
Chapter 1

Anisotropic mesh adaptation

method

1.1 Introduction

Numerical solution of complicated problems of computational physics and mathematical engi-
neering gives rise to the necessity of application of adaptive methods, which allow computation
of a sufficiently precise solution without enormous requirements for memory and CPU time.
The aim of the adaptive methods is to find a suitable discretization of computational domain
where sufficiently accurate numerical solution can be computed and moreover the number
of unknowns is reasonable. There exists a very large range of different adaptive methods
developed during several last decades. Many adaptive methods are based on a priori or a
posteriori error analysis. Taking into account the error estimations we define a suitable error
indicator. Using the values of numerical solution calculated on the given mesh we compute
the values of error indicator for all elements. Then elements, where the value of the indicator
is higher than a given tolerance, are refined and we obtain a new grid. This approach is usual
for finite element methods. The list of authors dealing with such type of adaptive technique
is very large, we cite only the review [Ver96]. Alternative approach is the use of the dual
problem, see the review article [Ran98].

Rather different approach is the anisotropic mesh adaptation (AMA). It is based on the
control of the interpolation error of a piecewise polynomial interpolation of the exact solution
on the triangular grid. The mesh adaptation criterion checks the behaviour of the second
order derivatives of the solution of the considered problem.

The advantage of AMA is that it can be used without any modification for arbitrary
boundary value problem and arbitrary numerical method (finite element method, finite vol-
ume method, discontinuous Galerkin method, etc.). The disadvantage of this approach is
that we have no control of the discretization error of the numerical solution in fact.

In [DS89], [DS91], [Sim94], it is discussed how these mechanisms arise in the theory of
optimal error control, using simple model mesh generation problems. A general recovery
technique was developed for determining the derivatives of the finite element solutions in
[ZZ92a] and a posteriori error estimation was discussed in [ZZ92b]. The application of AMA
for computational fluid dynamics has been performed in INRIA group (see, e.g., [CDBG+96],
[DHM95], [BHF97]) and Habashi’s group (see, e.g., [FVD+96], [HFaY+96]). In monograph
[Ape99], there were presented the anisotropic local interpolation error estimates for several
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10 CHAPTER 1. ANISOTROPIC MESH ADAPTATION METHOD

types of two- and three-dimensional finite elements and a priori estimates of the discretization
error for model problems with edge singularities or boundary layers.

Our presented mesh adaptation technique for unstructured grids is based on such type
of adaptive methods. The original approach of our algorithm is the use of the edge-based
optimization criterion. In this work we summarize and develop the first formulation of AMA
and its use for the numerical solution of compressible flow and heat conduction problem, see
[Dol98a], [DF], [Dol01], [BDM] and [DF02a].

Although we try to give a mathematically rigorous explanation, we are not able to avoid
several rather heuristic steps. On the other hand the presented method is a very efficient
tool for the numerical solution of various practical problems. The presented mathematical
treatment of the anisotropic mesh adaptation is almost identical for two and three dimensional
problems. Therefore it is carried out for dimension d, d = 2, 3. The space discretization is
called mesh, which is a triangulation (d = 2) or a tetrahedrization (d = 3), and element is a
triangle (d = 2) or tetrahedron (d = 3).

The summary of this chapter is the following. At the beginning we consider a scalar
boundary value problem (BVP) and suppose that its exact solution is known. In Section 1.2
we derive a necessary condition which guarantees that the discretization error is under a given
tolerance. As the necessary condition is not suitable for practical computation, we introduce
its stronger (but simpler) version. Moreover, using several heuristic considerations, we define
the concept of an optimal mesh. Finally, we introduce the quality parameter which measures
the quality of a mesh.

In Section 1.3 we describe the AMA algorithm which creates the optimal mesh for a known
exact solution. Section 1.4 shows how to use the AMA algorithm for practical computation,
where the exact solution is not known. Several test examples are given in Section 1.5, where
the efficiency of AMA is demonstrated. Section 1.6 and 1.7 show the practical application
of AMA to the numerical simulation of inviscid as well as viscous flow and heat conduction
problems, respectively. For the clarity of the treatment, some (simple but long) proofs of
Lemmas are given in Appendix.

1.2 Interpolation error control

1.2.1 Necessary condition

Let us consider a scalar boundary value problem (BVP) in the set Ω, where Ω ⊂ IRd is a
bounded domain. By Ω and ∂Ω we denote the closure and boundary of Ω, respectively. We
introduce the weak formulation of (BVP): Find the function u : Ω→ IR satisfying

u ∈ U, (1.2.1)

L(u, v) = f(v) ∀v ∈ V, (1.2.2)

B(u) ∈ V. (1.2.3)

Here U and V are the trial and test function spaces, respectively, (1.2.2) represents the weak
form of the partial differential equation under consideration and (1.2.3) guarantees that the
prescribed boundary conditions are fulfilled in the sense of traces. The function u satisfying
(1.2.1) – (1.2.3) is called the exact solution. Let us suppose that the problem (1.2.1) – (1.2.3)
has a unique exact solution.
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Very often the numerical solution of (1.2.1) – (1.2.3) is sought in the space of piecewise
polynomial functions and computed by a suitable numerical method (e.g. finite element
method, finite volume method, discontinuous Galerkin method). To this end the domain Ω is
replaced by its polygonal approximation Ωh and the mesh Th is constructed. The properties
of Th are presented in Definition 1.1. The approximate solution of problem (1.2.1) – (1.2.3)
is defined as a function uh : Ωh → IR satisfying

uh ∈ Uh, (1.2.4)

Lh(uh, vh) = fh(vh) ∀vh ∈ Vh, (1.2.5)

Bh(uh) ∈ Vh. (1.2.6)

Here
Uh =

{

uh ∈ L1(Ωh);uh|T ∈ Pk(T ) ∀T ∈ Th

}

, (1.2.7)

and Pk(T ) denotes the set of all polynomials of degree ≤ k (k ≥ 0) on the element T and
Lh, fh, Bh, Vh are the discrete analogue of L, f, B, V , respectively. Both possibilities
Uh ⊂ U and Uh 6⊂ U are admissible. Let us suppose, that the discrete problem (1.2.4) –
(1.2.6) has a unique solution uh.

In order to measure how close the approximate solution uh is to the exact solution u, we
define the discretization error as

eh ≡ ‖u− uh‖X , (1.2.8)

where ‖ · ‖X is a suitable norm such that the expression ‖v‖X has a sense ∀v ∈ U ∪ Uh. (If
Uh ⊂ U we can put ‖ · ‖X ≡ ‖ · ‖U , where ‖ · ‖U is the norm in the space U .)

Our aim is, for a given tolerance ω > 0, to compute the approximate solution satisfying

eh ≤ ω. (1.2.9)

In what follows, we present the necessary condition for the relation (1.2.9) and show with
numerical examples how its satisfaction can be used for the construction of adaptive meshes.

We denote by O(U,Uh) the set of all operators from U to Uh, i.e.

O(U,Uh) = {Π,Π : w ∈ U 7→ Πw ∈ Uh}. (1.2.10)

Let us consider the minimization problem: Find Πh ∈ O(U,Uh) such that

‖w −Πhw‖X = min
wh∈Uh

‖w −wh‖X ∀w ∈ U. (1.2.11)

The existence of Πh follows from the fact that Uh is a finite dimensional space. The operator
Πh may not be uniquely determined, its uniqueness depends on the choice of ‖ · ‖X .

It is evident that for the approximate solution uh of (1.2.4) – (1.2.6)

‖u−Πhu‖X ≤ eh. (1.2.12)

This is the crucial point of the proposed adaptation strategy: Any numerical method for the
solution of (1.2.1) – (1.2.3) computes the approximate solution uh with the discretization
error which is bounded from below by ‖u−Πhu‖X , where u is the exact solution of (1.2.1) –
(1.2.3). Then the necessary condition to fulfill (1.2.9) is

‖u−Πhu‖X ≤ ω. (1.2.13)

For a given ω, the condition (1.2.13) is satisfied if the mesh is sufficiently fine. This can be
achieved
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(i) by a global mesh refinement, which is rather inefficient from the point of view of com-
puter memory and CPU time in further computations,

(ii) by a local grid refinement/coarsening/alignment strategy, which is the subject–matter
of Chapter 1.

It is evident that the magnitude of ‖u − Πhu‖X strongly depends on the choice of Uh

and therefore on the choice of Th. In the first part of this chapter, for a given ω > 0
and given function u ∈ C2(Ω), we describe the construction of the mesh Th for which the
function Πhu satisfies (1.2.13) and the mesh has as small a number of elements as possible.
In the second part, we apply these results to the numerical solution of physically relevant
problems.

The basic principle of AMA can be illustrated on the following 1D example. Let 〈A,B〉 ∈
IR1 be an interval and u ∈ C2(〈A,B〉) the given function, see Figure 1.1. We introduce two
partitions Th1 and Th2 of the interval 〈A,B〉. The former partition (having 5 intervals) is
uniform whereas the latter (having 3 intervals) is anisotropic. Let us consider a discontinuous
piecewice linear approximation. Let Πh1u and Πh2u be the functions given by (1.2.11) on
the partitions Th1 and Th2, respectively, where Uh is given by (1.2.15) and we set ‖ · ‖X =
‖ · ‖L∞(〈A,B〉). Moreover we put

‖u−Πh1u‖X = ω1, ‖u−Πh2u‖X = ω2, (1.2.14)

where the values maxx∈〈A,B〉 |u(x)−Πhi
u(x)|, i = 1, 2 are plotted on the Figure 1.1.

We observe that ω2 < ω1 and moreover #Th2 < #Th1, where #Th denotes the number of
subintervals of partition Th. Therefore, the anisotropic partition Th2 is more suitable for the
piecewise linear capturing of u.

In practical problems, of course, the exact solution is not a priori known. In that case we
compute the approximate solution uh on the starting mesh Th, we smooth uh and denote this
smoothing as ũ and apply the AMA algorithm for ũ, see Section 1.4.

1.2.2 ω-minimal mesh

From the practical point of view, we shall use in (1.2.7) the discontinuos piecewise linear
polynomials, i.e.

Uh =
{

uh ∈ L1(Ωh);uh|T ∈ P1(T ) ∀T ∈ Th

}

, (1.2.15)

and we set

‖ · ‖X = ‖ · ‖L∞(Ωh). (1.2.16)

The example of a function from Uh is viewed in Figure 1.2. This choice of Uh covers wide
range of numerical methods, piecewise constant approximation used in finite volume method
(e.g. [Fei93], [Krö97], [KR94]) and conforming (e.g. [Cia79]), nonconforming (e.g. [ADFF98],
[DA96], [Tem77]) and discontinuous Galerkin finite element method (e.g. [Coc]). On the
other hand, the use of AMA does not require the piecewise linear approximation and a higher
order approximation can be easily adopted for the efficient use of AMA.

Definition 1.1 Let Ω ⊂ IRd. We say that Th = {Ti}i∈I (I = an index set) is a mesh of Ω if:

1. Ti ∈ Th is a closed simplex (triangle (d = 2) or tetrahedron (d = 3)).
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Figure 1.1: Motivation of AMA: partition of the interval AB, u is the given function,
Πh1u (left) and Πh2u (right) are discontinuous piecewise linear functions given by (1.2.11),
maxx∈(A,B) |u−Πhu| is denoted by l.

Figure 1.2: Example of a discontinuous piecewise linear function.
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2.
⋃

i∈I Ti = Ωh, where Ωh is a polygonal approximation of Ω.

3. Let xi be the barycentre of Ti, then xi ∈ Ω ∀Ti ∈ Th.

4. We denote by σh = {P1, . . . , PN} the set of all vertices of all T ∈ Th. We suppose that
σh ∩ ∂Ωh ⊂ ∂Ω, σh ⊂ Ω.

5. For any Ti, Tj ∈ Th, Ti 6= Tj , Ti ∩ Tj are either disjoint or their intersection Ti ∩ Tj is
a common vertex or Ti ∩ Tj is a common edge or Ti ∩ Tj is a common face (only for
d = 3).

The step size h of the mesh is given by

h = max
i∈I

diam(Ti), (1.2.17)

where diam(Ti) denotes the diameter of Ti.

Without proof we present the following Lemma:

Lemma 1.1 Let Ω ∈ IRd be a computational domain and h̄ > 0. Then there exists a mesh
Th of Ω with the step size h, h ≤ h̄.

Definition 1.2 Let w ∈ C2(Ω∪Ωh) and Th = {Ti}i∈I be a mesh of Ω. Let xi = (x
(1)
i , . . . , x

(d)
i )

be the centre of gravity of Ti ∈ Th. We say that the operator rh ∈ O(C2(Ω ∪ Ωh), Uh) is the
∇–interpolation if

rhw(xi) = w(xi) ∀Ti ∈ Th, (1.2.18)

∇rhw(xi) = ∇w(xi) ∀Ti ∈ Th.

Lemma 1.2 Let w ∈ C2(Ω ∪ Ωh) and Th = {Ti}i∈I be a mesh of Ω. Let Uh, ‖ · ‖X , Πh and
rh are given by (1.2.15), (1.2.16), (1.2.11) and (1.2.18), respectively. Then

‖w −Πhw‖X ≤ ‖w − rhw‖X . (1.2.19)

Proof. As rhw ∈ Uh, the assertion follows immediately from (1.2.11).

Remark 1.1 Lemma 1.2 is valid also for more general ‖ · ‖X .

Definition 1.3 Let u be the exact solution of the considered problem (1.2.1) – (1.2.3) in the
computational domain Ω and rh be the operator (1.2.18), where Uh is given by (1.2.15). The
interpolation error function EI : Ω ∩ Ωh → IR1 is defined by

EI(x) = |u(x)− rhu(x)|, for almost every x = (x(1), . . . , x(d)) ∈ Ω ∩ Ωh. (1.2.20)

Lemma 1.2 allows us to control the necessary condition (1.2.13) by the interpolation error
function EI. The condition

‖u− rhu‖X ≤ ω (1.2.21)

is stronger than the necessary condition (1.2.13) but as it is easily computable, we use it
for further consideration. Therefore our aim is to construct a mesh Th of Ω so that the
interpolation error function EI(x) is bounded from above by a given tolerance. On the other
hand, we require that the number of elements of the mesh is as small as possible (in order to
save a memory and CPU time). The demonstration of the efficiency of (1.2.21) is given in
Section 1.5.1
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Definition 1.4 Let u ∈ C2(Ω ∪ Ωh) and Th = {Ti}i∈I be a mesh of Ω. Let EI be given by
(1.2.20). We say that Th is a ω–mesh

EI(x) ≤ ω ∀x ∈ Ω ∩ Ωh. (1.2.22)

Theorem 1.1 Let u ∈ C2(Ω ∪ Ωh) and ω > 0. Then there exists an ω-mesh.

