variables. This is done
by listing the variable names separated by commas and surrounded by square brackets [] on the
left-hand side of the assignment. In the case of eig the two return value version returns a matrix
containing each eigenvector as a column and a diagonal matrix of the eigenvalues. If you want
to ignore a return value you can use the tilde ~ instead of a function name for that return value.

16 INTRODUCTION TO MATLAB

>> eig(A)
ans =

3.3615
1.1674
-1.5289

>> [V,D] = eig(A)
V =

-0.9011 0.2579 0.2860
-0.4226 -0.8773 -0.4480
-0.0969 -0.4048 0.8471

D =
3.3615 0 0

0 1.1674 0
0 0 -1.5289

>> [V,~] = eig(A)
V =

-0.9011 0.2579 0.2860
-0.4226 -0.8773 -0.4480
-0.0969 -0.4048 0.8471

Code Example 31: Handling multiple function returns (calculating eigenvalues/eigenvectors)

4 Strings

MATLAB supports string/character values. A string is essentially a special vector of characters,
which can be entered using single quotation marks. As a vector you can access sub-strings and
individual characters by using standard vector indexing.

>> str = ’This is a test string’
str =
This is a test string

>> str(6)
ans =
i

>> str(11:14)
ans =
test

Code Example 32: String example

You can concatenate strings together by surrounding multiple string values/literals with square
brackets [].

>> newstr = [’Concatenate "’ str ’" in the middle of this string’]
newstr =
Concatenate "This is a test string" in the middle of this string

Code Example 33: String concatenation

4.1 Formatting Numbers

It is possible to convert numbers into strings using the built-in functions num2str and sprintf.
The first function takes a scalar, vector or matrix and converts it into a string (or array of strings)
containing the numbers formatted with at most 4 decimal places. An optional second argument
can take a scalar number to specify the number of decimal places to use, or a format argument
(see sprintf). The sprintf function is more complicated (and is based on the function with the

INTRODUCTION TO MATLAB 17

same name from the C programming language). This function takes as the first argument a string
which can contain a format specifier (a ’%’ followed by some parameters; for example, ’%08d’
formats an integer padded to 8 characters with leading zeros). For each format specifier a value
is read from the rest of the specified arguments (with matrices and vectors being expanded to a
list of arguments). The format is applied as many times as necessary to handle all the arguments
specified. The MATLAB documentation for this function should be read as it contains far more
detail than can be covered here.

>> num2str(2.53380112)
ans =
2.5338

>> num2str(2.53380112,7)
ans =
2.533801

>> sprintf(’%08d’,4)
ans =
00000004

>> sprintf(’Test %d %d %d; ’, [3 1 -1; 1 1 1; 0 1 -1])
ans =
Test 3 1 0; Test 1 1 1; Test -1 1 -1;

Code Example 34: Formatting numbers

Notice that sprintf evaluates a matrix column-wise (the first three values printed are the values
from the first column).

4.2 Displaying Text

MATLAB by default has outputted the results of its computation in its own format. Using num-
ber formatting and strings it is possible to generate customised text output using the disp com-
mand, which takes a string and outputs it to the Command Window.

>> x = 1:10;
>> disp([’First 10 factorials:’ sprintf(’\n%4d: %8d’, [x; cumprod(x)])])
First 10 factorials:

1: 1
2: 2
3: 6
4: 24
5: 120
6: 720
7: 5040
8: 40320
9: 362880

10: 3628800

Code Example 35: Displaying text

Notice in the sprintf function a ’\n’ in the string inserts a new line in the output. A fprintf

function also exists, which works in a similar manner to sprintf, but rather than return a string
it prints the result directly to the Command Window without a new line at the end.

5 Graphics

MATLAB has support for plotting data in various formats. In this section we shall discuss the
basic plotting functions available.

18 INTRODUCTION TO MATLAB

5.1 Plot Basics

The main basic plotting function is simply called plot. This function is used to plot x and y data
against each other as a line plot. The function can take a variable number of arguments, with
each set of three arguments (a triple) detailing a set of data to plot, and how to plot it. The first
argument is the x data for plot, the second argument is the y data and the third argument is
a string line specification specifying the format for the line. A line specification consists of three
parts: a colour, a marker and a line type.

Colour Marker Line
b Blue . Point - Solid
g Green o Circle : Dotted
r Red x Cross -. Dash-dot
c Cyan + Plus -- Dashed
m Magenta * Star (none) No line
y Yellow s Square
k Black d Diamond
w White v Triangle (down)

^ Triangle (up)
< Triangle (left)
> Triangle (right)
p Pentagram
h Hexagram

After each triple of data we can also specify key-value pairs, where the key is a string, for speci-
fying more detailed plot information (use doc plot for more information). The plot function can
also take a single vector argument, in which each item in the vector is plotted against the vector
index, or just two vector arguments (the x and y values). In these case a default line specification
is used.

