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Given a convex domain Q C R? with smooth /piecewise boundary and f = f(Vu, u, x), find u
such that

~-

— det(D?u) = in Q,
u=g on 0.

Here D2u denotes the Hessian of wu.
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Given a convex domain Q C R? with smooth /piecewise boundary and f = f(Vu, u, x), find u
such that

in Q,

— det(D%u) = f
u=g on 0.

Here D2u denotes the Hessian of wu.

For non-strictly convex domains it is known that the above equation does not have classical
solutions in general.
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Monge-Ampeére

Given a convex domain Q C R? with smooth /piecewise boundary and f = f(Vu, u, x), find u
such that

in Q,

— det(D%u) = f
u=g on 0.

Here D2u denotes the Hessian of wu.

For non-strictly convex domains it is known that the above equation does not have classical
solutions in general. However, for f > 0 we have unique generalized solution in class of convex
functions (may still have non-convex solutions). [Aleksandrov, 1961]
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Vanishing

We approximate the Monge-Ampeére equation by a sequence of higher order PDEs:
—eA%F +det(D?uf) =f,  inQ, (1)

where € > 0.
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Vanishing Moment Method

We approximate the Monge-Ampeére equation by a sequence of higher order PDEs:

—eA%F + det(D?uf) = f, in Q, (1)

Since we have now have a fourth order problem we impose an additional boundary condition:

AU =¢ on 0f).

where € > 0.

Scott Congreve (Charles University)

VEM for Monge-Ampére

NACONF 2025 — University of Strathclyde 3 /25



Vanishing Moment Method

We approximate the Monge-Ampeére equation by a sequence of higher order PDEs:

—eA%F +det(D?uf) =f,  inQ, (1)
where € > 0.
Since we have now have a fourth order problem we impose an additional boundary condition:

AU =¢ on 0f).

Definition (Vanishing Moment Method [Feng & Neilan, 2007])

Suppose that u€ solves (1) for each £ > 0, we call Iim+ u® a moment solution of the
e—0
Monge-Ampere equation provided that the limit exists.
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Vanishing Moment Method

We approximate the Monge-Ampeére equation by a sequence of higher order PDEs:
—eA%F +det(D?uf) =f,  inQ, (1)
where € > 0.

Since we have now have a fourth order problem we impose an additional boundary condition:

AU =¢ on 0f).

Definition (Vanishing Moment Method [Feng & Neilan, 2007])

Suppose that u€ solves (1) for each £ > 0, we call Iim+ u® a moment solution of the
e—0
Monge-Ampere equation provided that the limit exists.

From [Neilan, PhD Thesis|, we have
1—j . 1
Il =0 (=7) s Iefllwie = O (7). 9%z =0 (7)) [|0%ie = O (7).
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Vanishing

Moment Method

CHARLES UNIVERSITY
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To demonstrate this, we consider a simple numerical experiment (cf. Neilan, 2010) using the
VEM method we will discuss shortly. Let h = 0.0277 be fixed, define f = 4 and g such that
u=x2+y?on Q=(0,1), and consider the error u — uf as ¢ — 0.
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Continuous Problem

Let V := H2(Q) and W := H?(Q) N H}(Q). Find u® € V such that

2
Agr(u®,v) :/ fvdx—i—e/ (2—5 —a) %ds forall v e W.
Q Blo]

where
Aqr(u®,v) = —s/ D?uf D2vdx+/ det(D?uf)v dx,
Q Q
aqu(ue,v) bau (u°.v)

Scott Congreve (Charles University) VEM for Monge-Ampére NACONF 2025 — University of Strathclyde 5 /25



. - . 2 CHARLES UNIV I-I_R.\'I’I'\
Linearization iy e

Lemma

Let v =(vi,vo,...,Vv,) : Q — R" be a vector-valued function, and assume v € [C?(Q)]".
Then,

V - (cof (Vv)); = Z %(cof(Vv)),-j =0 for i=1,2,..
=i

., n

This allows us to linearize the vanishing moment PDE:

Lye(v)=1¢ in €,
v=20 on 09,
Av =1 on 09Q.

where

Lys(v) =A%y — &°: D?v = A%y — V- (&°Vv), and ®° = cof (D?uf).
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Linearization

Find v € W such that
ow
A(v,w) = | owdx + Y——ds forallwe W,
Q oo On

where
Al(v,w) = e/ D?v : D2de+/ ®Vv - Vwdx.
Q Q
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Why VEM /Polytopal Elements? @

m High order C%-conforming C!-nonconforming elements available
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Why VEM/Polytopal Elements?