Proof. For u ∈ C2(Ω ∪ Ωh) there exists a constant ĉ > 0 such that

∣

∣

∣

∣

∣

∂2u(x)

∂x(i)∂x(j)

∣

∣

∣

∣

∣

≤ ĉ, ∀i, j = 1, . . . , d ∀x ∈ Ω. (1.2.23)

Lemma 1.1 gives that there exists a mesh Th with step size

h ≤
√

2ω

ĉd2
. (1.2.24)

We prove that Th is a ω–mesh. Let xi be the centre of gravity of Ti ∈ Th. There exists the
uniquely defined function rhu given by (1.2.18). Then

rhu(x) = u(xi) +
d
∑

j=1

∂u(xi)

∂x(j)
(x(j) − x

(j)
i ), x ∈ Ti. (1.2.25)

Let x ∈ Ω ∩ Ωh, then there exists element Ti ∈ Th such that x ∈ Ti. Then the Taylor
series expansion gives

u(x) = rhu(x) +
1

2

d
∑

j,k=1

∂2u(ξ)

∂x(j)∂x(k)
(x(j) − x

(j)
i )(x(k) − x

(k)
i ), (1.2.26)

where ξ ∈ Ω is a point lying between x and xi. As |x(j) − x
(j)
i | ≤ h, j = 1, . . . , d then using

(1.2.23) and (1.2.25), we have from (1.2.26)

|u(x)− rhu(x)| ≤ 1

2
d2ĉh2, x ∈ Ω ∩ Ωh, (1.2.27)

which together with (1.2.24) proves the theorem.

Definition 1.5 Let u ∈ C2(Ω ∪ Ωh) and ω > 0. We say that T min
h is the ω-minimal mesh if

T min
h is an ω-mesh and

#T minh = min#Th, (1.2.28)

where #Th denotes the number of elements of Th and the minimum is taken over all ω-meshes
Th of Ω.

Theorem 1.2 Let u ∈ C2(Ω ∪ Ωh) and ω > 0. Then there exists an ω-minimal mesh.

Proof. It follows from Theorem 1.1, that the set of ω-meshes is not empty. As the
operator # : Th → IN (IN = natural numbers) is bounded from below, it attains its minimum.
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1.2.3 Optimal element

In order to approach T minh , we introduce the concept of an optimal element. Let u ∈ C 2(Ω∪
Ωh) and let its Hessian matrix H

H(x) =









∂2u(x)

∂x(1)∂x(1) . . . ∂2u(x)

∂x(1)∂x(d)

...
. . .

...
∂2u(x)

∂x(d)∂x(1) . . . ∂2u(x)

∂x(d)∂x(d)









, x ∈ Ω ∪Ωh (1.2.29)

be symmetric positive definite. Let Th be an ω–mesh and rhu be the ∇–interpolation given by
(1.2.18). Let xi = (x

(1)
i , . . . , x

(d)
i ) be the centre of gravity of Ti ∈ Th and x = (x(1), . . . , x(d)) ∈

Ti. Then, using the Taylor series expansion at xi, we have

u(x) = rhu(x) +
1

2

d
∑

j,k=1

∂2u(xi)

∂x(j)∂x(k)
(x(j) − x

(j)
i )(x(k) − x

(k)
i ) + o(|x− xi|2). (1.2.30)

In what follows we shall neglect the terms of order o(|x−xi|2) in equalities and inequalities.
Up to terms of this order we can write

EI(x) = |u(x)− rhu(x)| = (1.2.31)

=
1

2

∣

∣

∣

∣

∣

∣

d
∑

j,k=1

∂2u(xi)

∂x(j)∂x(k)
(x(j) − x

(j)
i )(x(k) − x

(k)
i )

∣

∣

∣

∣

∣

∣

, x ∈ Ti.

As Th is the ω–mesh we have
∣

∣

∣

∣

∣

∣

d
∑

j,k=1

∂2u(xi)

∂x(j)∂x(k)
(x(j) − x

(j)
i )(x(k) − x

(k)
i )

∣

∣

∣

∣

∣

∣

≤ 2ω, x ∈ Ti, (1.2.32)

which can be rewritten as

(

x(1) − x
(1)
i , . . . , x(d) − x

(d)
i

)









∂2u(xi)
∂x(1)∂x(1) . . . ∂2u(xi)

∂x(1)∂x(d)

...
. . .

...
∂2u(xi)

∂x(d)∂x(1) . . . ∂2u(xi)
∂x(d)∂x(d)

















x(1) − x
(1)
i

...

x(d) − x
(d)
i









(1.2.33)

≤ 2ω, x ∈ Ti.

The points x ∈ IRd satisfying the relation (1.2.33) form an ellipse (for d = 2) and an ellipsoid
(for d = 3) ǫi(ω) ⊂ IRd, see Appendix.

From this it follows that the interpolation error function EI(x) is bounded from above by
ω for all x ∈ ǫi(ω). Consequently, if T is such a element that T ⊂ ǫi(ω), then EI(x) ≤ ω for
all x ∈ T .

Definition 1.6 Let u ∈ C2(Ω ∪ Ωh) be a function with symmetric positive definite Hessian
matrix, ω > 0, Th an ω–mesh, Ti ∈ Th and ǫi(ω) the ellipse (d = 2) or the ellipsoid (d = 3)
given by (1.2.33). We say that Ti is an optimal element if

Ti ⊂ ǫi(ω) (1.2.34)

and
meas(Ti) ≥ meas(T ) for all elements T ⊂ ǫi(ω). (1.2.35)
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Lemma 1.3 Let u ∈ C2(Ω ∪ Ωh) be a function with symmetric positive definite Hessian
matrix, ω > 0 be given, xi ∈ Ω and ǫi(ω) the ellipse defined by (1.2.33). Then there exist
elements T j

i , j = 1, . . . ,N(d) with the centre of gravity xi satisfying (1.2.34) and (1.2.35),
where N(2) = 4 and N(3) = 24.

Proof. See Appendix.
If Ti is the optimal element for every Ti ∈ Th then EI(x) ≤ ω for every x ∈ Ω ∩ Ωh.

Therefore Th is the ω–mesh and due to (1.2.35) Th has the reasonable small number of elements

and approximates well T minh .
In order to describe geometrically the optimal element, we introduce the following

Definition 1.7 Let M be a d× d symmetric positive definite matrix and v ∈ IRd. We define
the norm of the vector v corresponding to the matrix M as

‖v‖M ≡
(

vTMv
) 1

2 . (1.2.36)

Remark 1.2 If M = I (=identity matrix) then ‖v‖M = |v|, where |v| is the Euclidean
norm of v.

Lemma 1.4 Let u ∈ C2(Ω ∪ Ωh) be a function with symmetric positive definite Hessian
matrix H(u(x)), x ∈ Ω, ω > 0, Th a mesh of Ω, Ti ∈ Th with centre of gravity xi and ǫi(ω)
the ellipse given by (1.2.33). Let V j

i , j = 1, . . . , d+1 be vertices of Ti. Then Ti is the optimal
element if and only if

‖V k
i − V l

i ‖2M = 2C(d)ω, k, l = 1, . . . , d+ 1, k 6= l, (1.2.37)

where we put M = H(u(xi)) and C(2) = 3 and C(3) = 8
3 .

Proof. See Appendix

1.2.4 Optimal mesh

Definition 1.7 and Lemma 1.4 give us a suitable tool for the practical construction of the
mesh T minh . On the other hand the condition (1.2.37) for i = i1, i2 can not be generally
satisfied for two elements Ti1 6= Ti2 with the common edge ∂Ti1 ∩ ∂Ti2 6= ∅. In order to avoid
these difficulties, we pass from the centre of gravities associated Hessian matrixes to the
edge associated Hessian matrixes. This edge associated approach is simpler for the numerical
implementation.

Definition 1.8 Let u ∈ C2(Ω ∪ Ωh) be a function with symmetric positive definite Hessian
matrix and ω > 0 be given. Let Th be a mesh of the computational domain Ω. Let Hk be
the Hessian matrix of u evaluated in the centre of the edge ek, k ∈ K(= an index set) of the
mesh Th. We say that the mesh Th is edge-optimal, if

‖ek‖Hk
=
√

2C(d)ω ∀k ∈ K. (1.2.38)

Remark 1.3 The matrix Hk can be interpreted as an interpolation error matrix and the
norm ‖ek‖M as an interpolation error over the edge ek (see [CDBG+96], [FVD+96]). It
means that the interpolation error (considered in terms of ‖ · ‖Hk

) is uniformly distributed
over the edges of the mesh.
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Remark 1.4 It is easy to see that the optimal mesh exists only for special types of domains
Ω and the Hessian matrixes. Let Hk = cI ∀k ∈ K where I is the unit matrix and c > 0.
Then the edge-optimal mesh is uniform, i.e., the (Euclidean) lengths of ek, k ∈ K are the
same therefore all elements are equilateral. Let Ω = [0, 1]2 then the optimal triangulation does
not exist because the angle of triangles at the corners of the domain cannot be equal to π/3.

It lead us to a weaker form of the concept of edge-optimal mesh. We introduce the quality
parameter QTh

, which measures the edge-optimality in the least squares sense.

Definition 1.9 Let u ∈ C2(Ω ∪ Ωh) be a function with symmetric positive definite Hessian
matrix and ω > 0 be given. Let Th be a mesh of the computational domain Ω. Let Hk be
the Hessian matrix of u evaluated in the centre of the edge ek, k ∈ K(= an index set) of the
mesh Th. We say that the mesh T opt

h is optimal if

QT opt
h

= minQTh
, (1.2.39)

where the minimum is taken over all meshes of Ω and

QTh
=

1

#Th

∑

k∈K

(

‖ek‖Hk
−
√

2C(d)ω

)2

, (1.2.40)

where #Th is the number of edges of Th. We call the quantity QTh
the quality parameter of

Th.

The quality parameter QTh
is a computable quantity for the given function u and the mesh

Th. Definition 1.9 gives us an idea how to adapt the mesh. The mesh adaptation algorithm is
described in Section 1.3. In Section 1.2.5, we present another determination of AMA which
leads to the same definition of the quality of a mesh.

1.2.5 Alternative determination of AMA

It is possible to introduce the term edge-optimal mesh from Definition 1.8 without the term
optimal element from Section 1.2.3. Our aim is to adapt a given mesh Th so that the new
one satisfies the stronger condition (1.2.21) and #Th is minimal. Let us suppose that the
dependence of ‖u−rhu‖X on #Th is monotone. Then the inverse problem can be formulated:
Adapt a given mesh Th so that the interpolation error ‖u− rhu‖X is minimal for a fixed #Th.

The basic idea is the following: In order to minimize the interpolation error for a given
#Th, the interpolation error functionEI defined by (1.2.20) should be equidistantly distributed
over the whole computational domain Ω, i.e.

EI(x) ≈ C ∀x ∈ Ω, (1.2.41)

where C > 0 is a constant.
In order to minimize the interpolation error function EI , we introduce the discrete version

of the condition (1.2.41). We consider the interpolation error function EI over edges for
practical reasons. Let e be an edge of Th (connecting two nodes of Th), |e| notes the Euclidean
length of e and let xe be the centre of e. We approximate EI |e by the mean value of EI over
e. Then the omitting the terms of higher order yields

EI |e ≈ 1

|e|

∫

e
|u(x)− rhu(x)| dS ≈

≈ 1

2

1

|e|

∫

e
|(x− xe)H(xe)(x− xe)| dS =

1

24

∣

∣

∣~eTH(xe)~e
∣

∣

∣ , (1.2.42)
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 !"#"

Figure 1.3: The vector ~e corresponding to the edge e ∈ Th and its centre xe.

where ~e ∈ IRd is the vector parallel with the edge e and with the Euclidean norm equal to
|e|, see Figure 1.3.

Using (1.2.36), the norm of the edge e corresponding to the matrix H is

‖e‖H ≡
(∣

∣

∣~eTH(xe)~e
∣

∣

∣

)1/2
. (1.2.43)

We have from (1.2.42) and (1.2.43), that the interpolation error function is uniformly dis-
tributed over the mesh Th if

EI |e ≈
1

24
‖e‖2H ≈ ω for any edge e of Th, (1.2.44)

where ω > 0 is the given accuracy. With the aid of (1.2.44) we define the following:

Definition 1.10 The mesh Th is optimal if and only if

‖ek‖Hk
=
√
24ω ∀ek ∈ Th, ek edge of Th, Hk ≡H(xek

), (1.2.45)

where ω is a given constant which plays a role of accuracy.

Remark 1.5 Definition 1.10 is identical (modulo a scaling constant) to Definition 1.8. There-
fore it leads also to Definition 1.9 introducing the term optimal mesh. The first concept
(Sections 1.2.2 – 1.2.4) has better geometrical interpretation. However, the second approach
(Section 1.2.5) should be used in order to derive some a priori error estimations.

1.3 Mesh optimization

The quality parameter QTh
given by (1.2.40) is always nonnegative and it is equal to zero if

the mesh is edge-optimal in the sense of the Definition 1.8. Therefore we adapt the mesh Th

in order to decrease QTh
and to approach T opt

h and so T min
h . Let u ∈ C2(Ω∪Ωh), ω > 0, Told

be a mesh of Ω and Hk, k ∈ K be the Hessian matrices of u evaluated in the centre of the
edge ek. The mesh contains two type of nodes: I (for internal) and B (for boundary). An I I
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edge is an edge that joins two I-nodes, and the other combinations are defined analogously.
We want to find a new mesh Tnew such that QTnew is minimal from all possible meshes. To
obtain Tnew, an iterative process is used. Each iteration consists of a certain number of the
local mesh operations described in the next paragraphs.

1.3.1 Mesh adaptation – d=2

The local mesh operations for d = 2 (viewed in Figure 1.4) are the following

• Adding a node (A) - If the norm of some edge of a triangle is greater than 4
3

√

2C(d)ω
then we put a new node.

– I I or IB-edge: we put a new node at the centre of this edge.

– BB-edge: a new node is the orthogonal projection of the centre of this edge on ∂Ω.

The constant 4
3

√

2C(d)ω is the smallest positive solution of the inequality

∣

∣

∣‖e‖H −
√

2C(d)ω
∣

∣

∣ ≥
∣

∣

∣

1

2
‖e‖H −

√

2C(d)ω
∣

∣

∣, (1.3.1)

which means that after adding a node, two edges with the norms 1
2‖e‖H arise and the

difference 1
2‖e‖H and

√

2C(d)ω is smaller than the difference of ‖e‖H and
√

2C(d)ω.

• Removing an edge (R) - If the norm of some edge of a triangle is smaller than
2
3

√

2C(d)ω we remove this edge. The initial and final nodes of this side pass into a new
node, whose position depends on the type of edge.

– I I-edge: the new position is at the centre of removed edge.

– I B-edge: the new position is at the position of the B-node

– BB-edge: the new position is at the orthogonal projection of the centre of removed
edge on ∂Ω.