>> x = 0:0.5:3
x =

0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

>> plot(x,x,’-xr’,x,x.^2,’-ob’,x,x.^3,’-sk’)

Code Example 36: Basic plotting

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

Figure 2: Basic plotting result

Here, MATLAB has automatically decided the minimum and maximum values to display on the
x and y axis. Three functions exist for changing these limits. xlim([min max]) sets the limits of

INTRODUCTION TO MATLAB 19

the x axis, ylim([min max]) sets the limits of the y axis, and axis([xmin xmax ymin ymax]) sets the
limits of both axis. All these functions are applied to the currently active plot.

plot uses a linear x and y axis. There also exists the functions loglog, semilogx, and semilogy,
which use logarithmic xy, logarithmic x/linear y, and linear x/logarithmic y, respectively.

5.2 Annotation

In the previous example of plotting you will notice that there is no title or axis labels. We can
add these by use of the title, xlabel and ylabel commands. Note that basic TEX support is
implemented in the string specified in the arguments (full LATEX support can also be enabled).
We would also like to be able to add a legend to the plot. We do this with a the legend function
that takes a list of strings as the legend for each plot (the first string is the first plot, etc.). The
legend can also take key-value pairs for more detailed settings. The most important of these is
the ’Location’ value, which allows us to position the legend on the plot.

>> xlabel(’x’)
>> ylabel(’f(x)’)
>> title(’Basic Polynomial Functions’)
>> legend(’x’,’x^2’,’x^3’,’Location’,’NorthWest’)

Code Example 37: Annotating a plot

x

0 0.5 1 1.5 2 2.5 3

f(
x
)

0

5

10

15

20

25

30
Basic Polynomial Functions

x

x2

x3

Figure 3: Annotated plotting result

As can be seen here, the font can be a little small, this can be changed with key-value pair
arguments to all the annotation functions. However, often a simpler way is to use the interac-
tive Plot Tools. To open this on an active plot, either enter plottools at the prompt, or use the
Show Plot Tools and Dock Figure tool-bar button () on the plot window. You can see the MATLAB
code required to generate a plot by clicking the File Generate Code... menu item.

5.3 3D Plots

MATLAB also has a number of functions for plotting three-dimensional data (x, y and z data).
The first we shall consider is the plot3 function, used to plot a 3D line plot. This function works
in a similar manner to plot, except you need to provide vectors of x, y and z data for each line.

>> t = linspace(0,10*pi,501);
>> plot3(sin(t),cos(t),t,’-r’)

Code Example 38: 3D line (parametric) plot

20 INTRODUCTION TO MATLAB

1

0.5

0

-0.5

-1-1

-0.5

0

0.5

25

0

5

10

20

15

35

30

1

Figure 4: 3D line (parametric) plot

The annotations work as before, although we also have a zlabel function for labelling the z axis.
We can also plot full 3D functions using the surf plot. The normal usage of this function takes

three arguments, for the x, y and z data. The z data must be a M × N matrix; whereas, x and y
can be a matrix or a vector (but both must be the same). If x and y are matrices they must be the
same size as the z matrix and each matching element from the three vectors denotes a x, y and z
point to plot on the surface. If x and y are vectors then x must be of length N and y must be of
length M ; in this case, each point plotted is (x(j), y(i), z(i, j). MATLAB has an in-built function
called meshgrid, which takes a x and y vector and creates a full x and y matrix representing the
tensor points.

>> x = linspace(0,1,5);
>> [X, Y] = meshgrid(x,x)
X =

0 0.2500 0.5000 0.7500 1.0000
0 0.2500 0.5000 0.7500 1.0000
0 0.2500 0.5000 0.7500 1.0000
0 0.2500 0.5000 0.7500 1.0000
0 0.2500 0.5000 0.7500 1.0000

Y =
0 0 0 0 0

0.2500 0.2500 0.2500 0.2500 0.2500
0.5000 0.5000 0.5000 0.5000 0.5000
0.7500 0.7500 0.7500 0.7500 0.7500
1.0000 1.0000 1.0000 1.0000 1.0000

>> x = linspace(0,1,25);
>> [X, Y] = meshgrid(x,x);
>> surf(X, Y, X.*Y.*(1-X).*(1-Y))
>> colorbar

Code Example 39: 3D surface plot

We have used the colorbar function to display a colour bar on the active plot. We can change
the colour scheme used by the colormap function, which either takes a string specifying a built-in
colour map or a N × 3 matrix of colours (each row is a Red-Green-Blue colour triplet, each value
between 0 and 1). See help graph3d for a list available colour maps.

The Rotate 3D tool-bar button () in the plot window allows you to rotate the plot by dragging
within the plot area. The view(2) or view(3) function calls will switch the current plot view to a
2D top-down view or the default 3D view, respectively.

The x and y arguments to surf can be omitted, in which case the values in z are plotted against
their indices. The colour of the surface plot is by default calculated from the z value. Optionally, a

INTRODUCTION TO MATLAB 21

1

0.8

0.6

0.4

0.2

00

0.2

0.4

0.6

0.8

0.03

0.02

0.04

0.01

0

0.05

0.06

0.07

1

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5: 3D surface plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6: Result of view(2) on 3D surface plot

fourth colour argument can be specified, which specifies the colour (the colour argument of each
point is a single value and MATLAB interpolates the colour in the same way as when using z
data).