High order C%-conforming Cl-nonconforming elements available

Nonlinear problem = solving via iteration (fixed point, Newton, etc.).

Depending on the number of iterations and DoFs could be computationally expensive.

m Reduce computational expense — two-grid method: Solve nonlinear problem on a coarse

mesh, and use to linearise on a fine mesh
Xu 1992, 1994, 1996; Xu & Zhou 1999; Axelsson & Layton 1996;
Dawson, Wheeler & Woodward 1998: Utnes 1997; Marion & Xu 1995; Wu & Allen 1999
Awanou, Li & Malitz 2020 (C°-IP for Monge-Ampgre)
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Construct mesh 7}, of Q consisting of simple polygons, with element diameter hg, E € Tj.

Assumption (Mesh Regularity)

There exists p > 0 such that
m each element E € Ty, star-shaped w.r.t ball of radius phe
m he > phg for every E € Ty, and e C OE

Additionally, we define & as the set of all faces.
On each element we consider a order of approximation /.
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Construct mesh 7}, of Q consisting of simple polygons, with element diameter hg, E € Tj.
Assumption (Mesh Regularity)

There exists p > 0 such that

m each element E € Ty, star-shaped w.r.t ball of radius phe
m he > phg for every E € Ty, and e C OE

Additionally, we define & as the set of all faces.
On each element we consider a order of approximation /.
For s > 0 we define the broken space

H3(Th) = {v e [2(Q) : v|e € H*(E), VEc¢ Th} .
and

HErS(Th) = {v & HT) N W)+ [ I90 - nlpds = 0¥p € Froafe). Ve € 64
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VEM Space

Given a local enlarged VEM space

VE, := {vh € H*(E) : D2vy € Py(E), vhle € Py(e), A%vple € Br_o(E) Ve C IE}
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VEM Space

Given a local enlarged VEM space
VE, := {vh € H*(E) : D2vy € Py(E), vhle € Py(e), A%vple € Br_o(E) Ve C IE}

and a value projection I_I(’)-: : V/Fe — Py we define the local virtual element space er as

Vi, = {Vh e VE, t (vo—TNEvhp)e=0 Vpe P@(E)\Pe—zx(’f)}
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VEM Space

Given a local enlarged VEM space
VE, := {vh € H*(E) : D2vy € Py(E), vhle € Py(e), A%vple € Br_o(E) Ve C IE}
and a value projection I_I(’)-: : \7,5 — Py we define the local virtual element space V/fe as
Vi, = {Vh € VE + (vi—N§vh,p)e=0 VYpe P@(E)\Pe—zx(’f)}
The global VEM space V}, ¢ is defined as

Vi i= {v,, € H2™(Q) : vplg € VE, VE ¢ T,,}
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VEM Space

Given a local enlarged VEM space
VE, := {vh € H*(E) : D2vy € Py(E), vhle € Py(e), A%vple € Br_o(E) Ve C IE}
and a value projection I_I(’)-: : \7,55 — Py we define the local virtual element space V/fe as
VE, = {vh e VE, : (vy—NGvpp)e =0 Vpe ]P’g(E)\]P’g_z;(E)}
The global VEM space V}, ¢ is defined as
Vi i= {v,, € H2™(Q) : vplg € VE, VE ¢ T,,}

We note that Vi, ¢ H?(2) but Vi, C HY(Q2). Hence, we have a C'-nonconforming,
CP-conforming space. [Zhao et al., 2016]
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Local Degrees of Freedom T By ol matiemato
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Local Degrees of Freedom

The local space er is characterised by the degrees of freedom:
(D1) The value of v, at each vertex of E
(D2) For £ > 1, the moments of v, up to order £ — 2 on each edge e C OE