The constant 2
3

√

2C(d)ω is the highest solution of the inequality

∣

∣

∣‖e‖H −
√

2C(d)ω
∣

∣

∣ ≥
∣

∣

∣2‖e‖H −
√

2C(d)ω
∣

∣

∣, (1.3.2)

which introduce a heuristical consideration opposite to (1.3.1).

• Swapping(S) the diagonal of the quadrilateral formed by any pair of adjacent elements.
The edge is swapped if the quality parameter QT after swapping is smaller than before.

• Moving a node (M) is the only non discrete local operation. We seek a new position
of a node (positions of other nodes are fixed), which minimize the quality parameter
QT .

– B-node: we move the node along ∂Ω and the new position minimizes the quality
parameter QT .

– I-node: the moving of node Pi consists of the following steps:
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1. Let P(i) be the set of nodes Pj ∈ σh such that eij ≡ PiPj is an edge of the
mesh. Then we define the nodes

P ∗i,j ≡ Pi + αj(Pj − Pi) ∀j ∈ P(i)

where αj > 0 is chosen in such a way that ‖P ∗i,j − Pi‖Heij

=
√

2C(d)ω ∀j ∈
P(i).

2. We define the node P ∗i by

P ∗i ≡
1

#P(i)
∑

j∈P(i)
P ∗i,j ,

where #P(i) denotes the number of nodes having a common edge with Pi.

3. Let P ′i (s) be a point such that

P ′i (s) = Pi + s(P ∗i − Pi), s ∈ [0, 1]
If we move Pi into P ′i (s), we obtain a triangulation T (s) with the quality
parameter QT (s). We find s∗ ∈ [0, 1] such that QT (s∗) ≤ QT (s) for all s ∈
[0, 1] and the new position of P is Pi := P ′i (s

∗).

Remark 1.6 The local operation moving a node should seem to be not very effective.
There exists another approach ([FOG97]), where the optimal position is sought by a
gradient method. On the other hand, the advantage of our proposed algorithm is its
simplicity and therefore quickness. As the iterative process consists of many repetitions
of all local operations, it is sufficient to find the new position of the node approximately.
Numerical experiments show that our algorithm is more effective from CPU-time point
of view.

1.3.2 Mesh adaptation – d=3

The two dimensional operations adding a node (A), removing an edge (R) and moving

a node (M) should be easily extended also for the case d = 3. Only the operation swapping

is more complicated and we distinguish the following cases similarly as in [FOG97].

• Face swapping (SF ) reconnects the tetrahedra separated by a single interior face. The
operation is viewed in Figure 1.5 and Figure 1.6 where two tetrahedra yields three and
two new ones for interior and boundary face, respectively. The face is swapped if the
quality parameter QT after swapping is smaller than before.

• Edge swapping (SE) is performed for the set of M tetrahedra (M ≥ 3) having a
common edge AB. Moreover, the tetrahedra have the nodes P1, . . . , PM , see Figure 1.7.
So that we have tetrahedra ABPjPj+1, j = 1, . . . ,M where PM+1 ≡ P1. Performing
the edge swapping we obtain 2M − 4 new tetrahedra having the nodes APiPjPk and
BPiPjPk, see Figure 1.7. It means that the polygon P1 . . . PM is divided into M − 2
triangles PiPjPk. Figure 1.8 shows how we can divide polygon P1 . . . PM into M − 2
triangles for M = 3, . . . , 7. The upper indexes of the pictures denote the number of
subcases arising by the index shifting. The edge is swapped if the quality parameter
QT after swapping is smaller than before.
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adding (II or IB-edge) adding (BB-edge) removing (II-edge)

removing (IB-edge) removing (BB-edge) swapping

moving (I-node) moving (B-node)

Figure 1.4: Two dimensional local operations.

Figure 1.5: Face swapping for an interior face.
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Figure 1.6: Face swapping for a boundary face, the bottom faces belongs to ∂Ωh.

3

4 4

Figure 1.7: Example of edge swapping from 5 to 6 tetrahedra. The view is parallel with the
edge AB, therefore the edge AB pass into one point.
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1

N=3N=3

N=4

N=5

N=6

N=7

5

6 3 3 2

7 7 7 7

7 7

2

Figure 1.8: Triangles after edge swapping for 3 ≤M ≤ 7, the upper index denotes the number
of unique rotations for each case.
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1.3.3 Minimal angle condition

From theoretical as well as computational reasons, it is suitable to ensure the shape regularity
of the mesh. The mesh is shape regular if there exists a constant β such that

diam (T )

ρT
≤ β ∀T ∈ Th, (1.3.3)

where ρT denotes the radius of a maximal d−dimensional ball inscribed into T ∈ Th. To
guarantee that the condition (1.3.3) is valid, we define the condition

measd(T )
∑

eT
k
⊂T |eT

k |d
≥ γ ∀T ∈ Th, (1.3.4)

where measd(T ) is the d−dimensional measure of T , |eT
k | is the (Euclidean) length of the

edges eT
k forming the element T ∈ Th. Then any local operation is performed only if the

condition (1.3.4) is satisfied for a prescribed number γ > 0. In examples presented in this
work we put γ = 0.02.

1.3.4 Iterative process

Based on a very large range of numerical experiments we present the AMA algorithm using
the combination of the above operations A,R,S, andM as (for d = 3 we put S = SF + SE)

m× {M+ n1 × [R+ S] +M+ n2 × [A+ S] +M + S}+M, (1.3.5)

(the sequence of operations goes from the left to the right), where m, n1 and n2 are integers
denoting the number of repetitions of the sequence of operations in the square brackets. The
sequence in the square brackets is applied until no local discrete operation S, R and A are
performed. Numerical examples show that the algorithm (1.3.5) converges, i.e. it finish after
a finite number of steps.

1.4 Application of AMA in numerical solution process

In the previous section we have shown how to construct the mesh T opt
h for the smooth known

exact solution u. In practical examples, of course, we do not know the exact solution u and
therefore we use a numerical approximation uh on a mesh Th, on which we apply a smoothing
procedure and use the technique from previous section. What we need is not the smoothed
function itself but its Hessian matrices H evaluated in the centres of edges of Th.

1.4.1 Computation of the second order derivatives

The Hessian matrix H evaluated in the centre of an edge ek of Th is computed as the average
of the Hessian matrixes evaluated in the initial and final point forming ek. Let uh ∈ Uh

(defined in (1.2.15)) be an approximate solution of (1.2.4) – (1.2.6) and

Wh = {wh;wh ∈ C(Ωh), wh is linear on each T ∈ Th} (1.4.1)

W 0
h = {wh;wh ∈ Wh, wh = 0 on ∂Ωh}.
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We introduce the operator uh ∈ Uh 7→ ūh ∈ Wh, such that

ūh(Pi) =

∑

T∈Di

∫

T uh(ξ) dξ
∑

T∈Di
meas(T )

, (1.4.2)

where Pi ∈ σh (see Definition 1.1) and Di is the set of elements from Th having Pi in common.
We compute the elements of the Hessian matrix H using the evaluation of the second

order derivatives of ūh in the following sense. We approximate
∂2ūh

∂x(i)∂x(j) , i, j = 1, . . . , d by a

function d(i,j)uh ∈ Wh such that

(

∂2ūh

∂x(i)∂x(j)
, ϕ

)

≈
(

d(i,j)uh, ϕ
)

= −
(

∂ūh

∂x(i)
,

∂ϕ

∂x(j)

)

∀ϕ ∈W 0
h , i, j = 1, . . . , d, (1.4.3)

where (·, ·) means the scalar product in L2(Ωh). The R.H.S. of (1.4.3) has meaning because
ūh, ϕ ∈ Wh and therefore the first derivatives exist and are piecewise constant. The choice
of the standard finite element hat test functions from W 0

h leads to the explicit formula for

d(i,j)uh, i, j = 1, . . . , d. The relations (1.4.3) determine the values of d(i,j)uh, i, j = 1, . . . , d
in inner nodes P ∈ σh ∩ Ω. For nodes lying on ∂Ω we use the extrapolation from interior
part of the computational domain. The values of d(i,j)uh, i, j = 1, . . . , d in boundary nodes
are averages of d(i,j)uh in nodes having a common edge with a boundary nodes. Numerical
examples confirm that such simple extrapolation yields satisfactory results. Finally, we put

H =









d(1,1)uh . . . d(1,d)uh
...

. . .
...

d(d,1)uh . . . d(d,d)uh









. (1.4.4)

Lemma 1.5 Let uh ∈ W 0
h . Then the approximations of second order derivatives given by

(1.4.3) are symmetric, i.e.

d(i,j)uh = d(j,i)uh ∀i, j = 1, . . . , d. (1.4.5)

Proof. We perform the proof for the case d = 3, the two dimensional case we obtain by
an easy simplification. Let {ϕk, ϕk(Pl) = δkl, k, l ∈ J◦h} be a basis of W 0

h , where {Pl, l ∈ J◦h}
is the set of all inner nodes of Th. Then using (1.4.3), it is sufficient to prove that

(

∂ϕk

∂x(i)
,

∂ϕl

∂x(j)

)

=

(

∂ϕk

∂x(j)
,

∂ϕl

∂x(i)

)

∀i, j = 1, . . . , d, ∀k, l ∈ J◦h. (1.4.6)

The relations (1.4.6) are nontrivial if the functions ∂ϕk and ∂ϕl have a nonempty common
support which means that there exists an edge ekl such that Pk and Pl are its final nodes.
Then there exists M tetrahedra having the edge ekl in common, we denote them by Tm ≡
PkPlPmPm+1, m = 1, . . . ,M (we put PM+1 := P1), see Figure 1.9.

Let Dm, m = 1, . . . ,M be a 4× 4 matrix corresponding to the tetrahedron Tm given by

Dm ≡
{

(Dm)r,s

}4

r,s=1
=













x
(1)
k x

(2)
k x

(3)
k 1

x
(1)
l x

(2)
l x

(3)
l 1

x
(1)
m x

(2)
m x

(3)
m 1

x
(1)
m+1 x

(2)
m+1 x

(3)
m+1 1













, m = 1, . . . ,M, (1.4.7)
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k
P
k

PP
1

P P

l

P
2

PP

PP
4

PP
3

5

P

Figure 1.9: Tetrahedra having the edge PkPl in common.

where (x
(1)
k , x

(2)
k , x

(3)
k ) are the coordinates of node Pk and similarly for other nodes. Moreover

we define the matrixes Dp,q
m , p, q = 1, . . . , 4, m = 1, . . . ,M which arise replacing the q-th

column of Dm by the column (δp1, δp2, δp3, δp4), i.e.

Dp,q
m ≡

{

(Dp,q
m )r,s

}4

r,s=1
, (Dp,q

m )r,s =

{

(Dm)r,s if q 6= s
δpr if q = s.

(1.4.8)

As ϕk(Pl) = δkl, k, l ∈ J◦h and ϕk, k ∈ J◦h is linear over each tetrahedron, it is possible
observe that

∂ϕp

∂x(q)
|Tm

=
detDp,q

m

detDm
, p = 1, 2, q = 1, 2, 3, m = 1, . . . ,M, (1.4.9)

where we put ϕ1 = ϕk and ϕ2 = ϕl. From (1.4.6) and (1.4.9) we have

(

∂ϕk

∂x(i)
,

∂ϕl

∂x(j)

)

−
(

∂ϕk

∂x(j)
,

∂ϕl

∂x(i)

)

=
M
∑

m=1

∫

Tm

(

∂ϕk

∂x(i)
∂ϕl

∂x(j)
− ∂ϕk

∂x(j)
∂ϕl

∂x(i)

)

dx

=
M
∑

m=1

|Tm|
(

detDk,i
m

detDm

detDl,j
m

detDm
− detDk,j

m

detDm

detDl,i
m

detDm

)

(1.4.10)

=
1

6

M
∑

m=1

detDk,i
m detDl,j

m − detDk,j
m detDl,i

m

detDm
,

where |Tm| = detDm/6 denotes the volume of Tm. After simple but time consuming compu-
tation it is possible to show that

detDk,i
m detDl,j

m − detDk,j
m detDl,i

m

detDm
= x

(κij)
m − x

(κij)
m+1, m = 1, . . . ,M, (1.4.11)
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where κij ∈ {1, 2, 3} \ {i, j}. Now, the equalities (1.4.10) and (1.4.11) with the property
M
∑

m=1

(x(n)m − x
(n)
m+1) = 0, n = 1, 2, 3 (1.4.12)

yield the relation (1.4.6).

Remark 1.7 The matrix H given by (1.4.4) is symmetric but not positive definite as is
required in previous sections. Moreover if ūh is linear in Ωh then d(i,j)uh = 0 ∀i, j = 1. . . . , d in
Ω. Therefore ‖ek‖Hk

= 0 ∀k ∈ K which corresponds with the relation rhūh(x) = uh(x) ∀x ∈
Ω ∪ Ωh. Consequently QTh

= 2C(d)ω in (1.2.40) for any mesh Th of Ω and the iterative
process from the Section 1.3 can not be applied for minimization of QTh

. From these reasons
we use instead of H its modification M .

1.4.2 Generation of the matrices M

Let H(Pi), Pi ∈ σh be a Hessian matrix (1.4.4) evaluated in the vertex Pi. As H(Pi) is
symmetric, we decompose it in the following way:

H(Pi) = Ri







λi1 . . . 0
...

. . .
...

0 . . . λid






R−1i , i ∈ Jh, (1.4.13)

where Ri, i ∈ Jh(= a suitable index set) are orthogonal matrices. As matrices H(Pi) are
generally not positive definite, we put

H̄(Pi) = Ri







|λi1| . . . 0
...

. . .
...

0 . . . |λid|






R−1i i ∈ Jh. (1.4.14)

The matrices H̄(Pi), Pi ∈ σh are symmetric positive definite. To avoid the problems men-
tioned in Remark 1.7 we put

M (Pi) = c
[

I + α(‖H̄(Pi)‖)H̄(Pi))
]

Pi ∈ σh, (1.4.15)

where I is a unit d × d matrix, c > 0 is a constant and α : 〈0,∞) → 〈0,∞) is a function.
In (1.4.15) we put ‖H̄‖ = maxi,j=1,...,d |h̄ij |, where h̄ij , i, j = 1, . . . , d are the elements of
H̄ . The first term in the square bracket of (1.4.15) guarantees, that the matrices M(Pi) are
always regular.