MATLAB contains several more useful functions for plotting 3D data. The mesh function is
similar to surf, except it only plots the mesh lines (this time coloured), rather than filled polygons.
The trisurf and trimesh functions take only vector x, y, and z data, but also takes as the first
argument a M × 3 matrix of triangles; this matrix denotes in each row the indices (in the x, y and
z data) of a single triangle to plot. The contour function is similar to surf, but plots a 2D contour
plot; an optional fourth argument can be used to specify the number of contour levels. Finally,
surfc and meshc draws a surface or mesh plot, respectively, with a contour plot underneath.

>> x = linspace(-pi,pi,25);
>> [X, Y] = meshgrid(x,x);
>> meshc(X, Y, sin(X).*sin(Y))

Code Example 40: 3D mesh/contour plot

22 INTRODUCTION TO MATLAB

3

2

1

0

-1

-2

-3-3

-2

-1

0

1

2

3

1

-1

-0.5

0

0.5

Figure 7: 3D mesh/contour plot

6 Programming

So far we have only run MATLAB commands one at a time within the Command Window. While
this is useful for testing and learning proposes we need to be able to run multiple commands as
a single program.

6.1 Scripts

The simplest method for running multiple commands is the use of MATLAB scripts. A MATLAB
script is basically a simple text file (with a .m extension) filled with MATLAB commands to exe-
cute. Scripts are executed by typing the name of the file (without extension) at the prompt. The
script is found by looking in the path and current folder (as described in Section 1.2). Note that
the current folder is searched first, so a file in the local folder with the same name as a built-in
MATLAB function will overwrite the MATLAB function (so a script file called sin will result in
all calls to the sine function producing incorrect results). All variables and values in the script file
are saved into the workspace, so the values can be accessed after execution, and the script can
access any variables currently in the workspace.

In order to start editing a script file within MATLAB you can either create a new file with
Home New Script or Home New Script menu bar buttons, or you can type edit filename into
the Command Window (where filename is the name of the file with or without extension). In the
first case the file will not be created until you save it. In the later case, if a script with the specified
name already exists it will be opened for editing; otherwise, a prompt will ask if you want to
create a script with that name. In either case the Editor window will appear with a blank text file,
simple enter the script and save.

MATLAB scripts may contain comments (lines of text which are not executed) and blank
lines. Comments in MATLAB start with a percentage sign % and continue until the end of the
line. When run the script will output the result of any command not ending in a semi-colon ;

(the same as if run from the Command Window); therefore, it is advisable in scripts to always end
lines with a semi-colon. With scripts it is desirable to keep lines short (so they can be easily read);
in fact, the MATLAB Editor window includes a line down the page to indicate a sensible line
length (comments are automatically split at this point). If you enter a long command and need
to split it over multiple lines you need to use the line continuation ellipsis ... (three periods) at the
end of the line to continue. Note that you cannot use this in the middle a string (split the string
and use string concatenation, see Section 4).

Below is a sample script to demonstrate a few of these point, note the comments and the
fprintf function call which is split over two lines. Create a script file sample_script.m in a local

INTRODUCTION TO MATLAB 23

directory (you may want a separate directory for this course) containing the following code.

1 % This is a comment
2
3 % Set up variables
4 A = [3 1 -1; 1 1 1; 0 1 -1];
5 B = [0;0;1];
6
7 % Print out some matrix properties
8 disp(’Properties of A:’);
9 disp([’ Condition number: ’ num2str(cond(A))]);
10 disp([’ Determinant: ’ num2str(det(A))]);
11 % Following command is split over two lines
12 fprintf(’ Characteristic Polynomial: %.1fx^3%+.1fx^2%+.1fx%+.1f\n\n’, ...
13 charpoly(A));
14
15 % Solve Ax=b
16 disp(’Solving Ax=b’);
17 x = A\B
18
19 % Display the output
20 disp([’x = [’ sprintf(’%8.4f’, x) ’]’]);

Code Example 41: Sample script

To execute the script, do one of the two following options:

• Ensure you are in the directory containing the file (cd as necessary) and enter sample_script
into the Command Window, or

• Click the Run button in the Editor tab of the Editor window with the script file open (if you
are not in the correct folder MATLAB will present a warning dialog — select Change Folder
from this dialog).

Either method will run the code and output the results.

>> sample_script
Properties of A:

Condition number: 3.2355
Determinant: -6
Characteristic Polynomial: 1.0x^3-3.0x^2-3.0x+6.0

Solving Ax=b
x = [-0.3333 0.6667 -0.3333]

Code Example 42: Sample script output

The Editor underlines warnings (in orange) and errors (in red) within a script file, with a match-
ing symbol in the right margin. Hovering over these with the cursor will display a message on
the problem, and a button to potentially fix the problem (if MATLAB can calculate an obvious
fix). Errors are problems that will stop the script running (for example forgetting the ... when
splitting over two lines the command in the above example). Warnings are things that MATLAB
considers bad practice (forgetting a semi-colon at the end of an assignment), but will still allow
the code to be run.

6.2 Functions

So far we have only used built-in MATLAB functions. MATLAB as a programming language
allows us to define our own functions as necessary. These are defined in a script file similar to
basic scripts, but with a specific format (a required header line defining the function). You can
create a function by editing a script file as specified above and entering the necessary code, or to
have MATLAB automatically generate a template use the Home New Function menu bar button.

