Estimating the algebraic error using flux reconstruction

Jan Papež

February 11, 2019

Setting

Poisson problem: $-\operatorname{div}(\nabla u) = f$ in Ω , u = 0 on $\partial \Omega$,

Weak solution $u \in V \equiv H_0^1(\Omega)$,

$$(\nabla u, \nabla v) = (f, v) \quad \forall v \in V,$$

flux $\sigma \equiv -\nabla u \in \mathbf{H}(\operatorname{div}, \Omega)$, $\operatorname{div} \sigma = f$.

FEM discrete approximation $u_h \in V_h \subset V$,

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

Algebraic problem, using the basis $\Phi = \{\phi_1, \dots, \phi_N\}$ of V_h ,

$$\mathbf{A}\mathbf{U} = \mathbf{F}, \qquad (\mathbf{A})_{j\ell} = (\nabla \phi_{\ell}, \nabla \phi_{j}), \quad \mathbf{F}_{j} = (f, \phi_{j}), \quad u_{h} = \Phi \mathbf{U}.$$

Inexact iterative **solution** $U^{i} \approx U$, $u_{h}^{i} = \Phi U^{i}$, residual $R^{i} = F - AU^{i}$.

Upper bound on the total error

Energy norm of the total error

$$\|\nabla(u-u_h^i)\| = \sup_{v \in V, \|\nabla v\|=1} (\nabla(u-u_h^i), \nabla v).$$

For any $\mathbf{d} \in \mathbf{H}(\operatorname{div}, \Omega)$,

$$(\nabla(u - u_h^i), \nabla v) = (f, v) - (\nabla u_h^i, \nabla v)$$

$$= (f, v) + (\mathbf{d}, \nabla v) - (\mathbf{d}, \nabla v) - (\nabla u_h^i, \nabla v)$$

$$= (f - \operatorname{div} \mathbf{d}, v) - (\nabla u_h^i + \mathbf{d}, \nabla v) .$$

Quasi-equilibrated flux reconstruction

We construct representation $r_h^i \in L^2(\Omega)$ of the algebraic residual R^i and the approximate flux $\mathbf{d}_h^i \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$\operatorname{div} \mathbf{d}_h^i = f_h - r_h^i.$$

Then

$$(\nabla(u - u_h^i), \nabla v) = (f - \operatorname{div} \mathbf{d}_h^i, v) - (\nabla u_h^i + \mathbf{d}_h^i, \nabla v)$$

= $(f - f_h, v) + (r_h^i, v) - (\nabla u_h^i + \mathbf{d}_h^i, \nabla v)$.

Quasi-equilibrated flux reconstruction

We construct representation $r_h^i \in L^2(\Omega)$ of the algebraic residual R^i and the approximate flux $\mathbf{d}_h^i \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$\operatorname{div} \mathbf{d}_h^i = f_h - r_h^i.$$

Then

$$\|\nabla(u-u_h^i)\| \leq \eta_{\mathsf{osc}} + \sup_{v \in V, \|\nabla v\|=1} (r_h^i, v) + \|\nabla u_h^i + \mathbf{d}_h^i\|.$$

$$\begin{array}{ccc} \eta_{\rm osc} & {\rm data~oscillation} \\ \sup_{v \in V, \|\nabla v\| = 1} \left(r_h^i, v\right) & \rightarrow {\rm algebraic~error~bound} \\ \|\nabla u_h^i + \mathbf{d}_h^i\| & {\rm discretization~error~indicator} \end{array}$$

Residual representation and algebraic error

Constructing r_h^i such that

$$(r_h^i,\phi_j)=\mathsf{R}_j^i,\quad j=1,\ldots,N\,,$$

where ϕ_j is a basis function of V_h and R^i_j is the associated element of R^i , we have for $v_h \in V_h$,

$$(\nabla(u_h - u_h^i), \nabla v_h) = (f, v_h) - (\nabla u_h^i, \nabla v_h) = (r_h^i, v_h).$$

Recall that

$$\|\nabla(u_h - u_h^i)\| = \sup_{v_h \in V_h, \|\nabla v_h\| = 1} (\nabla(u_h - u_h^i), \nabla v_h)$$

and

$$\|\nabla(u_h - u_h^i)\| = \sup_{v_h \in V_h, \|\nabla v_h\| = 1} (r_h^i, v_h) \le \sup_{v \in V, \|\nabla v\| = 1} (r_h^i, v).$$

Algebraic residual representation

Construction of $r_h^i = \Phi C^i \in V_h$ requires solution of

$$\mathbf{G}\mathsf{C}^i=\mathsf{R}^i\,,\qquad (\mathbf{G})_{j\ell}\equiv (\phi_\ell,\phi_j)\,.$$

In order to avoid solution of the system with the mass matrix \mathbf{G} , we construct the algebraic residual representation $r_h^i \notin V_h$, piecewise discontinuous polynomial of degree of u_h , locally on each element.