Setting of parameter c

If H(Pi) = 0 ∀Pi ∈ σh then M(Pi) = cI ∀Pi ∈ σh. If the edge-optimal mesh from Definition
1.8 exists, then it consists of equal equilateral elements. As M(Pi) = cI ∀Pi ∈ σh then
(1.2.38) yields

‖ek‖2M (Pi)
= ch2 = 2C(d)ω ∀k ∈ K, (1.4.16)

where h is the length of edges defined in (1.2.17) and then

h =

√

2C(d)ω

c
. (1.4.17)
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The d-dimensional measure of equilateral element T with the length of edge is h is

measd(T ) = C1(d)h
d, (1.4.18)

where C1(2) =
√
3/4 and C1(3) =

√
2/12. In this case, the edge-optimal mesh Th of Ω consists

of NTh
equal equilateral elements, where

NTh
=
measd(Ω)

measd(T )
. (1.4.19)

This, (1.4.17) – (1.4.19) imply that

c =

(

NTh
C1(d)(2C(d)ω)

d/2

measd(Ω)

)2/d

(1.4.20)

and

h =

(

measd(Ω)

C1(d)NTh

)1/d

. (1.4.21)

It means that for a given NTh
the relation (1.4.15) leads to the same mesh Th independently

on ω > 0 provided that H(Pi) = 0 ∀Pi ∈ σh.

Remark 1.8 In order to guarantee the regularity of matrices M we have introduced the term
cI in the relation (1.4.15). Then the parameter ω has lost the meaning of the accuracy. It
indicates how fine should be a mesh provided that H(Pi) = 0 ∀Pi ∈ σh. This can be order
also by the value NTh

in (1.4.20) so that the value ω can be fixed. We set ω = 1/2 in (1.4.20)
and then NTh

is the number of elements prescribed by user for the construction of the initial
mesh Th0.

Setting of α

The simplest way to define α is to put

α(‖H̄(Pi)‖) = Ĉ, Ĉ = const, Ĉ > 0. (1.4.22)

When solving problems with discontinuities (e.g. transonic flow with strong shocks), the norm
‖H̄(Pi)‖ can tend to infinity for some Pi ∈ σh. Then the drawback of the choice (1.4.22) is
that the condition

hd ≤ c̄meas(T ), T ∈ Th, c̄ = constant independent of h, (1.4.23)

is not satisfied as ‖H(Pi)‖ → ∞ for some Pi ∈ σh. The condition (1.4.23) is the standard
requirement for the finite volume/element methods, see e.g. [Fei93]. To fulfill (1.4.23) we
propose the relation

α(‖H̄(Pi)‖) =
ε1

ε2 + ‖H̄(Pi)‖
, Pi ∈ σh, (1.4.24)

where ε1 and ε2 are positive constants. The relation (1.4.15) and (1.4.24) give

lim
‖ ¯H(Pi)‖→∞

‖M(Pi)‖ = c(1 + ε1), Pi ∈ σh, (1.4.25)
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from which it follows that the norms of M(Pi), Pi ∈ σh are bounded and therefore the lengths
of edges of T are bounded from below. The relation (1.4.24) is used in further computation.

The parameters ε1, ε2 are determined in the following way. Let H̄(Pi) = 0 for some
Pi ∈ σh. Then M(Pi) = cI and the corresponding optimal element has equal edges with
length (in Euclidean norm)

lmax =

√

3

C(d)
. (1.4.26)

Let H̄(Pi) = βI for some Pi ∈ σh and let β ≫ 1. Then M(Pi) → c(1 + ε1)I for β → ∞,
as follows from (1.4.25) and the corresponding optimal element has equal edges with limit
length (in Euclidean norm)

lmin =

√

C(d)

c(1 + ε1)
. (1.4.27)

It follows from (1.4.26) and (1.4.27) that the length l of any edge from the edge-optimal mesh
satisfies (provided M(Pi) is defined by (1.4.15) and (1.4.24) )

lmin =

√

C(d)

c(1 + ε1)
≤ l ≤

√

C(d)

c
= lmax. (1.4.28)

It follows from (1.4.26) and (1.4.27) that

lmax
lmin

=
√
1 + ε1 (1.4.29)

and then

ε1 =

(

lmax
lmin

)2

− 1. (1.4.30)

Relation (1.4.30) explains the role of ε1. Setting ε1 we control the ratio between the longest
and the shortest edge admissible in the edge-optimal mesh.

Based on series of practical computations we use for ε2 the following relation

ε2 =
ε1
p

(1.4.31)

where p is some positive number. The role of p is viewed in Figure 1.10, where the function

‖H̄‖ 7→ ‖M‖ = c

(

1 +
ε1

ε1
p + ‖H̄‖‖H̄‖

)

(1.4.32)

is plotted for different p. The number p controls the transition of the coarsest part of the
mesh (with edge length lmax given by (1.4.26)) to the finest one (with edge length lmin given
by (1.4.27)) as it is demonstrated on Figure 1.11.

1.4.3 Multilevel computation

The technique described above is applied in the following way, see Figure 1.12: We start from
an initial mesh Th0 of computational domain Ω. We compute the solution uh0 on the mesh
Th0 using a suitable numerical method (finite volume method, finite element method, . . . )
for approximate solution of the problem (1.2.1) – (1.2.3). We compute the Hessian matrices
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Figure 1.11: Transition of the coarsest part to the finest one for two different p1 > p2.
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Figure 1.12: Multilevel adaptation AMA algorithm.

M by the technique described above at each vertex of Th0 and we construct the mesh Th1

using the iterative process (1.3.5). The results from Th0 are interpolated onto Th1 and the
numerical solution procedure is applied on Th1 producing uh1. In the similar way we construct
Th2, uh2 ;Th3, uh3 ; , . . .. The multilevel computational process is terminated on the mesh Thk

if
two successive mesh Thk

and Thk+1
are (approximately) identical. Numerical examples show

that for a fixed values of NTh
, ε1 and p the multilevel computational process terminates, see

Section 1.6.3.
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1.5 Demonstration of efficiency of AMA

In previous sections, we describe the use of the AMA method in combination with a suitable
solver for the numerical solution of BVP. Before presenting practical results, we show several
examples demonstrating the efficiency of the proposed adaptive algorithm.

1.5.1 Importance of the stronger necessary condition

At first we show the importance of the stronger necessary condition (1.2.21). Let u be a
solution of the given problem. Then the function Πhu introduced in (1.2.11) is the best
possible solution from the space Uh in the sense of ‖ · ‖X norm. Moreover, the value

‖u−Πhu‖X (1.5.1)

is the minimal discretization error. Our aim is to show that using anisotropic meshes we can
essentially decrease the value of (1.5.1). As the construction of Πhu is difficult, we estimate
(1.5.1) by the interpolation error

‖u− rhu‖X , (1.5.2)

where rh is the ∇-interpolation defined by (1.2.18).
In two examples we investigate (for a given function u) the interpolation error ‖u−rhu‖X

in the norms

‖u− rhu‖L2(Ω), |u− rhu|H1(Ω,Th), ‖u− rhu‖L∞(Ω), (1.5.3)

where

|u|H1(Ω,Th) ≡




∑

T∈Th

∫

T
|∇u|2 dx





1/2

(1.5.4)

is the broken H1 seminorm known from the discontinuous Galerkin method, see e.g. [CKe00].
In (1.5.3), u is a given function and rhu is defined by (1.2.18) where xi is a barycentre
of Ti,Ti ∈ Th. We compare the values of the interpolation errors (1.5.3) for two types of
triangulations: the former uniform triangulation meshes consisting of (almost) equilateral
triangles and the latter anisotropic ones obtained by AMA method presented in Section 1.4.

Example 1: Let Ω = [−2; 2]× [−2; 2] and

u(x1, x2) =
1

2
(100x21 + x22). (1.5.5)

The eigenvalues of the Hessian matrix of u are λ1 = 100, λ2 = 1. Let as consider two sets of
triangulations,

{

T I
h1

, T I
h2

, T Ih3
, T I

h4

}

and
{

T Ah1
, T Ah2

, T A
h3

, T Ah4

}

. (1.5.6)

The former and the latter sets contain uniform (isotropic) and anisotropic meshes, respectively
and

#T I
hj
≈ #T Ahj

, j = 1, . . . , 4, (1.5.7)

where #Th denotes the number of triangles of Th. Figure 1.13 shows meshes T I
hj

,T A
hj

, j =
1, . . . , 3.

The computed results are in the following table:
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mesh #Th ‖u− rhu‖L2(Ω) |u− rhu|H1(Ω,Th) ‖u− rhu‖L∞(Ω)
T I

h1
108 4.7131 48.33 8.9073

T A
h1

110 0.8496 17.37 1.3152

T I
h2

478 1.1712 24.05 2.6671

T A
h2

480 0.1828 7.261 0.3496

T I
h3

1874 0.2770 12.03 0.6582

T A
h3

1885 0.0462 3.649 0.0930

T I
h4

7472 0.0713 5.966 0.1697

T A
h4

7499 0.0116 1.848 0.0259

Example 2: Let Ω = [−2; 2]× [−2; 2] and

u(x1, x2) = 10(x21 + x22) exp

[

−10
(

(x21 + x22)
1/2 − 1

)2
]

. (1.5.8)

This is an example with steep gradients in the neighborhood of a unit circle. Let as consider
set of triangulations from previous example

{

T Ih1
, T I

h2
, T Ih3

, T Ih4

}

(1.5.9)

and the new set of anisotropic triangulations

{

T G
h1

, T Gh2
, T Gh3

, T Gh4

}

. (1.5.10)

There is again

#T Ihj
≈ #T Ghj

, j = 1, . . . , 4. (1.5.11)

Figure 1.14 shows meshes T G
hj

, j = 1, . . . , 4. We have investigated the same interpolation
errors is in previous example. The results are in the following table:

mesh #Th ‖u− rhu‖L2(Ω) |u− rhu|H1(Ω,Th) ‖u− rhu‖L∞(Ω)
T I

h1
108 4.2131 39.02 17.22

T G
h1

114 1.6801 24.43 5.433

T I
h2

478 0.9241 19.54 4.282

T G
h2

488 0.3791 11.88 1.664

T I
h3

1874 0.2371 9.961 1.148

T G
h3

1880 0.1023 5.887 0.567

T I
h4

7472 0.0581 4.952 0.350

T G
h4

7467 0.0243 2.862 0.125

The interpolation errors (1.5.3) are several times smaller for anisotropic meshes than for
uniform ones. Consequently, taking into account (1.2.12) and (1.2.19), the disretization error
(1.2.8) will be smaller with the use of anisotropic meshes.
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Figure 1.13: Uniform (isotropic) T I
hj
(left) and anisotropic T A

hj
(right) meshes for j = 1, . . . , 3.
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Figure 1.14: Adapted meshes T G
hj
for j = 1, . . . , 4.
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1.5.2 Efficiency of AMA

We apply AMA to the numerical solution of a two dimensional elliptic equation, where the
exact solution is known and we demonstrate the practical usefulness of the proposed algorithm.
Moreover, in the previous section we described the construction of a new triangulation if the
matrices M(Pi), Pi ∈ σh are given. To define M(Pi) we use the relations (1.4.13) – (1.4.15),
(1.4.20), (1.4.24) and (1.4.31), where the meaning of constants NTh

, ε1 and p is specified
in Section 1.4.2. Their determination will be demonstrated on the two following numerical
examples.

In the rest of Section 1.5), following we are interested in the two following items:

• find some suitable algorithm how to choose the constants NTh
, ε1 and p in order to

obtain a suitable meshes for practical computation,

• compare the effectivity of AMA approach with a standard adaptive method.

The value NTh
represents the number of elements of the initial mesh before the first

adaptation. Let l̄ be a characteristic length of a given domain. It is sufficient that the step
size h of the mesh is z times smaller then l̄, where we take z from the interval 〈1, 10〉. The
d-dimensional measure of the equilateral element (with length of edges h) is equal to C1(d)h

d

where C1(2) =
√
3/4 and C1(3) =

√
2/12. Taking into account the relation

NTh
C1(d)

(

l̄

z

)d

≈ measd(Ω), (1.5.12)

we put

NTh
:= C1(d)

−1
(

z

l̄

)d

measd(Ω). (1.5.13)

Therefore, we can choose the value NTh
according to (1.5.13). Numerical experiments show

that the choice (1.5.13) is suitable.

To set the constants ε1 and p we have applied AMA first for scalar elliptic equations (see
[BD77]), where the exact solutions are known.

1.5.3 A singular diffusion problem

In [BD77], the following problem is formulated. Find u : Ω→ IR1 satisfying

∆u = 0 in Ω, (1.5.14)

where

Ω =
{

(x1, x2) ∈ IR2, x21 + x22 < 1
}

\
{

(x1, x2) ∈ IR2, x1 ∈ (0, 1), x2 = 0
}

(1.5.15)

is the unit circle with a “crack” along the positive x1 axis. The boundary conditions are
u = sin(θ/4) along the unit circumference (θ is the angle with respect to the positive x1 axis),
u = 0 along the upper surface of the crack, and ∂u/∂n = 0 along the lower surface of the
crack. The exact solution of weak problem is

u(r, θ) = r1/4 sin(θ/4) (1.5.16)
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(r and θ are the polar coordinates), which belongs to H 1(Ω)\H2(Ω), with a singularity in the
origin. If h denotes the longest edge size in the triangulation, it is a classical result ([BD77],
p. 4126) that

|||u− uh||| ≡ ‖∇(u− uh)‖L2(Ω) ≤ βhκ, (1.5.17)

with κ < 1
4 (remember that for regular problems (u ∈ H2(Ω)) κ = 1, see [Fei93], 2.9.41). Here

u denotes the exact solution and uh the piecewise linear finite element numerical solution of
(1.5.14).

The fundamental question is the following: It is possible to increase the convergence rate
(1.5.17) with κ < 1

4 if we use the anisotropically adapted grids? For anisotropic meshes, it
is natural to measure the rate of convergence not with respect to the mesh size h but with
respect to the number of degrees of freedom, e.g. number of elements of Th. We define average
mesh size by

hA ≡ (#Th)
−1/2 , (1.5.18)

where #Th denotes the number of elements of Th. Obviously, we have for uniform meshes

h

hA
≈ constant independent of h. (1.5.19)

Uniform meshes

At first, we have solved (1.5.14) using uniform meshes. In order to generate uniform meshes,
we applied the AMA algorithm described in Section 1.2.2 with isotropic matrices, i.e. with
M(Pi) = cI, Pi ∈ σh, where c is the constant given by (1.4.20), where we prescribe the
number of elements NTh

. The equation (1.5.14) is solved by the standard finite element
method (FEM) with conforming piecewise linear elements. Then the approximate solution
uh is sought in the space

Ūh = {uh ∈ C(Ωh);uh|T ∈ P1(T ) ∀T ∈ Th, uh|ΓD
= uD} , (1.5.20)

where ΓD ⊂ ∂Ω is the part of the boundary, where the Dirichlet boundary condition uD is
prescribed.

Let uh ∈ Ūh be the approximate solution of the discrete version of problem (1.5.14)
computed on triangulation Th. As we know the exact solution (1.5.16), we compute the error
(1.5.15)

eh ≡ |||u− uh||| =




∑

T∈Th

∫

T
|∇(u− uh)|2 dx





1/2

, (1.5.21)

where the integral is evaluated by the seven points numerical quadrature exact for the poly-
nomials of degree less or equal to 3.