24 INTRODUCTION TO MATLAB

1 function [output_args] = functionname(input_args)
2 %FUNCTIONNAME Summary of this function goes here
3 % Detailed explanation goes here
4
5 end

Code Example 43: Default function structure

The above shows an example of an automatically generated function template. This will need
editing as required. The definition of the function breaks down into the following components:

function Keyword Keyword to denote we are writing a function.

output_args Comma-separated list of output argument names. If the function has no out-
put then the code between the function keyword and the functionname can be omitted
([output_args] =).

functionname The name of the function (used when calling the function). The file name of the
file containing the function must be functionname.m (MATLAB will display a warning if the
file name and function name differ).

input_args Comma-separated list of input argument names.

H1 Comment Line The first comment line immediately following the function definition line.
Should contain the function name followed by a very short description.

Further documentation comments More comment lines immediately following the function def-
inition. The text in these comment lines, along with the H1 Comment Line, will be displayed
when doc functionname or help functionname are called.

Main Body All code between the function definition and the matching end keyword. Makes up
the code executed when the function is called

end Keyword The end of the function definition. Note this is optional if this is the only function
defined within the file.

Functions variables have scope only to the function. This means that the function does not have
access to any variable in the workspace, and any variables set in the function are not available
in the workspace. To allow arguments to be passed to and from your function you specify a
list of input arguments in the brackets after the function name and a list of output arguments
in the square brackets after the function keyword. The input arguments will have the values of
whatever is passed when the function is called. To return values in the output arguments, simply
assign the result to return to the variable name of the output argument. When the function is
called the caller specifies how many return values to handle (see Section 3.4.2) by the variables
that the result is assigned to. If you function returns more variables then these are ignored. A
special variable nargout is available to functions, which gives the number of return values the
caller requested. You can also allow a variable number of input arguments, but that is beyond
the scope of this course.

1 function [z, w] = sample_function(x, y)
2 %SAMPLE_FUNCTION Calculates the product and difference of two numbers
3 z = x*y;
4 w = x-y;
5 end

Code Example 44: Simple function

The above sample show the definition of a function with two returns. This function is called like
any other MATLAB function (providing it is in the current folder/path).

INTRODUCTION TO MATLAB 25

>> x = sample_function(2,3)
x =

6

>> [x,y] = sample_function(2,3)
x =

6

y =
-1

Code Example 45: Calling the simple function

There is one problem with the function. While it works for scalar inputs it will fail with vector or
matrix based inputs. Often when we write functions we want them to be as generic as possible
(notice that sin, for example, is defined for scalar, matrix or vector inputs). We can fix this by
using the element-wise operators in preference to the normal scalar operators.

1 function [z, w] = sample_function_vec(x, y)
2 %SAMPLE_FUNCTION_VEC Calculates the product and difference of two inputs
3 z = x.*y;
4 w = x-y;
5 end

Code Example 46: Simple function changed for vector/matrix inputs

>> [x,y] = sample_function([1 5],[2 5])
Error using *
Inner matrix dimensions must agree.

Error in sample_function (line 3)
z = x*y;

>> [x,y] = sample_function_vec([1 5],[2 5])
x =

2 25

y =
-1 0

Code Example 47: Calling functions with vector arguments

Function files can actually contain more than one function; however, only the first “main”
function defined in a file is visible outside the file. This allows you to write local functions used
by the main function in the file but not usable by anyone else.

1 function [z, w] = sample_subfunction(x, y)
2 %SAMPLE_SUBFUNCTION Calculates the product and difference of two inputs
3 z = multiply(x, y);
4 w = x-y;
5 end
6
7 function [z] = multiply(x,y)
8 %MULTIPLY Elementwise multiplication of the vectors
9 z = x.*y;
10 end

Code Example 48: Sub-function example

In this case the multiply is only available to the sample_subfunction function. Note that we can
still have comments after the function definition of a sub-function. To see the documentation you
need to specify both the main function name and the sub-function name separated by a > in the
call to help or doc. For example, to see the documentation of the multiply sub-function simply
call help sample_subfunction>multiply.

26 INTRODUCTION TO MATLAB

A special statement, return, can be used anywhere in a function. When this statement is
executed MATLAB exits the current function and executes no more commands from the function.
This can be combined with if statements (see Section 6.5) to handle special cases or abort early.
Unlike in some other programming languages return does not take any arguments (a return value), as
return values are set by assignment.

6.3 Logical Operators

MATLAB has a built-in logical type (often called boolean type in other language), which can take
a true or false value only (represented in MATLAB by 1 and 0, respectively). This logical type
is returned when using any of the MATLAB comparison operators. These comparison operators
are performed element-wise on matrices of the same size and return a matrix with 1 (true) or 0
(false) in each entry indicating if the condition is true for the matching elements. The comparison
operators can be used with one scalar and one vector/matrix argument, in which case the scalar
is expanded into a matrix of the correct size.

