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Why partial differential equations?

many processes can be described (approximately) by PDEs

fluid dynamics, hydrology, heat and mass transfer, medicine,
environmental protection, financial mathematics, etc.
these PDEs represent a mathematical description of physical,
chemical, biological, etc. rules and/or laws

some simplification usually necessary =⇒ model error

these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

we solve PDEs approximately (numerically)

we define new simplified (finite dimensional, solvable) problem
=⇒ discretization error
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V. Doleǰśı Numerical solution of PDE DGM 2 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Exact and approximate problems

Abstract problem described by PDEs

let V be a functional space, we seek u ∈ V such that
(EP) Lu = f

L is a differential operator, f is a right-hand side,

let solution of (EP) exists and is unique

Abstract numerical method

let Vh be a space, dim(Vh) < ∞, Vh ⊂ V or Vh ̸⊂ V ,

we seek uh ∈ Vh such that
(AP) Lhuh = fh,

Lh is a discrete operator, fh is an approximation of f .

problem (AP) has to be quickly solvable
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V. Doleǰśı Numerical solution of PDE DGM 3 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Exact and approximate problems

Abstract problem described by PDEs

let V be a functional space, we seek u ∈ V such that
(EP) Lu = f

L is a differential operator, f is a right-hand side,

let solution of (EP) exists and is unique

Abstract numerical method

let Vh be a space, dim(Vh) < ∞, Vh ⊂ V or Vh ̸⊂ V ,

we seek uh ∈ Vh such that
(AP) Lhuh = fh,

Lh is a discrete operator, fh is an approximation of f .

problem (AP) has to be quickly solvable
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Goals of the numerical solution of PDEs

Numerical analysis

existence and uniqueness of uh

stability: if ∥u∥ < ∞ then ∥uh∥ < ∞
convergence: uh → u for dof = dim(Vh) → ∞
estimate ∥u − uh∥ in terms of dof (a priori estimate)

estimate ∥u − uh∥ based on uh (a posteriori estimate)

robustness: validity of previous items for large range of data

Numerical realization

algorithm for fast evaluation of uh (efficiency)

stability of the method in the finite precision arithmetic

adaptive strategies = adaptive changes of Vh
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V. Doleǰśı Numerical solution of PDE DGM 4 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

existence and uniqueness of uh

stability: if ∥u∥ < ∞ then ∥uh∥ < ∞
convergence: uh → u for dof = dim(Vh) → ∞
estimate ∥u − uh∥ in terms of dof (a priori estimate)

estimate ∥u − uh∥ based on uh (a posteriori estimate)

robustness: validity of previous items for large range of data

Numerical realization

algorithm for fast evaluation of uh (efficiency)

stability of the method in the finite precision arithmetic

adaptive strategies = adaptive changes of Vh
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Numerical method in practise

finite sequence of mathematical operations

output is the approximate solution uh

Construction of a numerical method for the given PDE

discretization (space, time)

setting of arising algebraic systems (numerical quadratures)

(iterative) solution of nonlinear algebraic systems

solution of linear algebraic systems

Type of discretizations

finite difference method, finite element method, finite volume
method, spectral method, wavelets method, etc.
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Depends on many aspects of the PDE considered

physical background of the PDE

expected regularity of the unknown exact solution

presence of local phenomena

outputs of interest

usual condition ∥u − uh∥ ≤ TOL is not always practical
goal is the quantity of interest J(uh),

⇒ error: |J(u)− J(uh)| ≤ TOL

Example

conservation laws should be discretized by a conservative
numerical method
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Two basic physical processes

Diffusion
∂u
∂t −∇ · (a(u)∇u) = g

parabolic (elliptic) equation

quantity is spread in all directions

influence is decreasing for increasing distance of the source

Convection

∂u
∂t −∇ · f⃗ (u) = g

hyperbolic equation

quantity is spread only in the direction of convection f⃗ (u)

influence is (almost) independent w.r.t. the distance of the
source
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V. Doleǰśı Numerical solution of PDE DGM 8 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Examples of physical features (1)

Only diffusion
∂u

∂t
− ε∆u = 0
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Elliptic and parabolic PDE vs. hyperbolic PDE

Cauchy problem

u(x , t) : R× (0,T ) → R :
∂u

∂t
+

∂u

∂x
= ε

∂2u

∂x2

u(x , 0) = exp[(x − 1/4)2]

ε = 0 =⇒ u(x , t) = exp[(x − 1/4− t)2]

ε > 0 =⇒ solution is smeared
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V. Doleǰśı Numerical solution of PDE DGM 11 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Elliptic and parabolic PDE vs. hyperbolic PDE

Cauchy problem

u(x , t) : R× (0,T ) → R :
∂u

∂t
+

∂u

∂x
= ε

∂2u

∂x2

u(x , 0) = exp[(x − 1/4)2]

ε = 0 =⇒ u(x , t) = exp[(x − 1/4− t)2]

ε > 0 =⇒ solution is smeared

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

t=0.0

t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

exact solutions for ε = 0, ε = 10−4, ε = 10−3, ε = 10−2
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Abstract setting
Basic properties