We define the operator Π̄h using (1.2.11), where we put ‖ · ‖X = ||| · |||, i.e. Π̄h : w ∈
H1(Ω) 7→ Π̄hw ∈ Ūh such that

|||w − Π̄hw||| = min
wh∈Ūh

|||w − wh|||. (1.5.22)

Using the standard technique for seeking the minimum of a function of several variables, it
is possible to show, that for each w ∈ H1(Ω), there exists a uniquely determined function
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NTh
#Th h eh eminh CPU (s)

125 156 0.3079 1.0120 0.8094 7
500 628 0.1540 0.8333 0.6914 9
2000 2442 0.0789 0.7159 0.5958 23
8000 9831 0.0395 0.5837 0.4954 154
32000 39158 0.0199 0.4707 0.4036 2408

Table 1.1: Singular diffusion problem – uniform meshes.

Π̄hw ∈ Ūh. Then we can compute the minimal discretization error

eminh ≡ |||u− Π̄hu||| =




∑

T∈Th

∫

T

∣

∣∇(u− Π̄hu)
∣

∣

2
dx





1/2

. (1.5.23)

The function Π̄hu is the best possible numerical solution of (1.5.14) – (1.5.15) in the space Ūh

in the sense of the discretization error measured in the ||| · ||| norm.
Table 1.1 contains the results of computation on five different uniform meshes. The value

NTh
is the number of prescribed elements in (1.4.20) and #Th is the real number of triangles

of Th. The value h in Table 1.1 denotes the step size of a uniform mesh

h ≡ max
T∈Th

diam (T ). (1.5.24)

The values eh and eminh are given by (1.5.21) and (1.5.23), respectively. The last column intro-
duces the CPU time including the mesh generation process. The computation was performed
on a workstation DEC Alpha EV56/500MHz.

Using the data from Table 1.1, we can set the rate of convergence. Let us suppose that

eh = βhκ, (1.5.25)

where eh is the discretization error given by (1.5.21), h the step size of the mesh given by
(1.5.24), β a positive constant and κ the rate of convergence. To set κ we apply the method
of the least squares (for more detail see, e.g., [FD98]). Therefore we obtain κ = 0.28 and
β = 1.49, which corresponds with the theoretical result (1.5.17).

The smallest value of eh = 0.4707 (computed for NTh
= 32000) is in agreement with low

rate of convergence κ. We can easily estimate, how many triangles would be required, so that
the discretization error would be significantly small, e.g. eh = 0.0567 (=the smallest error
obtained with AMA, see Section 1.5.3, Table 1.2). From the computed values κ = 0.28 and
β = 1.49 and the relation (1.5.25), we obtain h = 3.5·10−15 , which corresponds approximately
to 5.8 · 1029 equilateral triangles.

Anisotropic meshes

Using the AMA method, we obtain more suitable meshes for the resolution of (1.5.14) in the
sense that the minimal discretization error eminh is smaller. As we know the exact solution we
compute the Hessian matrices exactly, and we compare them with their numerical approx-
imation given by (1.4.3) and (1.4.4). The matrices H(Pi) are given by (1.4.13) – (1.4.14).
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NTh
ε1 p #Th eh emin

h
CPU (s)

10 1010 50. 759 0.1481 0.1376 122
10 1010 100. 1577 0.1101 0.1022 245
10 1010 150. 2404 0.0992 0.0906 405
10 1010 200. 3194 0.0944 0.0835 610
10 1020 50. 745 0.1378 0.1336 122
10 1020 100. 1610 0.0860 0.0841 247
10 1020 150. 2464 0.0683 0.0673 426
10 1020 200. 3375 0.0567 0.0554 666
10 1030 50. 745 0.1378 0.1336 128
10 1030 100. 1598 0.0942 0.0880 222
10 1030 150. 2452 0.0669 0.0656 400
10 1030 200. 3376 0.0567 0.0554 649

Table 1.2: Singular diffusion problem – anisotropic mesh adaptation.

After simple but time consuming calculation we have

H(Pi) =
3

16
r
−7/4
i I, Pi ∈ σh, (1.5.26)

where I is the unit matrix and ri is the radius of Pi.

Let α(‖H̄(Pi)‖) be given by (1.4.22). Then the edge-optimal triangulation consists of
almost equilateral triangles (provided that diam(T )≪ r), whose areas depend on the radius
of their barycentres rT according

meas(T ) ≈ 3
√
3

4

[

c

(

1 +
3

16
Ĉr

−7/4
T

)]−1
. (1.5.27)

It follows from (1.5.27) that for rT → 0 the triangles of the optimal triangulation collapse,
i.e. meas(T )→ 0 and the condition (1.4.23) is not satisfied.

On the other hand, let α(‖H̄(Pi)‖) be given by (1.4.24). Then for ε1 ≫ 1 we have

meas(T ) ≈ 3
√
3

4



c



1 +
3
16pε1r

−7/4
T

ε1 +
3
16pr

−7/4
T









−1

, (1.5.28)

which for rT → 0 gives

meas(T )→ 3
√
3

4

1

c(1 + ε1)
, (1.5.29)

and the condition (1.4.23) is satisfied. From this point of view, relation (1.4.24) seems to be
better than (1.4.22).

In order to solve (1.5.14), we use the same numerical scheme as for uniform meshes. We
performed the mesh adaptation for various combinations of value of ε1 and p, see Table 1.2.
The meaning of values in Table 1.2 is similar as in Table 1.1, #Th denotes the real number
of elements after last mesh adaptation and CPU is the time cost for all levels of adaptation
including mesh generation.

Figure 1.15 shows the dependence of hT ≡ diam(T ), T ∈ Th on rT for the triangulation
generated with ε1 = 1030 and p = 200. The separated points present the dependence of the
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Figure 1.15: Singular diffusion problem – dependence of h(T ) on rT for ε1 = 1030 and p = 200.

ε1 κ β

1010 0.637 0.0783
1020 1.172 0.8200
1030 1.221 0.9038

Table 1.3: Singular diffusion problem – anisotropic mesh adaptation, rates of convergence.

value of diameter hT on corresponding rT of all T ∈ Th, while the dashed line presents the
theoretical dependence given by

hT =
4√
3
(meas(T ))1/2 , (1.5.30)

where meas(T ) is given by (1.5.28). The good mutual correspondence is evident.
Using the data from Table 1.2, we set the convergence rate for the anisotropic meshes.

From (1.5.19) and (1.5.25), we have

eh = β(#Th)
−κ/2. (1.5.31)

In order to set κ, we again apply the method of the least squares. The results are viewed in
Table 1.3. We see that the rate of convergence is (for ε1 = 1020 and ε1 = 1030) comparable
with the regular case (u ∈ H2(Ω)), i.e., κ ≈ 1.

Figure 1.16 and Figure 1.17 show two examples of results from Table 1.2. The left figures
present the used triangulation and the right ones the corresponding lines of constant values of
the numerical solution uh together with the best possible numerical solution Π̄hu. The second
and third rows of figures represents the 10 times and 100 times zooms of the neighbourhood
of the singularity point, respectively.

Isotropic mesh refinement

We compare AMA technique with a “clasical” adaptive method based on a posteriori error
estimation. We define the error indicator (compare with (1.5.21))

g(T ) =

(∫

T
|∇(u− uh)|2 dx

)1/2

, T ∈ Th, (1.5.32)
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η No. of ref. #Th eh eminh CPU (s)

2E − 04 8 1474 0.2175 0.1906 50
2E − 04 10 1538 0.1658 0.1485 66
2E − 04 12 1602 0.1330 0.1225 82

1E − 04 8 2127 0.2121 0.1843 78
1E − 04 10 2181 0.1585 0.1403 102
1E − 04 12 2255 0.1237 0.1122 128

Table 1.4: Singular diffusion problem – red-green refinement.

where u and uh are the exact and numerical solutions, respectively. The error indicator
(1.5.32) is the “best possible” a posteriori error indicator as it is based on the direct compu-
tation of the error (the exact solution is known).

All triangles T ∈ Th with g(T ) greater than a given tolerance η are refined by the red-green
technique [BSW83]. The computation was performed for 2 values of the tolerance η and for
8, 10 and 12 level of the mesh refinement. It is necessary to prescribe the maximal number of
levels of refinement, as the singularity causes that there exist some triangles with g(T ) > η
for any level of refinement. The achieved results are viewed in Table 1.4 and one of them is
visualized in Figure 1.18.

1.5.4 A Poisson problem with steep gradients

The previous test, though essential for checking the convergence properties of the adaptive al-
gorithm, allows no evaluation of the performance of the optimizer in relation to the anisotropy.
For problem (1.5.14), both eigenvalues of the Hessian matrix of the solution (1.5.16) differ only
on sign (i.e. λ1 = −λ2) and thus the optimal triangulation consists of equilateral triangles.

Consider now a diffusion problem exhibiting steep gradients. Let Ω = (0, 1) × (0, 1), and
let u be the solution of

−∆u(x1, x2) = 90x81(1− x202 ) + 380x182 (1− x101 ) (1.5.33)

with boundary conditions u = 0 along the edges {(x1, x2) ∈ IR2;x1 = 1, x2 ∈ (0, 1)} and
{(x1, x2) ∈ IR2;x1 ∈ (0, 1), x2 = 1}, and ∂u/∂n = 0 along {(x1, x2) ∈ IR2;x1 = 0, x2 ∈ (0, 1)}
and {(x1, x2) ∈ IR2;x1 ∈ (0, 1), x2 = 0}. The exact solution

u = (1− x101 )(1− x202 ) (1.5.34)

exhibits two steep gradients along the right and top edges, the latter being stronger than the
former.

Uniform meshes

The same numerical method as in previous section was applied. Table 1.5 contains the results
of computation on four different uniform meshes. In contrast to the problem (1.5.14) –
(1.5.15), the discretization error eh of the problem (1.5.33) (given by (1.5.21)) differs from
the minimal discretized error eminh (given by (1.5.23)) by the terms of order 10−4. It is caused
by the fact, that the problem (1.5.33) has a smooth solution (1.5.34) and the used numerical
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Figure 1.16: Singular diffusion problem, anisotropic mesh adaptation with NTh
= 10, ε1 =

1010, p = 50 (#Th = 759) – mesh and isolines of uh (full line) and Π̄hu (dashed line) with
zooms.
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Figure 1.17: Singular diffusion problem, anisotropic mesh adaptation with NTh
= 10, ε1 =

1030, p = 200 (#Th = 3376) – mesh and isolines of uh (full line) and Π̄hu (dashed line) with
zooms.
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Figure 1.18: Singular diffusion problem, red-green refinement with η = 2 · 10−4 after 12 level
of refinement (#Th = 1602) – mesh and isolines of uh (full line) and Π̄hu (dashed line) with
zooms.
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NTh
#Th h eh CPU (s)

125 127 0.1783 1.9281 7
500 546 0.0894 0.9905 9

2000 2314 0.0484 0.5340 29
8000 9332 0.0226 0.2655 252

32000 18950 0.0132 0.1346 87904

Table 1.5: Poisson problem with steep gradients - uniform meshes.

NTh
ε1 p #Th eh CPU (s)

1 1010 100 361 0.18392 79
1 1020 100 361 0.18392 79
1 1030 100 361 0.18392 77
1 1020 300 941 0.10783 152
1 1010 300 945 0.10781 153
1 1030 300 941 0.10783 146
1 1010 600 1741 0.07753 287
1 1020 600 1734 0.07666 295
1 1030 600 1734 0.07666 301
1 1010 1000 2883 0.06475 593
1 1020 1000 2908 0.06426 581
1 1030 1000 2908 0.06426 586

Table 1.6: Poisson problem with steep gradients – anisotropic meshes.

scheme gives solution uh almost identical with Π̄hu. Therefore Table 1.5 – Table 1.7 do not
contain the value eminh and Figure 1.19 - Figure 1.20 do not contains the isolines of Π̄hu.

If we again suppose the relation (1.5.25) we determine the rate of convergence as κ = 1.007
(β = 11.19), which corresponds to the theoretical results (1.5.17) (κ = 1 for regular problems).

Anisotropic meshes

Table 1.6 contains results of the solution of (1.5.33) on meshes achieved by AMA (all quantities
have the same meaning as in Section 1.5.3). Figure 1.19 shows one example of results from
Table 1.6, where the triangulation and the corresponding contours of constant value of the
numerical solution uh are plotted. The expected grid alignment is easily viewed.

Isotropic mesh refinement

We have again applied the red-green refinement method introduced in Section 1.5.3. In this
case, it is possible to apply the mesh refinement till the error indicator g(T ) is under the
tolerance η for each triangle. The computation was performed for 3 values of the tolerance η.
The achieved results are viewed in Table 1.7 and one of them visualized Figure 1.20.
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Figure 1.19: Poisson problem with steep gradients - anisotropic mesh adaptation: NTh
= 1,

ε1 = 1030 and p = 600 (#Th = 1734) - mesh and isolines of uh.
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Figure 1.20: Poisson problem with steep gradients – red-green refinement with η = 10−5 and
p = 1.0 (#Th = 8583) - mesh and isolines of uh.
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η No. of ref. #Th eh emin

h
CPU (s)

10−3 5 1041 0.3781 0.1906 35
10−4 6 2778 0.2343 0.1485 49
10−5 7 8583 0.1336 0.1225 175

Table 1.7: Poisson problem with steep gradients – red-green refinement.

1.5.5 Discussion of the results

From the results presented in Sections 1.5.3 and 1.5.4, we can conclude the following:

• The computations show that the discretization error eh (1.5.21) is close to eminh (1.5.23)
for both uniform and adapted meshes. This is given by the fact, that the used numerical
method (conforming linear finite element method) gives sufficiently accurate solution
for a given triangulation. This underlines the importance of the necessary condition
(1.2.13).

• The global mesh refinement leads to an enormous requirement on the memory and
CPU-time. It is absolutely impractical.

• Applying AMA for singular diffusion problem (with nonregular exact solution – u ∈
H1(Ω) \ H2(Ω)), we achieve the rate of convergence κ ≈ 1, which is the theoretical
results for regular case (u ∈ H1(Ω)).

• In order to achieve the same level of the computational error, the grids adapted by AMA
have a smaller number of elements than the grids adapted by the red-green refinement
(RGR). The difference is remarkable namely for the second example.

• On the other hand, the CPU-time is higher for AMA than for RGR. It is caused by
the simplicity of considered problem – scalar linear equation. Here the mesh adaption
algorithm requires more time than the numerical solution of the Poisson equation. The
top efficiency of AMA plays a role in practical problems, where the CPU-time rests the
same for the mesh adaptation but it is much higher for the numerical solution of the
considered problem.