A < B Checks if A < B (element-wise)
A > B Checks if A > B (element-wise)
A <= B Checks if A ≤ B (element-wise)
A >= B Checks if A ≥ B (element-wise)
A == B Checks if A = B (element-wise)
A ~= B Checks if A 6= B (element-wise)

The first four of these work only on the real part of a complex number; whereas, == and ~= works
on both the real and imaginary parts. In Section 2.2 we mentioned that double-precision floating
points suffer from rounding error. The main issue this results in is that the equality comparisons
do not always return true when we expect, as although two numbers may appear to be the same
there may be a small difference. For example, on my machine, the following occurs:

>> (19.2-19) == 0.2
ans =

0

>> 19.2-19-0.2
ans =

-7.216449660063518e-16

Code Example 49: Example of rounding error in comparisons

Generally, if we are dealing with a comparison of floating point numbers we calculate the abso-
lute value of the difference between the numbers and check if it less than some tolerance value
(a small number). For example, rather than evaluate A==B, we instead use, abs(A-B) < 1e-8. It
also worth noting that the special value NaN always compares as not equal to any value, including
itself (NaN == NaN returns false). To detect NaN values you should use the isnan function.

The comparison operators above work on numbers. MATLAB has two functions, strcmp and
strcmpi, which perform case sensitive and case insensitive, respectively, comparisons (equality) on
two strings.

MATLAB has two functions, called true and false, which work in a similar way to ones and
zeros, respectively, except that the return values are logical rather than double. These functions
can also be used without arguments to return a scalar true or false value.

MATLAB also has a number of logical operators and functions, which act (element-wise) on
matrices of logical values.

Operator Function Description
~A not(A) Performs a logical NOT (0 becomes 1, 1 becomes 0)

A & B and(A,B) Performs logical AND (returns 1 if both A and B are 1)
A | B or(A,B) Performs logical OR (returns 1 if either A or B are 1)

xor(A,B) Performs logical XOR (returns 1 if only one of A and B are 1)

INTRODUCTION TO MATLAB 27

Two functions (all and any) exist, which can be applied to a matrix or vector. Applied to a vector
these functions perform a logical AND or OR, respectively, to the elements of the vector; when
applied to a matrix the logical AND or OR is applied to each column (returning a row vector).

>> x = rand(3)
x =

0.2599 0.1818 0.8693
0.8001 0.2638 0.5797
0.4314 0.1455 0.5499

>> y = x > 0.5
y =

0 0 1
1 0 1
0 0 1

>> z = x < 0.2
z =

0 1 0
0 0 0
0 1 0

>> y | z
ans =

0 1 1
1 0 1
0 1 1

>> w = any(y)
w =

1 0 1

>> all(w)
ans =

0

Code Example 50: Logical operations

Two, short-circuit logical operators also exist. The short-circuit logical AND && and short-circuit
logical OR || can only be applied to scalar arguments. These functions are called short-circuit be-
cause they only evaluate the second argument if necessary. Basically, for the short-circuit logical
AND the second argument will not be evaluated if the first argument is false and for the short-
circuit logical OR the second argument will not be evaluated if the first argument is true (because
in both cases MATLAB already knows the result of the logical operator).

The main use of logical values will arise in the next few sections; however, they can also be
used to index into a vector/matrix. If a logical matrix is passed to the index argument of a matrix
of the same size it will return only the values whose matching logical element is true.

>> x = rand(4)
x =

0.7803 0.0965 0.5752 0.8212
0.3897 0.1320 0.0598 0.0154
0.2417 0.9421 0.2348 0.0430
0.4039 0.9561 0.3532 0.1690

>> x(x < 0.5) = 0
x =

0.7803 0 0.5752 0.8212
0 0 0 0
0 0.9421 0 0
0 0.9561 0 0

Code Example 51: Using logical indexing

28 INTRODUCTION TO MATLAB

A find function also exists in MATLAB which returns the indices of all non-zero entries in a
matrix or vector. This can be passed a logical matrix to find all entries in a matrix which meet a
certain condition.

>> [i,j] = find(x < 0.02)
i =

2

j =
4

Code Example 52: find indices of all values < 0.02 in matrix

6.4 Loops

So far we have only considered statements which are executed once. Loops are a programming
structure that allows us to execute a number of statements several times. MATLAB has both
for and while loop types. An important note is that although we can use loops to iterate through the
elements in a vector/matrix and handle them one at a time this should be avoided wherever possible (by
using element-wise and matrix operations) for performance (speed) reasons.

6.4.1 for Statement

A for loop executes a set of statements a set number of times, each time with an index variable
which takes the next value from an vector/matrix. The general structure of the for loop is:

1 for index = values
2 statements
3 end

Code Example 53: for loop structure

Here, index is a variable name to use as the index variable and values is the vector/matrix of
values to take. The first time the statements are executed index will be a column vector contain-
ing the first column of values, the second time statements are executed index will be a column
vector containing the second column of values, etc.. In normal usage values is a row vector, so
each iteration index takes a single value; in fact, usually we use the start:end or start:step:end

notation directly.

1 disp(’The first 10 factorials’);
2 v = 1;
3 for i = 1:10
4 v = v*i;
5 fprintf(’%3d : %8d\n’, i, v);
6 end

Code Example 54: Factorial calculation with for loop

The first 10 factorials
1 : 1
2 : 2
3 : 6
4 : 24
5 : 120
6 : 720
7 : 5040
8 : 40320
9 : 362880
10 : 3628800

Code Example 55: Result of factorial calculation with for loop

INTRODUCTION TO MATLAB 29

Notice that the statements within the for loop are indented. This is sensible to do with any block-
style statement as it makes the code easier to read (the MATLAB editor will actually automatically
indent for you, and unindent when you enter end).