1
—/vhpds Vp € Py_s(e)
e[ Je

(D3) For £ > 1, the normal moments of v, up to order £ — 2 on each edge e C OE

/Gnvhpds Vp € Py_»(E)

e

(D4) For ¢ > 3, the moments of vj, up to order ¢ — 4 inside E

1
E/EVthX Vp € Pr_4(E)
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Projections

Value projection (N : \7,5 — Py(E)) NEvy linear combination of dofs, and satisfies

/ I'Igvhpdx = / vapdx Vp € Py_y4(E), and I'ng =q VqePy(E).
E E

Edge projection (T1§ : V,fg — Py(e)) M§vp linear combination of dofs, and satisfies
Ngvy(e®) = vip(e®),

/ Gvhpds = / vapds Vp € Py_s(e), and MGg = qle Vq € Py(E).
e e

Edge normal projection (5 : \7hEg — Py_1(e)) M§vy linear combination of dofs, and satisfies

/ fvhpds = /8,,vhpds Vp € Py_s(e), and 19 = 0nqle Vg € Py(E).
e

e
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Projections

Gradient projection (ME \7& — [P(E)]?)

/nfv,,-pdx:—/ngv,,v-pdx+ > [ N§vep-nds Vp e [Py (E)P.
E E eCOE”€

Hessian projection (M5 : \7,5-} — [P4(E)]?*?) For all p € [Py_a(E)]?*?

/ NEvy-pdx = —/ NEv,Vpdx + Z (Nfven @ pn + 0¢(MNGvy)t ® pn) ds
E E eCOE €

Here, e C E is an element edge, and et denotes the vertices of e.
Use CLS for choice of projections: Dedner & Hodson 2024,
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VEM Forms

We now define the forms necessary for the VEM formulation:

Agl_’h(uh, Vh) = —5/ I'Ifu;7 : I'va;7 dx + / det(l'lguh)l'l(’;:v;7 dx + Sf(uh — I'Iguh, Vh — I'Igvh)
E E

Aﬁh(uh,vh) 126/ I'Izl":u;7 : I'Igvhdx—i—/((bal'll up) - I'vahdx+5,f(uh—I'Iguh,vh—l'lgvh)
E

where
N

Sf(u, v) = (—eh% +7E) Z dofj(u)dof;(v)
i=1
SE(u,v) = (eh% + ¢6)Zdof )dof;(v)
There must exist constants c,., c*, di, d* such that

AL (Vh, Vi) < SE (Vi vin) < AL (Vi vi)  deAQ(Vhs Vi) < SE (Vi vin) < d* Ay (Vh, vi)
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Linear VEM Formulation

Theorem (Existence and Uniqueness of Linearized VEM)

There exists a unique v, € Vj ¢ such that

AL,h(Vh7 Wh) = / ppWh dx —I—/ ¢% ds for all wy, € Vh’g.
Q

Here

Arn(u,v) Z ALh(u v)
E€T
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Linear VEM Formulation

Lemma (Strang-type Estimate [C., Hodson, Pradhan (In Prep.)])

For every approximation v; of v in Vjp

u|lv = vall2,p < Cs(ﬁ)l{(l — G3(€)aw)

E(v,6 PE(p,d
+ sup IECv, o)l + inf v —pll2,n+ Z —l P, 3h)|
5h€Vh,g ||5”2,h PGPZ( ) KeTs hGVh/ “6||2 h
— ©h,0 . .
where 0 ;= vy, —vi #0, |l — @nll,, = sup M the polynomial consistency
(ot O0nEVhe ”6||2,h

error PE(p, 6p) := AK(p, d5) — Aﬁh(p, dn) and the nonconformity error is given by
E(Vv 5"’) — (307 5h) + <1/)a an(Sh — A[_(V, 6h)
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Linear VEM Formulation

Theorem (A priori Error Bound [C., Hodson, Pradhan (In Prep.)])