• Observing results from Table 1.2 and Table 1.6, we see that whereas the increase of ε1 do
not cause essential improvement of results, then the increase of p leads to the decrease
of the computational error (and naturally the increase of the number of elements). So
that we propose the following strategy how to set the parameters NTh

, ε1 and p:

1. prescribe NTh
according to (1.5.13)

2. set ε1 sufficiently high, e.g. 10
20, see (1.4.30)

3. start with a small p and increase successively its value till the number of elements
is acceptable from the point of view of the computer memory and CPU time.
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1.6 Application of AMA for compressible flow simulation

In this section, we present the use of AMA for the solution of two and three dimensional fluid
dynamics problems. We deal with the simulation of inviscid and viscous compressible flow,
i.e., we seek a numerical solution of the system of the Euler and Navier-Stokes equations.

The application of AMA for inviscid flow simulation is straightforward, see Section 1.6.3.
On the other hand, the sufficient accurate viscous flow simulation requires additional mesh
adaptation techniques which are determined from the physical properties of the flow, namely
the presence of boundary layers and wakes.

At first, we present the system of the Navier-Stokes equations and we briefly describe
the used numerical method for its solution, which we developed several years ago. Then the
application for inviscid and viscous flow are given.

1.6.1 Governing equations

The complete system describing the motion of compressible viscous flow in a bounded domain
Ω ⊂ IRd and time interval (0, IT ) is written in the dimensionless form

∂w

∂t
+

d
∑

s=1

∂f s(w)

∂xs
=

d
∑

s=1

∂Rs(w,∇w)

∂xs
in QIT = Ω× (0, IT ), (1.6.1)

where

w = (ρ, ρv1, . . . , ρvd, e)
T , w = w(x, t), x ∈ Ω, t ∈ (0, IT ),

f s(w) = (ρvs, ρvsv1 + δs1p, . . . , ρvsvd + δsdp, (e+ p) vs)
T , s = 1, . . . , d

Rs(w) = (0, τs1, . . . , τsd,
d
∑

r=1

τsrvr + qs)
T , s = 1, 2 (1.6.2)

τsr =
1

Re

(

∂vs

∂xr
+

∂vr

∂xs
− 2

3
divv δsr

)

, qs =
γ

RePr

∂θ

∂xs
, s, r = 1, . . . , d

p = (γ − 1) (e − ρ|v|2/2), e = ρ(θ + |v|2/2).

Notation is the following: t – time coordinate, x = (x1, . . . , xd) –Cartesian coordinates, ρ –
density, p – pressure, θ – temperature, e – total energy, v = (v1, . . . , vd) – velocity, δij –Kronec-
ker delta, γ –Poisson adiabatic constant, Pr –Prandtl number, Re –Reynolds number. We
assume that γ > 1, Pr and Re are given constants.

The above system is equipped with the initial condition w(x, 0) = w0(x), x ∈ Ω and
boundary conditions, see [FJS]: At inlet we prescribe ρ, v1, . . . , vd and use “do-nothing”

condition
∑d

r=1

(

∑d
s=1 τsrns

)

vr +
γ

Re Pr∂θ/∂n = 0, on fixed walls we assume that v1 = . . . =

vd = 0, ∂θ/∂n = 0 and at outlet we set −pnj +
∑d

i=1 τsrns = 0, s = 1, . . . , d, and ∂θ/∂n = 0.
(Here ∂/∂n is the derivative in the direction of the unit outer normal n = (n1, . . . , nd) to the
boundary ∂Ω.)

1.6.2 Numerical methods

Our aim is to obtain the steady-state solution of the problem (1.6.1) – (1.6.2) by a time
marching method. For a flow with a high Reynolds number, the viscous effects are small, and
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therefore we can consider the viscous terms Rs, s = 1, . . . , d as a perturbation of the inviscid
system (the Euler equations). We split (1.6.1) into the inviscid system

∂w

∂t
+

d
∑

s=1

∂f s(w)

∂xs
= 0, (1.6.3)

and purely viscous system

∂w

∂t
=

d
∑

s=1

∂Rs(w,∇w)

∂xs
(1.6.4)

and discretize them separately.

The time discretization of (1.6.3) and (1.6.4) is carried out with the use of a partition
0 = t0 < t1 < t2 . . . < tN = T of the time interval (0, T ). The inviscid system (1.6.3) is
discretized by the cell-centered finite volume (FV) method on Dh = {Di}i∈J . Here Di are
the finite volumes (which can be triangular, barycentric and dual finite volumes or their 3D
analogues), Dh is a partition of a polygonal approximation Ωh of the domain Ω and J is a
suitable index set. The purely viscous system (1.6.4) is discretized by the piecewise linear
conforming or nonconforming finite element (FE) method on a triangulation (d = 2) or a
tetrahedrization (d = 3) Fh of Ωh, compatible with Dh in some sense. Then the complete
system (1.6.1) is discretized via operator inviscid-viscous splitting (see e. g. [DA96], [FF96],
[FFD96]). One time step tk → tk+1 consists of two fractional substeps: inviscid FV step on
the mesh Dh and viscous FE step on the mesh Fh.

1. Inviscid FV step on Dh:
Assume that the values wk

i , i ∈ J , approximating the solution on the finite volumes Di

at time tk are known. Compute the values w
k+1/2
i , i ∈ J , from the FV formula

w
k+1/2
i = wk

i −
τk

|Di|
∑

j∈S(i)

H(wk
i ,w

k
j ,nij) |Γij |, (1.6.5)

where S(i) denotes the set of neighbours volumes of Di and Γij denotes the common
face between Di and Dj .

2. Viscous FE step on Fh:

Define the finite element function w
k+1/2
h with values w

k+1/2
h (Pi) = w

k+1/2
i at the

vertices Pi, i ∈ J of Fh. At the vertices Pi ∈ ∂Ωh, the viscous Dirichlet boundary
conditions and suitable extrapolation are used. Compute the finite element function
wk+1

h as the solution of the following problem:

(a) wk+1
h satisfies the viscous Dirichlet boundary conditions,

(b)

(wk+1
h , ϕh)h = (w

k+1/2
h , ϕh)h − τk ah(w

k+1/2
h , ϕh) (1.6.6)

for all test functions ϕh = (φ1, ..., φ4) such that φj (j = 1, ..., 4) is continuous in Ω,
linear on each T ∈ Fh and vanishes on the part of ∂Ω, where the j-th component
wj of the state vector w satisfies the Dirichlet boundary condition.
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In (1.6.5), H is the numerical flux approximating

H(wk
i ,w

k
j ,nij) ≈

d
∑

s=1

fs(w(x, tk))(nij)s, (1.6.7)

where (nij)1 . . . , (nij)d are the components of the unit outer normal nij on Γij pointed out
of Di. For the evaluation of the numerical flux, the Osher-Solomon scheme [OS82], [FŠ98]
was used.

In (1.6.6), the forms (w, ϕ)h and ah(w, ϕ) denote the approximations

(w, ϕ)h ≈
∫

Ω
w ϕdx, (1.6.8)

ah(w, ϕ) ≈
∫

Ω

d
∑

s=1

Rs(w,∇w) ∂ϕ/∂xs dx,

which were obtained with the aid of numerical quadrature using the vertices of T ∈ Fh as
integration points.

We developed three different methods. The first method uses the dual finite volume and
conforming FE (see [FFL95]), the second one uses triangular FV and conforming FE (see
[FFD96]) and the third one uses the barycentric FV and nonconforming FE (see [DFFK02]).

1.6.3 AMA for inviscid flow simulation

The motion of inviscid compressible flow is described by the system of the Euler equations
(1.6.3). The numerical solution is performed by the finite volume method, which is in fact the
first step of the method presented in Section 1.6.2, i.e., Inviscid FV step on the mesh Dh. All
results in Section 1.6.3 was computed by the FV method on triangular or tetrahedral meshes,
so that we put Dh := Th, where Th was obtained by AMA technique.

In order to apply AMA for inviscid flow simulation, we chose the density of the flow ρ as
the significant quantity. In order to compute the Hessian matrices we simply put uh := ρh in
(1.4.4). Then the whole computational process from Section 1.4.3 is applied.

AMA technique is applied for three 2D benchmark cases and two 3D problems. The first
example deals with the transonic flow around NACA0012 profile. It shows that the multilevel
computational process described in Section 1.4.3 terminates after a finite number of levels of
adaptation. The second one compares the AMA technique with two other adaptive methods
for the case of the flow through the forward facing step. The third example is a benchmark
with complicated geometry of shock waves. The last two examples show the application of
AMA for threedimensional problems.

Our aim is to obtain a steady state solution (except 2D and 3D forward facing steps,
which are unsteady). It is achieved by a time stabilization technique for IT → ∞, i.e. we
apply the computational process till the following residuum criterion is satisfied

1

τk

∥

∥

∥

∥

∥

ρk+1 − ρk

ρk

∥

∥

∥

∥

∥

L1(Ω)

< TOL, (1.6.9)

where ρk is the value of the density considered on the time level tk, τk is the time step and
TOL > 0 is a given tolerance. All computations were performed on a workstation DEC Alpha
EV56/500MHz.
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k = level of #Thk
∆#Thk

CPU-time (s)
adaptation adaptation solver

0 714 – 54 156
1 1483 769 167 289
2 7472 5989 192 1545
3 12254 4785 185 2689
4 14522 2268 231 3352
5 15619 1097 168 3521
6 16270 651 172 3683
7 16525 255 154 3765

Table 1.8: NACA0012, mesh adaptation levels, #Thk
= number of elements of Thk

, ∆#Thk
≡

#Thk
−#Thk−1

and CPU-times for mesh adaptation and computation of the Euler equations
itself.

Transonic flow around NACA 0012 profile

We present the simulation of the inviscid flow around NACA 0012 profile with the inlet Mach
number (= |v|/(γp/ρ)1/2) Min = 0.8 and angle of attack α = 1◦25′. We performed seven
levels of AMA algorithm with c = 200, ε1 = 106 and p = 1000. Table 1.8 contains the
number of elements #Thk

, k = 0, . . . , 7 of all levels of adaptation and moreover CPU times
needed for the mesh adaptation (left column) and for the solution of the Euler equations
itself (right column). Figures 1.21–1.28, show the triangulations and the isolines of the Mach
number of all levels of adaptation. Wee see that from very poor results obtained for the initial
triangulation, we obtain good results with very sharp shock waves. Figures 1.29 show the
distributions of the Mach number along the profile. Finally, the convergence of residuum is
plot at Figure 1.30.

The results for the last two levels of refinement (Figure 1.27 and Figure 1.28) are almost
identical, which corresponds to the assertion that the AMA algorithm “converges” (see Section
1.4.3). This is also viewed in Table 1.8. The results from “old” mesh are interpolated on the
new one in order to save the CPU time. It is vied at Figure 1.30 that for these cases the
residuum decreases very fast.

Transonic flow through the forward facing step

We deal with the numerical simulation of inviscid flow through a classical benchmark example
– the forward facing step, see [WC84]. The geometry of the problem is viewed in Figure 1.31.
The computations of the inviscid Euler equations were performed with the initial conditions:
ρ0 = 1.4, v = (3, 0), p = 1 and the boundary conditions taken from the initial conditions at
inlet and outlet part of ∂Ω. On the impermeable walls, we naturally put vn ≡ v · n = 0. We
investigate the solution at the time IT = 2.5. We compare the efficiency of AMA with two
other adaptive methods, a shock indicator [Dol98b], [FDF94] and a residual indicator [Kli00].

The shock indicator (SHOCK) is based on physical properties of shock waves. It checks
the density jumps up in the direction of a flow. We define the shock indicator

g(i) =
1

diam(Ti)
max
j∈s(i)

[− (ρi − ρj)vi · nij ]
+ , (1.6.10)



54 CHAPTER 1. ANISOTROPIC MESH ADAPTATION METHOD

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

’MESH-ref0’

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

’M_ISO-ref0’

Figure 1.21: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
basic mesh.
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Figure 1.22: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after first adaptation.
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Figure 1.23: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after second adaptation.
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Figure 1.24: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after third adaptation.
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Figure 1.25: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after fourth adaptation.
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Figure 1.26: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after fifth adaptation.
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Figure 1.27: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after sixth adaptation.
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Figure 1.28: Inviscid flow around NACA 0012, triangulation and isolines of Mach number,
mesh after seventh adaptation.
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Figure 1.29: Inviscid flow around NACA 0012, Mach number distributions along the profile
for all levels of mesh adaptation.
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Figure 1.30: Inviscid flow around NACA 0012, history of convergence for all levels of mesh
adaptation.



1.6. APPLICATION OF AMA FOR COMPRESSIBLE FLOW SIMULATION 59

INLET
OUTLET

[3:0.2] 

[3:1]

IMPERMEABLE WALLS

[0:1]

[0:0] [0.6:0]

Figure 1.31: Inviscid benchmark: forward facing step.

where s(i) is a set of neighbouring triangles of Ti, ρi and vi is the density and velocity
corresponding to Ti and nij is the unit outer normal to the common edge between triangles
Ti and Tj . Moreover we put a+ = max(a, 0). If the value of g(i) is higher then a given
tolerance η then Ti is refined by the red–greed refinement technique, see [BSW83].

The residual indicator (RESID) is based on the weak formulation of the Euler equations.
We define the value

r(i) = sup
ϕh∈Vi

|(A(wh), ϕh)|
‖ϕh‖H1

0 (Ti)

, (1.6.11)

where (A(wh), ϕh) is a weak form of the residuum of the Euler equations and supremum is
taken over a special set of test functions Vi, see [Kli00]. Again if the value of r(i) is higher
then a given tolerance η then Ti is refined by the red–greed refinement technique.

The mesh adaptation for all three adaptive technique was applied several times till the
quality of the solution was approximately the same. The quality of the solution is measured
only as the sharpness of shock waves in “eye” norm. It is not of course sufficient for practical
computation but here we present only a qualitative comparison of three different numerical
methods, see Figures 1.32 – 1.34. The following table compare the number of triangles (#Th)
and CPU-time of all adaptive methods.

#Th CPU-time

level AMA SHOCK RESID AMA SHOCK RESID
adapt comput

0 590 590 590 0.9 2.5 2.4 2.5
1 1 680 1 680 2 113 3.1 22.5 12.4 15.5
2 2 813 4 842 6 253 5.8 118.3 67.9 86.9
3 3 480 12 769 10249 11.3 488.4 366.4 260.8
4 3 727 31 117 14261 13.1 559.6 1 768.9 712.0
5 17 814 1 719.2

subtotal 34.2 1 191.3
total 3 727 31 117 17814 1 225.5 2 218.0 2 796.9

We observe that #Th for AMA is several times smaller than for other adaptive methods
and as well as the CPU-time is better for AMA. The CPU-time of AMA is shown in the
table separately for the mesh adaptation itself and for the numerical solution of the Euler
equations. We see that the anisotropic mesh generation does not cause any essential increasing
of CPU-time.
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Figure 1.32: Triangulation and isolines of Mach number for AMA.
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Figure 1.33: Triangulation and isolines of Mach number for shock indicator (1.6.10).
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Figure 1.34: Triangulation and isolines of Mach number for residual indicator (1.6.11).