Within a for loop, two special statements can be used. break exits the loop completely (no
more values from values list are evaluated) when it is called and continue stops executing the
statements for the current value and moves to the next value from values (if one exists).

6.4.2 while Statement

The while loop continues to execute the statements it contains while some condition holds true.

1 while expression
2 statements
3 end

Code Example 56: while loop structure

When this statement is reached the expression, which should return a logical matrix, is evaluated.
If all values in the matrix are non-zero (true) then the statements are executed. The expression

is then evaluated again and statements executed if all entries of the matrix are non-zero. This
continues until one entry of expression evaluates to 0 (false).

1 v = 100;
2 while v > 0.5
3 disp(num2str(v,8));
4 v = v/2;
5 end

Code Example 57: while loop example

100
50
25
12.5
6.25
3.125
1.5625
0.78125

Code Example 58: Result of while loop example

If the expression never evaluates to false then the code will be stuck in an infinite loop and the
script will never terminate. You can force a running script to terminate by using the Ctrl + C

keyboard shortcut within the Command Window.
Within a while loop break and continue can be used in similar manner to a for loop. break

exits the loop, continue stops executing the statements and evaluates expression again.

6.5 if-else Statement

Using the logical values we have seen in Section 6.3 is it possible to write MATLAB code which
only executes statements if a particular condition is true. To do this we use a if statement, which
has the general form:

1 if expression
2 if_statements
3 elseif expression
4 elseif_statements
5 else
6 else_statements
7 end

Code Example 59: if-elseif-else structure

30 INTRODUCTION TO MATLAB

The elseif block (with its following statements) and the else block (with its following state-
ments) are both optional. You can also have multiple elseif statements (must be after the if state-
ment and before the else statement). When an if statement is reached the (logical) expression
is evaluated. If all values in the resulting matrix are non-zero (true) then if_statements are ex-
ecuted; however, if expression evaluates to false then the expression for the first elseif state-
ment is evaluated and elseif_statements executed if this is true. This continues, evaluating the
expression for each elseif statement, in order, until one is true (then the matching statements are
executed). If no expression evaluates to true then the else_statements are executed.

1 function plotdata(x, y, xtype, ytype)
2 % plotdata Plots the data on linear or log plots
3 % xtype and ytype are strings specify the type of
4 % scale for that axis - either ’log’ or ’linear’.
5 if (strcmpi(xtype,’log’) && strcmpi(ytype,’log’))
6 loglog(x, y);
7 elseif strcmpi(xtype,’log’)
8 semilogx(x, y);
9 elseif strcmpi(ytype,’log’)
10 semilogy(x, y);
11 else
12 plot(x, y);
13 end
14 end

Code Example 60: if example

6.6 switch Statement

The switch statement selects a set of statements to execute based on the value of a number or
string. The structure of the switch statement is as follows.

1 switch expression
2 case case_expression
3 statements
4 otherwise
5 otherwise_statements
6 end

Code Example 61: switch structure

The otherwise statement is optional and you can have multiple case statements. When reached a
switch statement evaluates the expression and compares the result against all case_expressions.
The statements of the first matching case_expression are executed. If no match occurs then the
otherwise_statements are evaluated. A case_expression can be a single value, or multiple values
(comma-separated and surrounded by braces {}) if multiple values should have the same state-
ments executed. Note that unlike in some other programming languages (C/C++ etc.) case statements
do not have fall-through behaviour and MUST NOT contain a break statement.

1 function [city] = capital(country)
2 switch country
3 case ’Austria’
4 city = ’Vienna’;
5 case ’Germany’
6 city = ’Berlin’;
7 case {’United Kingdom’,’Great Britain’}
8 city = ’London’;
9 otherwise
10 city = ’<Unknown>’;
11 end
12 end

Code Example 62: switch example

Note that the string comparison here is case sensitive.

INTRODUCTION TO MATLAB 31

6.7 Function Handles & Anonymous Functions

So far all variables/values we have considered have been some form of number or a string. It is
possible, however, to store a reference to a function (called function handles in MATLAB terminol-
ogy) within a variable. You can then call that function via the variable by just that variable name
like a function. To take a handle of a function just use the function name prefixed by a @ symbol.

>> sinhandle = @sin
sinhandle =

@sin

>> sinhandle(pi/2)
ans =

1

Code Example 63: Taking and using function handle of sin

The main use for this is that it allows generic functions to be written that operate on a function,
without having to know what function it operates on. If you write such a function you just treat
the specific argument as a function handle and you only need to know how many arguments
to pass to the function. (Note that the function comments should document this for other users
of your functions). MATLAB has several functions that take function handles, such as the easy
plotter functions. Almost all plotting functions we discussed in Section 5 have a easy version
with the same name prefixed by ez, such as ezsurf, ezplot, ezcontour, etc.. This functions take
a function handle (or a string containing MATLAB code to evaluate) and plots the function over
the interval [−2π, 2π] (in each coordinate direction), picking the points it samples the function at
itself. You can also specify a vector as a second argument to change the range. The number of
arguments the function handle takes depends on the plotting routine (ezplot takes one argument
and ezsurf takes two arguments).