Importance of the character of PDE

Why is important to know the previous properties?

numerical solution is a kind of approximation

many sources of inaccuracies:

discretization errors (finite dimensional approximation)
iterative errors (approximate solution of algebraic systems)
rounding errors (finite precision arithmetic)

inaccuracies are propagated by PDEs and numerical scheme

Linear convection problem (no diffusion)

exact solution: a simple propagation of the initial solution

numerical solution: initial solution is propagated but smeared

numerical solution corresponds to convection+diffusion

this effect is called numerical diffusion
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Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Possible pitfalls

Effect of numerical diffusion

zero diffusion does not exist in reality

if numerical diffusion larger than physical one
=⇒ numerical solution can be completely wrong

e.g., numerical solution is steady whereas reality is unsteady

Effect of “finite h”

we can prove that the proposed method is convergent

approximate solution contains unphysical effects, e.g.,
spurious oscillations, negative temperature, etc.

analysis is wrong?

No, it converges for h → 0, the solution is bad for finite h
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V. Doleǰśı Numerical solution of PDE DGM 13 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Abstract setting
Basic properties

Possible pitfalls

Effect of numerical diffusion

zero diffusion does not exist in reality

if numerical diffusion larger than physical one
=⇒ numerical solution can be completely wrong

e.g., numerical solution is steady whereas reality is unsteady

Effect of “finite h”

we can prove that the proposed method is convergent

approximate solution contains unphysical effects, e.g.,
spurious oscillations, negative temperature, etc.

analysis is wrong?

No, it converges for h → 0, the solution is bad for finite h
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Introduction
Convection-diffusion equation

Discontinuous Galerkin method

FEM
FVM
DGM

1D convection-diffusion equation

u : (0, 1) → R : − εu′′ + u′ = f , u(0) = u(1) = 0, ε > 0.

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

u ∈ H1
0 ((0, 1)):

∫ 1
0 (εu

′v ′ + u′v) dx =
∫ 1
0 f v dx ∀v ∈ H1

0 ((0, 1))

Partition of domain

0 = x 1
2
< x 3

2
< . . . xN+ 1

2
= 1, Ki := [xi− 1

2
, xi+ 1

2
], i = 1, . . . ,N

xi−3/2 xi−1/2 xi+1/2 xi+3/2

Ki−1 Ki Ki+1
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V. Doleǰśı Numerical solution of PDE DGM 14 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

FEM
FVM
DGM

1D convection-diffusion equation

u : (0, 1) → R : − εu′′ + u′ = f , u(0) = u(1) = 0, ε > 0.

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

u ∈ H1
0 ((0, 1)):

∫ 1
0 (εu

′v ′ + u′v) dx =
∫ 1
0 f v dx ∀v ∈ H1

0 ((0, 1))

Partition of domain

0 = x 1
2
< x 3

2
< . . . xN+ 1

2
= 1, Ki := [xi− 1

2
, xi+ 1

2
], i = 1, . . . ,N

xi−3/2 xi−1/2 xi+1/2 xi+3/2

Ki−1 Ki Ki+1
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comparison of FEM and FVM for time-dependent convective problem

Finite element method

continuous approximation

high order of accuracy

many theoretical results

fine for diffusive problems

Finite volume method

discontinuous approximation

low order of accuracy

lack of theory

fine for convective problems

Discontinuous Galerkin method

piecewise polynomial discontinuous approximation

theoretical justification

higher freedom (adaptation, parallelization, etc.)
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V. Doleǰśı Numerical solution of PDE DGM 19 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

FEM
FVM
DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

continuous approximation

high order of accuracy

many theoretical results

fine for diffusive problems

Finite volume method

discontinuous approximation

low order of accuracy

lack of theory

fine for convective problems

Discontinuous Galerkin method

piecewise polynomial discontinuous approximation

theoretical justification

higher freedom (adaptation, parallelization, etc.)
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V. Doleǰśı Numerical solution of PDE DGM 21 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Overview
Plan of the course

Overview of DGM (1)

Basic properties – positive

efficient method for the numerical solution of various PDEs

piecewise polynomial BUT discontinuous approximation

suitable for very large range of problems

elliptic, parabolic, hyperbolic
linear, nonlinear, degenerate

space-time DGMs are available

flexibility in the mesh design

non-matching and non-uniform grids
anisotropic grids
varying polynomial approximation degrees

(nice) block structure of arising algebraic systems

easy paralelization
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V. Doleǰśı Numerical solution of PDE DGM 23 / 24



Introduction
Convection-diffusion equation

Discontinuous Galerkin method

Overview
Plan of the course

Plan of the course

Outline

Abstract error analysis

DGM for the Laplace problem: complete error analysis

numerical approximation based on upwinding

DGM for the nonlinear convection-diffusion equation

DGM for time dependent problems

DGM for compressible flow problems and other applications

Organization issues

standard lectures (lecture notes are available)

3 quizes during the semester (can replace the exam)

oral exam
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