2D supersonic scramjet inlet

This example consists of an internal supersonic flow at Mach number Min = 3 in a scramjet
inlet. Figure 1.35 shows the geometry of the problem. The supersonic inlet and several obsta-
cles with sharp angles give the solution with a few shock waves, see [DHM95]. Although the
configuration is symmetric, the nonsymmetric mesh of the whole domain has been computed
to observe if the solution remains symmetric or not.

Figure 1.35: Geometry of the 2D supersonic scramjet inlet problem.

Using five automatic mesh adaptations we have obtained the final mesh. Figures 1.36
and 1.37 show the final triangular mesh (52285 elements) and the corresponding isolines of
Mach number, respectively. We see rather complicated geometry of shock waves and it is
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interesting to notice that there are no oscillations in the solution and that the finite volume
solver is robust and accurate even for such meshes with very anisotropic triangles. Moreover
the numerical solution stays symmetric.

Figure 1.36: Final triangulation for a supersonic scramjet inlet.

Figure 1.37: The corresponding isolines of Mach number for a supersonic scramjet inlet.

Transonic flow through 3D GAMM channel

The three-dimensional transonic inviscid flow through the channel (with 25 % spherical bump
on the lower wall) of air with inlet Mach number Min = 0.67 was solved. The size of the
channel is x1 ∈ [0, 2], x2 ∈ [0, 1.5] and x3 ∈ [0, 1]. The direction of the flow is parallel
with x1 axis and goes from left to right. Figure 1.38 shows the final tetrahedral mesh (with
8786 elements) achieved after five mesh adaptations and the corresponding isolines of Mach
number.
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Despite the small number of elements used in the computation, the anisotropic mesh
adaptation method leads to satisfactory results.

Supersonic flow through 3D forward facing step

This example is a 3D extension of the plane case, see Figure 1.31. The size in x3–direction is
[0, 0.25] and we consider the same initial and boundary conditions, i.e. ρ0 = 1.4, v = (3, 0, 0),
p = 1. In fact it is only “kvasi” 3D example, as the solution does not depend on x3 variable
but it is interesting observe meshes generated by AMA.

Figure 1.39 shows the final tetrahedral mesh (with 41709 elements) achieved after three
mesh adaptations and the corresponding isolines of Mach number. There are elements having
size in x3–direction equal to the size of the computational domain (=0.25), which corresponds
to the fact that the solution is independent of x3.

1.6.4 AMA for viscous flow simulation

In previous section we present the application of AMA technique for the computation of
inviscid flow (i.e. Ri = 0, i = 1, . . . , d in (1.6.1)), where the density ρ was chosen as the
significant component of the state vector w. This choice seems to be suitable because the
triangulation was adapted along discontinuities (shock waves), which they were numerically
captured with high accuracy.

Next possibility is to use the local Mach number M = |v|/
√

γp/ρ as the significant
component. The choice of M gives for inviscid flow similar results as for the density, because
in subdomains Ωs ⊂ Ω, where the components of w are smooth, the flow is isentropic and
the density ρ is the function of M . On the other hand both ρ and M are discontinuous
on the shock waves (Ω \ Ωs). The choice M as the significant component is more suitable
for viscous flow simulation [CDBG+96] because the velocity (and then Mach number) is
essentially smaller in boundary layers and wakes than in the external flow and then the high
gradient of Mach number will be detected by AMA. The Mach number flow field is viewed in
Figure 1.40.

The numerical examples show that the simple use of the Mach number as a significant
component do not give yet satisfactory results for high speed flow with a small viscosity,
because boundary layers and wakes are not satisfactory captured. Therefore an additional
requirement has to be added to the mesh adaptation algorithm.

In the following we describe the viscous modification of AMA for the case d = 2 for
simplicity. The extension for d = 3 is straightforward and it is presented in Section 1.6.5.

Boundary layer

At first we focus on the capturing of boundary layers. We present their physical properties,
namely the dependence of the boundary thickness on the Reynolds number. Then we include
this property into AMA method.

Let us introduce a local coordinate system x̃, ỹ at the point lying on the impermeable wall
ΓW , where the condition (v = 0) is prescribed. The axis x̃ is the tangent to ΓW and ỹ is
perpendicular to ΓW . It is known fact that the velocity does not change very much in the
direction x̃ whereas the dependency of the velocity with respect to ỹ is very high. To capture
precisely the boundary layer we have to generate a suitable triangulation along ΓW , Figure
1.41. We denote by hX and hY the size of the triangle in the direction x̃ and ỹ, respectively,
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Figure 1.38: Final tetrahedrization (top) and the corresponding isolines of Mach number
(bottom) for 3D GAMM channel.
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Figure 1.39: Final tetrahedrization (top) and the corresponding isolines of Mach number
(bottom) for 3D forward facing step.
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Figure 1.40: Example of Mach number flow field in a boundary layer and in a wake, the wake
line Γwake and the width of the wake ∆.
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Figure 1.41: Illustration of the boundary layer with thickness δ and the sketch of a suitable
triangulation with n0 = 4.

see Figure 1.41. The suitable triangulation for satisfactory capturing of a boundary layer is
sketched at the middle part of Figure 1.41. Triangles are thin and long and are alignment
along ΓW . The size hY has to be enough small to capture a boundary layer and it should
successively increases with the distance from ΓW . The size hX has to be as high as possible
so that the triangulation has as small as possible number of elements. The thickness of the
boundary layer δ depends on the flow viscosity according to the relation

δ ≈ 1√
Re

, (1.6.12)

where Re is the Reynolds number. Then to well simulate the boundary layer we put

hY (0) =
n0√
Re

, (1.6.13)

where n0 > 1 is a suitable constant and its meaning is viewed in Figure 1.41. Numerical tests
lead us to the choice n0 ∈ 〈3, 10〉. For triangles laying at the distance ry from ΓW we put

hY (ry) =
n0√
Re

+ cB
y ry, (1.6.14)
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Figure 1.42: Construction of matrix M for boundary layer.

where cB
y is a suitable constant.

On the other hand the size hX of the triangle in the direction parallel with ΓW is restricted
only by the minimal angle condition required e.q. for FEM. Therefore we put

hX = cB
α hY tan α0, (1.6.15)

where α0 is the given minimal angle value and 0 < cB
α < 1 is an “security” constant.

The relations (1.6.13) and (1.6.15) guarantee the sufficiently precise capturing of a bound-
ary layer.

Boundary layer in the context of AMA

The previous consideration will be formulated in terms of AMA. Let xk ∈ IR2 be a point in
the vicinity of fixed wall and n denotes the normal from xk to this wall. We denote by θ the
angle between the axis x1 and the tangent t and by ry the distance of xk to ΓW , see Figure
1.42.

According (1.6.15) and (1.6.14), it is suitable require that the length edge in the direction n

and t are hX and hY , respectively. Then using results from Appendix, for the point xk, we
define the matrix

MB(xk) =

(

cos θ sin θ
− sin θ cos θ

)





1
h2

X

0

0 1
h2

Y





(

cos θ − sin θ
sin θ cos θ

)

, (1.6.16)

where θ is the angle between direction parallel with the wall and the axis x (see Figure 1.42)
and hX and hY are given by (1.6.15) and (1.6.14), respectively. For the matrix M B(xk),
there exists an ellipse ǫB

k whose lengths and orientation are given by (1.9.3) and in virtue of
(1.9.11) the norms (corresponding to MB(xk)) of all chords of ǫB

k going through xk are equal
to
√
3. Moreover, the length of the chord going through xk parallel with and n is equal to

hX and hY , respectively, which corresponds with our imagination of suitable triangulation
for capturing a boundary layer.

As it is mentioned in Section 1.2.4, it is suitable for the practical implementation to come
to vertex associated matrices. We define M B(Pi), Pi ∈ σh in the same way as MB(xk). We
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Figure 1.43: Intersection of two metrics.

have for each point Pi ∈ σh two matrixes M (Pi) (given by (1.4.15) checking the fulfilling
the necessary condition (1.2.13)) and M B (given by (1.6.16) checking the relations (1.6.14) –
(1.6.15)). To satisfy both of this condition we use the so-called intersection of matrices, see
[DHM95].

Intersection of matrices

We say, that the matrix M ∩M B is the intersection of matrices M and MB , if the corre-
sponding ellipse is the subset of ellipses corresponding to M and M B and has the maximal
possible area, see Figure 1.43. We apply the transformation of coordinates to the system in
which both M and MB are diagonal, i.e. let P be a matrix such that

M̃ = P T MP =

(

λ1 0
0 λ2

)

, M̃
B
= P T MBP =

(

µ1 0
0 µ2

)

, (1.6.17)

where P T denotes the matrix transpose to P . Then putting

(M ,MB) = (P−1)T
(

max(λ1, µ1) 0
0 max(λ2, µ2)

)

P−1 (1.6.18)

we obtain the desired matrix. Here P −1 means the inverse matrix to P . The matrix P is not
defined uniquely and it can be set using the following relations. Let M and M B are written
in the form

M =

(

a1 b1
b1 c1

)

, MB =

(

a2 b2
b2 c2

)

, (1.6.19)

where ai > 0, ci > 0, aici > b2i , i = 1, 2. Then the matrix P is given by

P =

(

p1 p2
p3 p4

)

(1.6.20)
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with components given for example by the following relations

if ∃C > 0 such that a1 = Ca2, b1 = Cb2, c1 = Cc2

then

a1 6= −b1 ⇒
p1 = − b1+c1

a1+b1
p2 = 1
p3 = 1
p4 = 1

a1 = −b1 ⇒
p1 = 1
p2 = 1
p3 = 1

p4 = −a1+b1
b1+c1

(1.6.21)

else

d = (a1c2 − a2c1)
2 − 4(a1b2 − b1a2)(b1c2 − c1b2)

p2 =
a2c1−a1c2−

√
d

2(a1b2−b1a2)

p1 = − b2p2+c2
p2a2+b2

p3 = 1
p4 = 1

It can be proved that if does not exist C such that a1 = Ca2, b1 = Cb2, c1 = Cc2 then d
from (1.6.21) is always nonnegative.

The application of the viscous correction is obvious. We use the AMA technique described
in Section 1.4.3 but the matrix M(Pi) is replaced by the matrix M(Pi) ∩MB(Pi) for nodes
in vicinity of ΓW .

Wake

A viscous flow around a profile gives rise to a wake behind the trailing edge of the profile. Its
flow field is viewed in Figure 1.40. In order to capture a wake accurately, it is necessary to
adapt the triangulation behind the profile. We use a similar approach for nodes in vicinity of a
wake as for them in vicinity of boundary layers. We define the wake line Γwake starting at the
trailing edge and parallel with the flow field behind the profile, see Figure 1.40. Its position
is known a priori (e.q. for symmetric problems) or it is set a posteriori from the results
computed on the previous level of adaptation. Similarly as for a boundary layer we introduce
a local coordinate system x̃, ỹ at the point lying on Γwake. The axis x̃ and ỹ are parallel and
perpendicular with Γwake, respectively. Instead of the relations (1.6.15) and (1.6.14) we define
the following relations

hY (ry) =
n0√
Re

+ cW
y max(0, ry −∆/2), (1.6.22)

hX = cW
α hY tan α0, (1.6.23)

where ∆ means the width of the wake (Figure 1.40) and cW
y and cW

α are constants similar as

cB
y and cB

α , respectively. The magnitude of ∆ depends on the considered problem.

Then we define the matrix MW similarly as in (1.6.16) and use the intersection of matrix
M ∩MW from Section 1.6.4.
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1.6.5 AMA for viscous flow – case d = 3

As the extension the two dimensional version is straightforward we present here only the
relations which have different form. The relation (1.6.14), (1.6.15), (1.6.22), (1.6.23) have the
same form. Further the relations (1.6.16) is replaced by

MB(xk) = RT









1
h2

X

0 0

0 1
h2

X

0

0 0 1
h2

Y









R, (1.6.24)

where R is the rotation matrix

R =







cosϕ sin θ cos 2ϕ+ sin 2ϕ sinϕ sin 2ϕ cosϕ sin θ − sinϕ cos 2ϕ cos θ cosϕ
sinϕ sin θ cos 2ϕ− sin 2ϕ cosϕ sin 2ϕ sinϕ sin θ − cosϕ cos 2ϕ cos θ sinϕ

− cos θ cos 2ϕ − cos θ sin 2ϕ sin θ






,

(1.6.25)
where ϕ and θ are the spherical coordinates of a chosen the direction tangent to the solid
wall, see Appendix.

The intersection of matrices is analogue to (1.6.17). We apply the transformation of
coordinates to the system in which both M and M B are diagonal.

1.6.6 Mesh gradation control

The application of AMA technique presented in Sections 1.4.3, 1.6.4 and 1.6.4 can lead to
triangulations with high gradation. It means that the sizes of neighbour triangles very differ,
see Figure 1.44 left. Too high mesh gradation gives rise some troubles for different numerical
solvers (FEM, FVM). The uncontrolled mesh gradation is caused by the fact, that matrixes
M i and M j very differ for two nearby nodes Pi and Pj . Therefore our aim is to control
the mesh gradation of the triangulation generated by AMA. It is illustrated in Figure 1.44,
where is shown the passage from the coarse part of the triangulation to the fine one (from
left to right). The left and right figures are the triangulation generated without and with
mesh gradation control, respectively. The use of mesh gradation control technique gives
triangulations with better properties for numerical solution using FEM, but naturally the
number of elements is higher.

We have applied two approaches from [BHF97], the H-variation and H-shock. We present
only the final relations, for more detail see [BHF97]. Both H-variation and H-shock lead to
similar grids.

H-variation

Let P1P2 be an edge of the triangulation Th and MP1 and MP2 the matrices corresponding
to nodes P1 and P2, respectively. Then we put

MP1 := MP1 ∩MP2(1 + α‖P1P2‖MP1
)−2, α > 0, (1.6.26)

MP2 := MP2 ∩MP1(1 + α‖P1P2‖MP2
)−2,

where ‖P1P2‖MP1
and ‖P1P2‖MP2

are the norms of the edge P1P2 corresponding to MP1

and MP2, respectively. The operator ∩ means the intersection of matrices, Section 1.6.4. We
use the value α = 2.
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Figure 1.44: Mesh gradation control, triangulation without (left) and with (right) mesh gra-
dation control.
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H-shock

Let P1P2 be an edge of the triangulation. Let hP1 and hP2 be the norm of the unit vector in
the direction P1P2 corresponding to matrixes M P1 and MP2 , respectively. Let lP1P2 be the
norm of P1P2 corresponding to matrix M̄P1P2 = (MP1 +MP2)/2. Then H-shock associated
to the edge P1P2 is the value

cP1P2 =

(

hP2

hP1

)1/lP1P2

. (1.6.27)

If cP1P2 ≥ β then we replace MP2 by η−2MP2 , where η =
(

β
cP1P2

)lP1P2
. We use the value

β = 1.5.