>> ezplot(@sin,[-pi pi]);

Code Example 64: Calling ezplot with function handle of sin

We can use function handles to functions we have written as well. For example we can call
ezsurf on the sample_function and sample_function_vec functions we wrote in Section 6.2.

>> ezsurf(@sample_function)
Warning: Function failed to evaluate on array inputs; vectorizing the
function may speed up its evaluation and avoid the need to loop over array
elements.
> In ezplotfeval (line 56)
In ezgraph3>ezeval (line 635)

...
>> ezsurf(@sample_function_vec)

Code Example 65: Calling ezsurf with handle to own function

In Section 6.2 we mentioned that functions should be written as generic as possible, we have here
another demonstration of why. The ezsurf function has tried to call the function with vector or
matrix inputs (essentially one call with all points it wants to evaluate), but as that failed in the
first call it then fell back to one point at a time.

Using function handles we can also define anonymous functions. This are functions that are
written inline in MATLAB (usually fairly simple one-line functions). An anonymous function is
written as @(input_args) functioncode, where input_args is the same as for a normal function
and functioncode is a line of MATLAB code which returns a result (which is the result of the
function). You can use this anonymous function like a normal function handle (passing to a
function or assigning to a variable). We can, for example, write Code Example 40 as follows.

>> ezmeshc(@(x, y) sin(x).*sin(y), [-pi pi])

Code Example 66: 3D mesh/contour plot using anonymous functions

32 INTRODUCTION TO MATLAB

7 Structures

MATLAB has support for various types of more complex data structures, which are beyond the
scope of this course. One basic complex data type is the struct type. A structure is essentially a
group of variables stored together in a single object. The various variables (fields) in a structure
can be different types. A structure type can be generated in two different ways, either with the
struct function, or by direct assignment of fields. The struct function takes a variable number
of values, where each pair is a key-value pair (the first value is the key and MUST be a string, the
second is the value).

>> course = struct(’Name’,’Numerical Solution of ODEs’,...
’Year’,2019,’Semester’,’Winter’)

course =
Name: ’Numerical Solution of ODEs’
Year: 2019

Semester: ’Winter’

Code Example 67: Generating structure using struct function

You can access a field, for reading or assignment of value, by using the dot . notation. Here, you
use the variable name, followed by a period and then the name of the field.

>> course.Name = ’Numerical Solution of ODEs’;
>> course.Year = 2019;
>> course.Semester = ’Winter’;
>> course
course =

Name: ’Numerical Solution of ODEs’
Year: 2019

Semester: ’Winter’

>> course.Name
ans =
Numerical Solution of ODEs

Code Example 68: Generating and reading structure directly

You can also create structure arrays. Structure arrays are accessed in the same way as vectors,
and assigning fields to an index that doesn’t currently exist will grow the array to the correct size.

>> course(3).Year = 2018
course =
1x3 struct array with fields:

Name
Year
Semester

>> course(2)
ans =

Name: []
Year: []

Semester: []

>> course(3)
ans =

Name: []
Year: 2018

Semester: []

Code Example 69: Accessing structure array

Structures, and structure arrays, can be nested with a structure field containing another structure
or array.

INTRODUCTION TO MATLAB 33

8 Error Handling

In some of the code examples above you will have noticed red and orange messages appearing in
the Command Window. This are errors, and warnings, that occurred while trying to run the code.
In this section we shall discuss how to handle errors, and incorrect results.

8.1 Understanding Error Messages

When an error message appears the key is understanding what it is trying to explain. In most
cases this is fairly obvious (although occasionally a different error message to the real problem
may appear).

>> A = rand(4);
>> B = rand(5);
>> A*B
Error using *
Inner matrix dimensions must agree.

>> sample_function
Error using sample_function (line 3)
Not enough input arguments.

Code Example 70: Example error messages

In the case of the first error, we are trying to matrix multiple two matrices with incompatible
dimensions (a 4× 4 with a 5× 5), so MATLAB complains about Inner matrix dimensions, as the
inner matrix dimensions are the number of columns in the first matrix and the number of rows in
the second matrix. In the second case we have tried to call a function without the correct number
of arguments. As this is a function we wrote it has also given us a line number in the function
where the error occurred. This line number is a clickable link, which will open the Editor window
at the specified line. (In this case the error is not here, but it is the location were it is detected —
the line the arguments are first used).

The second situation highlights a useful feature. Take the following code (see if you can spot
the error before running).

1 function [b] = invalid_func(n)
2 % invalid_func Function that we want to take a number
3 % and perform Ax for A=rand(n), x=1:n
4 A = rand(n);
5 x = 1:n;
6 b = A*x;
7 end

Code Example 71: Function with error

When we try to run this function we get an error.

>> invalid_func(4)
Error using *
Inner matrix dimensions must agree.

Error in invalid_func (line 6)
b = A*x;

Code Example 72: Running function with error

MATLAB has told us the error (matrix multiplication with incorrect dimensions), the line the
error occurred on, and has even printed the line causing the error as well. So if we click the line
number we can then look at the code and try and find the error. The error is a matrix dimension
problem so we need to look at the sizes of A and x. A=rand(n), so that is a n× n matrix, which is
as we expect. x=1:n, so that is a vector of n values; however, it is a row vector, or a 1 × n matrix.
So the solution is just to transpose x.