Algebraic residual representation

Construction of $r_h^i = \Phi C^i \in V_h$ requires solution of

$$\mathbf{G}\mathsf{C}^i = \mathsf{R}^i\,, \qquad (\mathbf{G})_{j\ell} \equiv (\phi_\ell,\phi_j)\,.$$

In order to avoid solution of the system with the mass matrix \mathbf{G} , we construct the algebraic residual representation $r_h^i \notin V_h$, piecewise discontinuous polynomial of degree of u_h , locally on each element.

Using Cauchy–Schwarz and Friedrichs inequalities

$$(r_h^i, v) \leq \|r_h^i\| \cdot \|v\| \leq \|r_h^i\| \cdot C_F h_{\Omega} \|\nabla v\|,$$

which gives the first (worst-case) bound

$$\|\nabla(u_h-u_h^i)\|\leq C_F h_\Omega\|r_h^i\|.$$

Additional iteration steps

Flux reconstruction in i-th iteration, r_h^i is the representation of R^i ,

$$\operatorname{div} \mathbf{d}_h^i = f_h - r_h^i \,,$$

in (i+
u)-th iteration, $r_h^{i+
u}$ is the representation of $\mathsf{R}^{i+
u}$,

$$\operatorname{div} \mathbf{d}_h^{i+\nu} = f_h - r_h^{i+\nu} .$$

Then

$$r_h^i = -\operatorname{div} \mathbf{d}_h^i + \operatorname{div} \mathbf{d}_h^{i+
u} + r_h^{i+
u}.$$

Proposed upper bounds I

Then

$$(\nabla(u-u_h^i),\nabla v) = (f-f_h,v) + (r_h^i,v) - (\nabla u_h^i + \mathbf{d}_h^i,\nabla v)$$

= $(f-f_h,v) + (\mathbf{d}_h^i - \mathbf{d}_h^{i+\nu},\nabla v) + (r_h^{i+\nu},v) - (\nabla u_h^i + \mathbf{d}_h^i,\nabla v),$

and

$$(\nabla(u_h-u_h^i),\nabla v_h)=(\mathbf{d}_h^i-\mathbf{d}_h^{i+\nu},\nabla v_h)+(r_h^{i+\nu},v_h).$$

Upper bounds: [Papež, Strakoš, Vohralík (2016)]

$$\|\nabla(u - u_h^i)\| \le \eta_{\text{osc}} + \|\mathbf{d}_h^i - \mathbf{d}_h^{i+\nu}\| + C_F h_{\Omega} \|r_h^{i+\nu}\| + \|\nabla u_h^i + \mathbf{d}_h^i\|$$

$$\|\nabla(u_h - u_h^i)\| \le \|\mathbf{d}_h^i - \mathbf{d}_h^{i+\nu}\| + C_F h_{\Omega} \|r_h^{i+\nu}\|$$

Proposed upper bounds II

In [Papež, Rüde, Vohralík, Wohlmuth (2019)] and [Papež, Vohralík (2019)] we propose a hierarchical construction of algebraic flux reconstruction $\mathbf{a}_h^i \in \mathbf{H}(\operatorname{div},\Omega)$ such that

$$\operatorname{div} \mathbf{a}_h^i = r_h^i.$$

Then

$$(r_h^i, v) = (\operatorname{div} \mathbf{a}_h^i, v) = (\mathbf{a}_h^i, \nabla v) \le \|\mathbf{a}_h^i\| \cdot \|\nabla v\|$$

and the bounds look like:

$$\begin{split} \|\nabla(u - u_h^i)\| &\leq \eta_{\text{osc}} + \|\mathbf{a}_h^i\| + \|\nabla u_h^i + \mathbf{d}_h^i\| \\ \|\nabla(u_h - u_h^i)\| &\leq \|\mathbf{a}_h^i\| \end{split}$$