Suppose that mesh regularity assumptions are satisfied. Let £ > 2 be a positive integer and let
v € Ht1(Q) be the solution of the linearized PDE for some positive integer s. Define

r =min({,s) and assume that ¢ € H"3(Q). Let vy € V4 be the corresponding virtual
element solution. Then, there exists a constant Cs(¢) > 0, independent of h, such that

[V = val

o < oM (vl + il —3):

where Cs(e) = C(1 — G3(g)aw) I max(1 — G3(e)as, €, Ca(e), 1).
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Nonlinear VEM Formulation

Vanishing Moment VEM Formulation
Find uf € Vj ¢ such that

AQL h(uh, Vh) —/ fhvpdx + ¢ Z / (8t2 —é‘) fvh ds for all v, € Vh,g.

ecEp
Here

AqLn(u,v) =Y Agynlu,v).

EcTy
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Well-posedness

Theorem (Existence and uniqueness [C., Hodson, Pradhan (In Prep.

For all € > 0 and sufficently small h there exists a unique solution uj € V4 to the VEM
formulation of the vanishing moment method.
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Well-posedness

Theorem (Existence and uniqueness [C., Hodson, Pradhan (In Prep.)])

For all € > 0 and sufficently small h there exists a unique solution uj € V}, o to the VEM
formulation of the vanishing moment method.

To show well-posedness, we first define an operator T} : V}, o — V}, ¢ such that for any
Vh € Ve, Th(vp) is the solution of the problem

A[_’h(vh — Th(Vh), Wh) = AQL,h(Vha Wh) — / fhWh dx + € Z / (8t2 — 6) fWh ds.

Th(vp) exists and is unique by the well-posedness of the linear VEM. Furthermore, the solution
uj of the nonlinear formulation is equivalent to the fixed point of the mapping Tj. Therefore,
it is sufficient to show existence and uniqueness of this fixed point (i.e. by Banach). O
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Well-posedness

Defining uj € V},, as the interpolation of u® we show the existing of a fixed point to T} in the
ball

B(uf,¢) = {vh € Ve :|lvh — uj|l2.n < ¢}

Lemma

For uj € V4, there exists Cg(€) > 0 such that

luf = Ta(uillzn < CHH( o)l U1 + [IF]lr—3)- (2)

Lemma (Contraction mapping)

For any wh, vi, € Vi g, there exists Cy(e, h) > 0 such that

| Th(wh) — Th(vn)

l2,n < Gr(€, h)l|wh — val[2,5- (3)
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Well-posedness

Lemma

There exists a hy > 0 and ¢ > 0 such that for all h < hy Ty has a unique fixed point.

By the previous two lemmas we can show that there exists a h; such that for all h < h; and
vh € B(uf, ()

1
I Tae) = Talwn)llo < 5 6F — i

2,hs

and

1
2 IT(e) = T(wn)llo < 5+ 5%~ vhllan < ¢

luf — Tr(vi)ll2,n < [luf — Th(uf) <

Hence T(B(uf,¢)) C B(uj,() and as Ty is a contraction (by previous lemma) we can apply
Banach'’s fixed point theorem. O
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a priori Error Estimate

Theorem (A priori Error Bound [C., Hodson, Pradhan (In Prep.)])

Suppose that mesh regularity assumptions are satisfied. Let £ > 2 be a positive integer and let
v € H5FY(Q) be the solution of the vanishing moment method for some positive integer s.
Define r = min(¢,s) and assume that f € H3(Q). Let u§ € V}, be the corresponding virtual
element solution. Then, there exists a contant Cg(€e) > 0, independent of h, such that

lu® = uhllzn < Co()h™ ([lull s + [IFll—3). (4)

where Cg(e) = C max{Cs(€),1}.
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Numerical Experiments

We let Q = (0,1)?, £ = 2, and define f = x?y? — 4¢ and g such that

1
Ut = E(X4 +y4)
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Conclusions & Future

Conclusions
m C%conforming C'-nonconforming VEM for the vanishing moment method for
Monge-Ampere’
m Well-posedness

m a priori error results
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Conclusions & Future

Conclusions
m C%conforming C'-nonconforming VEM for the vanishing moment method for
Monge-Ampere’
m Well-posedness

m a priori error results

Future
m VEM for Monge-Ampére without vabishing moment

B a posteriori error estimates

m Two-grid
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