34 INTRODUCTION TO MATLAB

8.2 Generating Errors

When you are writing a code it is possible that you will want to generate error messages in
certain cases. The most common of these is checking that input values to a function are valid.
When you want to generate an error call the error function, passing a error message (string) to
display. When this call is executed the function terminates and the error message is displayed in
the Command Window.

1 function [x] = basic_factorial(n)
2 % basic_factorial A very basic (and naive) factorial implementation
3
4 x = 1;
5 if (n < 0)
6 error(’Factorial only defined for non-negative numbers’);
7 elseif (round(n) ~= n)
8 error(’Factorial only defined for integer values’);
9 elseif (n > 0)
10 for i=1:n
11 x = x*i;
12 end
13 end
14
15 end

Code Example 73: Generating errors

>> basic_factorial(-2)
Error using basic_factorial (line 6)
Factorial only defined for non-negative numbers

>> basic_factorial(2.3)
Error using basic_factorial (line 8)
Factorial only defined for integer values

>> basic_factorial(0)
ans =

1

>> basic_factorial(4)
ans =

24

Code Example 74: Executing a function with error checking

The error function can also take a string, followed by a variable number of arguments. In this
case it treats the string and the arguments in the same way as sprintf. A warning function also
exists that takes identically arguments to error. This function generates a warning message in
the Command Window when executed, but allows the script to continue running.

8.3 Debugging

When running scripts or functions it is possible an error occurs you were not expecting, or an
unexpected value is returned. MATLAB has a debugger, which allows you to run the code and
inspect the values within a function. The best way to enter debug mode is to place a breakpoint
on a line of code where you want the execution to pause and then execute the code as normal.
A breakpoint can be placed (or removed) by clicking in the left margin of the Editor window
(between the code and the line number) or by using the Editor Breakpoints menu. In both cases,
when a breakpoint is active on a line a small red circle will appear in the left margin. When the
code is executed the script will run until this line is reached, and then pause (with the Editor
window active at that line). You can inspect the value of variables in the script/function by
hovering over them with the mouse (a tooltip with the value appears), or by entering the variable

INTRODUCTION TO MATLAB 35

name at the K>> prompt in the Command Window. You can also select some code (either just a
variable or a whole expression), right-click and select Evaluate Expression . The result is output to
the Command Window. Note that a breakpoint pauses the code before execution of a line (so any
variables on that line will not exist yet).

Figure 8: Debug tools

In debug mode the Editor tab on the Editor window contains a set of tools for controlling the
execution of the script. Continue will continue running the script until the next breakpoint occurs.
Step will execute the current line and then pause on the next line. Step In does the same, but if the
line contains a function call then instead it will pause at the first line inside that function. Step Out

will run the rest of the current function and will pause at the line of code after the function call.
Finally, Quit Debugging will terminate the currently executing script and exit the debugger.

Literature & Resources

S. Attaway. Matlab: A Practical Introduction to Programming and Problem Solving. Butterworth-
Heinemann, Boston, third edition, 2013. URL http://www.sciencedirect.com/
science/book/9780124058767.

T. A. Davis. MATLAB Primer. CRC Press, Boca Raton, eighth edition, 2010.

B. R. Hunt, R. L. Lipsman, and J. M. Rosenberg. A Guide to MATLAB for Beginners and Experienced
Users. Cambridge University Press, Cambridge, third edition, 2014.

MathWorks. MATLAB Central, 2019. URL https://www.mathworks.com/
matlabcentral/. [Online].

http://www.sciencedirect.com/science/book/9780124058767
http://www.sciencedirect.com/science/book/9780124058767
https://www.mathworks.com/matlabcentral/
https://www.mathworks.com/matlabcentral/

	Title page
	Contents
	List of Code Examples
	List of Figures

	1 Introduction
	1.1 Overview of the UI
	1.2 Basics of the Command Window
	1.3 Documentation & Help

	2 Basic Mathematics
	2.1 Scalar Arithmetic
	2.2 Number Format & Special Constants
	2.3 Variables
	2.4 Complex Numbers
	2.5 Functions

	3 Vectors & Matrices
	3.1 Defining Matrices & Vectors
	3.2 Indexing
	3.3 Vector & Matrix Operations
	3.3.1 Matrix/Vector Size
	3.3.2 Basic Arithmetic
	3.3.3 Element-wise Arithmetic
	3.3.4 Transpose
	3.3.5 Solving Linear Systems

	3.4 Functions
	3.4.1 Vector Functions
	3.4.2 Matrix Functions

	4 Strings
	4.1 Formatting Numbers
	4.2 Displaying Text

	5 Graphics
	5.1 Plot Basics
	5.2 Annotation
	5.3 3D Plots

	6 Programming
	6.1 Scripts
	6.2 Functions
	6.3 Logical Operators
	6.4 Loops
	6.4.1 for Statement
	6.4.2 while Statement

	6.5 if-else Statement
	6.6 switch Statement
	6.7 Function Handles & Anonymous Functions

	7 Structures
	8 Error Handling
	8.1 Understanding Error Messages
	8.2 Generating Errors
	8.3 Debugging

	Literature & Resources