1.6.7 Numerical examples of viscous flow simulation

The described method (solver and mesh adaptation) was applied to the numerical simulation
of flow past a turbine cascade shown in Figure 1.45. The goal was to obtain the steady state
solution with the aid of the time stabilization for IT → ∞. The computational results are
compared with a wind tunnel experiment (by courtesy of the Institute of Thermodynamics
of the Czech Academy of Sciences in Prague, see [ŠŠ90]). The experiment and computations
were performed for the following data: angle of attack = 19◦ 18′, inlet Mach number = 0.32,
outlet Mach number = 1.18, γ = 1.4, Reynolds number Re = 1.5 · 106, Prandtl number
Pr = 0.72.

Figure 1.46 represents the wind tunnel interferogram showing density isolines. We compare
the results achieved by the combined barycentric FV - nonconforming FE method (Section
1.6.2, we set Fh := Th) using triangulations Th generated by AMA (Section 1.4.3) without
and with viscous correction (Section 1.6.4). As the starting triangulation and numerical
solution we use the results of inviscid flow simulation [Dol98b]. In Figure 1.47 and Figure
1.48 the final triangular mesh and the corresponding isolines of Mach number with zooms of
trailing edge obtained with the aid of anisotropic mesh refinement with and without viscous
correction are plotted, respectively. The viscous correction yields to the mesh refinement
along profile and then the boundary layers are captured with high accuracy and the shock
waves are not smeared as for the example without viscous mesh correction. Figure 1.49 shows
the pressure distributions along the profile compared with the measurement. We see that a
good agreement of computational results with experiment was achieved, if the viscous mesh
correction is applied.
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Figure 1.45: Cascade of profiles with the computational domain Ω and the boundary parts
ΓI (inlet), ΓO (outlet), ΓW (impearmeable walls) and the artificial periodical cuts Γ+ and
Γ−, where the periodic boundary conditions are prescribed.
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Figure 1.46: The wind tunnel interferogram showing density isolines (Courtesy of the Institute
of Thermodynamics, Czech Academy of Science, Prague).
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Figure 1.47: Triangulation (64 483 elements) and the corresponding isolines of Mach number
with zooms achieved by AMA without viscous correction.
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Figure 1.48: Triangulation (38 086 elements) and the corresponding isolines of Mach number
with zooms achieved by AMA with viscous correction.
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Figure 1.49: Distribution of the pressure (full line) in comparison with measurement (sepa-
rated nodes) without (left) and with (right) AMA viscous correction.
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1.7 Application for heat conduction problems

Although the AMA technique was originally developed for computational fluid dynamics
problems, its generality allow us to use it for very different practical problems. We present the
results presented in [BDM] where a computer simulation of the thermoregulation of premature
infants was presented.

The motivation of this interest is the following. Suddenly occuring lack of oxygen is known
to be an important cause of injury to the developing brain of premature infants [MWJG95].
The neuronal loss suffered in such a critical situation evolves over several days [GW92]. One
of the factors that influence the degree and distribution of neuronal loss is the cerebral tem-
perature. Clinical studies have shown that lowering the cerebral temperature can prevent
much damage [BDGG89]. In order to investigate if the temperature within the brain of a
premature infant in an incubator can be lowered by manipulating the environmental parame-
ters, Fischer et al. [FLM00] employed a finite volume technique identical with the numerical
method described within this paper but without an adaptive routine to solve a variation of
the bio-heat equation which reads as

∂tθ(x, t) = div(λ(x)∇θ(x, t)) + q(x, t), x ∈ Ω, t ∈ (0, IT ) (1.7.1)

equipped by the boundary and initial conditions

θ(x, t) = θD(x), x ∈ ∂Ω, t ∈ (0, IT ), (1.7.2)

θ(x, 0) = θ0(x), x ∈ Ω,

and which features strong source terms given by

q(x, t) = qM (x) + qB(x, t),

where θ is temperature and λ is heat conduction coefficient. Thereby, qM (x) is the metabolical
heat production and qB(x, t) is a model of heat transfer within the human body due to blood
flow. For the initial condition we choose θ0(x) = 310.15K. Furthermore, the boundary
temperature distribution is given in the form

θD(x) =

{

299.15K, if x ∈ ∂ΩH ,
309.15K, otherwise,

(1.7.3)

where ∂ΩH represents the boundary of the head region.
This model is based on the assumption of a steady state situation. Concerning the grid

used within the work of [FLM00], it should be noted that structured subgrids were used in
the boundary region in order to capture steep heat gradients. For more details and for a
theoretical discussion of the method see [FLM00].

In the following, we discuss the simulation of heat transfer with respect to an infant of
1 kg by the use of the described adaptive scheme. It is evident to start from a coarse primary
grid and to proceed by computing the corresponding steady state solution. If a steady state
solution is reached, the grid is adapted by using the described AMAmethod and again a steady
state calculation is started. We now investigate different levels of refinement computed and
used by the method together with the corresponding numerical solutions. Within the Figures
1.50 and 1.51 the evolution the grid undergoes is displayed, and it can be seen that a suitable
solution is reached three refinement steps after starting from a quite coarse triangulation. In
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the following table the numbers of triangles used within the different steps of refinement is
given together with the corresponding number of the mesh used in [FLM00] which is denoted
as the reference mesh.

Mesh Number of triangles

First Mesh 1822
Second Mesh 3673
Third Mesh 6731
Fourth Mesh 8956
Reference Mesh 37351

1.8 Conclusion

We present an efficient adaptive technique which can be used for the numerical solution of
different problems of the mathematical engineering and computational physics. Although the
AMA method is not based on a posteriori error estimation, the presented numerical examples
confirm its high efficiency (i.e., the possibility to compute a sufficiently accurate solution
without a high increasment of degree of freedom) and its generality (CFD, thermoregulation).
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Figure 1.50: Sequence of triangulations and corresponding temperature distributions (part
I).
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Figure 1.51: Sequence of triangulations and corresponding temperature distributions (part
II).
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1.9 Appendix

1.9.1 2D case

Let M be a symmetric and positive definite 2× 2 matrix

M =

(

a b
b c

)

, ac− b2 > 0, (1.9.1)

and let v = (v1, v2) be a vector in IR2. We define the norm of the vector v corresponding to
the matrix M as

‖v‖M ≡
(

vTMv
) 1

2 =

[

(

v1 v2
)

(

a b
b c

)(

v1
v2

)] 1
2

=
(

av21 + 2bv1v2 + cv22

) 1
2 . (1.9.2)

If M = I (=identical matrix) then ‖v‖M = |v|, where |v| = (v21 + v22)
1/2 is the Euclidean

norm of v.
We decompose M in the following way:

M ≡
(

a b
b c

)

= RTΛR =

(

cos θ sin θ
− sin θ cos θ

)(

λ1 0
0 λ2

)(

cos θ − sin θ
sin θ cos θ

)

, (1.9.3)

where λ1, λ2 are the eigenvalues of M and θ ∈ [0, 2π).
Let Ox1x2 be a Cartesian coordinate system. The set of all x = (x1, x2) ∈ IR2 satisfying

the inequality
xTMx = ax21 + 2bx1x2 + cx22 ≤ 1 (1.9.4)

forms an ellipse ǫM with the centre O and with the axes lengths r1 = 1/
√

λ1, r2 = 1/
√

λ2.
The angle between the axis x and the major axis of ǫM is θ, see Figure 1.52. Let P0 be
the centre of ǫM , then for any point P lying on the boundary of ǫM the norm of the vector
P0P = (P − P0) corresponding to M is constant and ‖P0P‖M = 1.

We define the optimal triangle TM corresponding to M such that TM ⊂ ǫM and |TM | ≥ |T |
for any triangle T ⊂ ǫM . (Here |T | means the area of the triangle T ). If M = I (= unit
matrix) then ǫM is an unit circle and TM is an equilateral triangle with the lengths of edges
equal to

√
3.

We express analytically the coordinates of the optimal triangle TM . Let us define a new
Cartesian coordinate system Ox̃1x̃2 with the centre at the centre of ǫM and with the axes
parallel with the axes of the ellipse (Figure 1.53).

The problem of finding a triangle contained in ǫM with the maximal area has 4 solutions,
see Figure 1.54. These four triangles have the following vertices:

Ṽ
(1)
1 =

[

1√
λ1

, 0

]

, Ṽ
(1)
2 =

[

−1
2

1√
λ1

,

√
3

2

1√
λ2

]

, Ṽ
(1)
3 =

[

−1
2

1√
λ1

,−
√
3

2

1√
λ2

]

, (1.9.5)

Ṽ
(2)
1 =

[

− 1√
λ1

, 0

]

, Ṽ
(2)
2 =

[

1

2

1√
λ1

,−
√
3

2

1√
λ2

]

, Ṽ
(2)
3 =

[

1

2

1√
λ1

,

√
3

2

1√
λ2

]

, (1.9.6)

Ṽ
(3)
1 =

[

1√
λ2

, 0

]

, Ṽ
(3)
2 =

[

−1
2

1√
λ2

,

√
3

2

1√
λ1

]

, Ṽ
(3)
3 =

[

−1
2

1√
λ2

,−
√
3

2

1√
λ1

]

, (1.9.7)
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Figure 1.52: An ellipse ǫM corresponding to M with semiaxes length r1, r2, P0 centre of ǫM ,
P any point of ǫM .
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Figure 1.53: An ellipse ǫM corresponding to M in the new Cartesian system and the optimal
triangle TM = Ṽ1Ṽ2Ṽ3.
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Figure 1.54: Ellipse ǫM and the corresponding optimal elements T 1
i , . . . , T 4

i .

Ṽ
(4)
1 =

[

− 1√
λ2

, 0

]

, Ṽ
(4)
2 =

[

1

2

1√
λ2

,−
√
3

2

1√
λ1

]

, Ṽ
(4)
3 =

[

1

2

1√
λ2

,

√
3

2

1√
λ1

]

. (1.9.8)

Then the area of all these triangles Ṽ
(l)
1 Ṽ

(l)
2 Ṽ

(l)
3 , l = 1, . . . , 4 is equal to

|TM | =
3
√
3

4

1√
λ1λ2

. (1.9.9)

Figure 1.53 shows the optimal triangle Ṽ
(1)
1 Ṽ

(1)
2 Ṽ

(1)
3 . The lengths of edges parallel with the

direction x̃2 are smaller than the lengths of edges parallel with the direction x̃1.
Now, we can go back to the original coordinate system by the transformation

V = RṼ , (1.9.10)

where V is a point in the system Ox1x2, Ṽ is a point in the system Ox̃1x̃2, R is the matrix
of the rotation from (1.9.3). Applying (1.9.10) to the points Ṽ1, Ṽ2, Ṽ3 (here we use the
transformation only for the first triangle given by (1.9.5) and we omit the superscript (1) ) we
obtain the points V1, V2, V3 which are the vertices of the optimal triangle TM in the original
system:

V1 =

[

cos θ√
λ1

,
sin θ√

λ2

]

V2 =

[

−
√
3

2

√
λ2 cos θ +

√
λ1 sin θ√

λ1λ2
,

√
3

2

√
λ1 cos θ −

√
λ2 sin θ√

λ1λ2

]

,

V3 =

[

−
√
3

2

−√λ2 cos θ +
√

λ1 sin θ√
λ1λ2

,

√
3

2

√
λ1 cos θ +

√
λ2 sin θ√

λ1λ2

]

.

Now we compute the norms corresponding to M of the edges of TM . We put v1 =
V1−V2, v2 = V2−V3, v3 = V3−V1. After some elementary but long calculation we find that
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‖vi‖M =
(

vTi Mvi

)
1
2 =

√
3, i = 1, 2, 3, (1.9.11)

i.e. the norms of all edges of the optimal triangle TM are constant and equal to
√
3. The

relation (1.9.11) is valid also for triangles which we obtain applying (1.9.10) to (1.9.6) –
(1.9.8). This is a very interesting and important property in the context of AMA.

1.9.2 3D case

It is possible to proceed in the similar way as in 2D case. We present here only the main
items. Let M be a symmetric and positive definite 3× 3 matrix

M =







a b c
b d e
c d f






, (1.9.12)

and let v = (v1, v2, v3) be a vector in IR3. We define analogously as in 2D case the norm of
the vector v corresponding to the matrix M as

‖v‖M ≡
(

vTMv
) 1

2 . (1.9.13)

We decompose M in the following way:

M =







a b c
b d e
c e f






= RTΛR = (1.9.14)

=







cosϕ sin θ cos 2ϕ+ sin 2ϕ sinϕ sinϕ sin θ cos 2ϕ− sin 2ϕ cosϕ − cos θ cos 2ϕ
sin 2ϕ cosϕ sin θ − sinϕ cos 2ϕ sin 2ϕ sinϕ sin θ − cosϕ cos 2ϕ − cos θ sin 2ϕ

cos θ cosϕ cos θ sinϕ sin θ







×







λ1 0 0
0 λ2 0
0 0 λ3







×







cosϕ sin θ cos 2ϕ+ sin 2ϕ sinϕ sin 2ϕ cosϕ sin θ − sinϕ cos 2ϕ cos θ cosϕ
sinϕ sin θ cos 2ϕ − sin 2ϕ cosϕ sin 2ϕ sinϕ sin θ − cosϕ cos 2ϕ cos θ sinϕ

− cos θ cos 2ϕ − cos θ sin 2ϕ sin θ






,

where λ1, λ2, λ3 are the eigenvalues of M and θ ∈ [π/2, π/2], ϕ ∈ [0, 2π). The inequality

xTMx = ax21 + dx22 + fx23 + 2bx1x2 + 2cx1x3 + 2ex2x3 ≤ 1, x = (x1, x2, x3), (1.9.15)

defines an ellipsoid ǫM with the axes lengths ri = 1/
√

λi, i = 1, 2, 3 and the values ϕ and θ
are the spherical coordinates of the the direction of major axis, see Figure 1.55. Similarly as
in 2D case we define the optimal tetrahedron TM corresponding to M such that TM ⊂ ǫM and
|TM | ≥ |T | for any tetrahedron T ⊂ ǫM . (Here |T | means the volume of the tetrahedron T ).

It is possible to prove that there exists 24 optimal tetrahedra for each matrix M . Moreover,
if vi, i = 1, . . . , 6 are the edges of the optimal tetrahedron TM than

‖vi‖M =

√

8

3
, i = 1, . . . , 6, (1.9.16)
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Figure 1.55: Spherical coordinates ϕ and θ of the direction ~r.


