Numerical solution of partial differential equations

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Course "Discontinuous Galerkin Method" https://www2.karlin.mff.cuni.cz/~dolejsi/Vyuka/DGM.html

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

A D F A B F A B F A B

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

• many processes can be described (approximately) by PDEs

- fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
- these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 ⇒ discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 ⇒ discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

A D F A B F A B F A B

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary ⇒ model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem
 - \Rightarrow discretization error

A D F A B F A B F A B

Abstract setting Basic properties

Partial differential equations

Why partial differential equations?

- many processes can be described (approximately) by PDEs
 - fluid dynamics, hydrology, heat and mass transfer, medicine, environmental protection, financial mathematics, etc.
 - these PDEs represent a mathematical description of physical, chemical, biological, etc. rules and/or laws
- some simplification usually necessary \implies model error
- these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs

- we solve PDEs approximately (numerically)
- we define new simplified (finite dimensional, solvable) problem \implies discretization error

A D F A B F A B F A B

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek u ∈ V such that
 (EP)
 Lu = f
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Exact and approximate problems

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h,$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h,$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) \mathcal{L}_h
 - $\mathcal{L}_h u_h = f_h,$
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that

$$\mathcal{L}_h u_h = f_h,$$

- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract problem described by PDEs

- let V be a functional space, we seek $u \in V$ such that (EP) $\mathcal{L}u = f$
- \mathcal{L} is a differential operator, f is a right-hand side,
- let solution of (EP) exists and is unique

Abstract numerical method

- let V_h be a space, dim $(V_h) < \infty$, $V_h \subset V$ or $V_h \not\subset V$,
- we seek $u_h \in V_h$ such that (AP) $\mathcal{L}_h u_h = f_h$,
- \mathcal{L}_h is a discrete operator, f_h is an approximation of f.
- problem (AP) has to be quickly solvable

Abstract setting Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Abstract setting Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Image: A math

Abstract setting Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

< □ > < /□ >

Abstract setting Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $||u|| < \infty$ then $||u_h|| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abstract setting Basic properties

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h
Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $||u u_h||$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

A D F A B F A B F A B

Goals of the numerical solution of PDEs

Numerical analysis

- existence and uniqueness of u_h
- stability: if $\|u\| < \infty$ then $\|u_h\| < \infty$
- convergence: $u_h \rightarrow u$ for dof = dim $(V_h) \rightarrow \infty$
- estimate $||u u_h||$ in terms of dof (a priori estimate)
- estimate $\|u u_h\|$ based on u_h (a posteriori estimate)
- robustness: validity of previous items for large range of data

Numerical realization

- algorithm for fast evaluation of u_h (efficiency)
- stability of the method in the finite precision arithmetic
- adaptive strategies = adaptive changes of V_h

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abstract setting Basic properties

Numerical method

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution *u_h*

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution *u_h*

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Numerical method in practise

- finite sequence of mathematical operations
- output is the approximate solution u_h

Construction of a numerical method for the given PDE

- discretization (space, time)
- setting of arising algebraic systems (numerical quadratures)
- (iterative) solution of nonlinear algebraic systems
- solution of linear algebraic systems

Type of discretizations

Choice of the numerical method

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

イロト イヨト イヨト イヨト

Example

Choice of the numerical method

Which numerical method is the best one?

- Depends on many aspects of the PDE considered
 - physical background of the PDE
 - expected regularity of the unknown exact solution
 - presence of local phenomena
 - outputs of interest
 - ullet usual condition $\|u-u_h\|\leq {\it TOL}$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - ullet usual condition $\|u-u_h\|\leq {\it TOL}$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u u_h\| \leq TOL$ is not always practical

• goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - ullet usual condition $\|u-u_h\|\leq {\it TOL}$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

(日) (四) (日) (日) (日)

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,
 - \Rightarrow error: $|J(u) J(u_h)| \leq TOL$

< □ > < 同 > < 回 > < 回 >

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

Example

Which numerical method is the best one?

Depends on many aspects of the PDE considered

- physical background of the PDE
- expected regularity of the unknown exact solution
- presence of local phenomena
- outputs of interest
 - usual condition $\|u-u_h\| \leq TOL$ is not always practical
 - goal is the quantity of interest $J(u_h)$,

 \Rightarrow error: $|J(u) - J(u_h)| \leq TOL$

・ロト ・回ト ・ヨト ・ヨ

Example

Abstract setting Basic properties

Two basic physical processes

Diffusion

•
$$\frac{\partial u}{\partial t} - \nabla \cdot (a(u)\nabla u) = g$$

- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

< □ > < 同 > < 回 > < 回 >

Abstract setting Basic properties

Two basic physical processes

Diffusion

•
$$\frac{\partial u}{\partial t} - \nabla \cdot (a(u)\nabla u) = g$$

- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

イロト イヨト イヨト イヨト

Abstract setting Basic properties

Two basic physical processes

Diffusion

•
$$\frac{\partial u}{\partial t} - \nabla \cdot (a(u)\nabla u) = g$$

- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

イロト イヨト イヨト イヨト

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

イロト イヨト イヨト イヨ

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

イロト イヨト イヨト イヨト

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

< ロ > < 同 > < 回 > < 回 >

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

(I) < (II) <

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

(I) < (II) <
Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

(I) < (II) <

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

< ロ > < 同 > < 回 > < 回 >

Abstract setting Basic properties

Two basic physical processes

Diffusion

- $\frac{\partial u}{\partial t} \nabla \cdot (a(u)\nabla u) = g$
- parabolic (elliptic) equation
- quantity is spread in all directions
- influence is decreasing for increasing distance of the source

Convection

•
$$\frac{\partial u}{\partial t} - \nabla \cdot \vec{f}(u) = g$$

- hyperbolic equation
- quantity is spread only in the direction of convection $\vec{f}(u)$
- influence is (almost) independent w.r.t. the distance of the source

< ロ > < 同 > < 回 > < 回 >

Abstract setting Basic properties

Examples of physical features (1)

Only diffusion

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u = 0$$

< □ > < 同 > < 回 > < 回 > < 回 >

Abstract setting Basic properties

Examples of physical features (1)

Only diffusion

$$\frac{\partial u}{\partial t} - \varepsilon \Delta u = 0$$

< □ > < 同 > < 回 > < 回 > < 回 >

Abstract setting Basic properties

Examples of physical features (2)

Only convection:

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} \ u) = 0, \quad \vec{f}(u) = (1,0)^{T}$$

Abstract setting Basic properties

Examples of physical features (2)

Only convection:

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} \ u) = 0, \quad \vec{f}(u) = (1,0)^{T}$$

Abstract setting Basic properties

Examples of physical features (3)

 $Convection + small \ diffusion$

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} \, u) - \epsilon \Delta u = 0, \quad \vec{f}(u) = (1, 0)^{T}$$

Abstract setting Basic properties

Examples of physical features (3)

 $Convection + small \ diffusion$

$$\frac{\partial u}{\partial t} + \nabla \cdot (\vec{f} \, u) - \epsilon \Delta u = 0, \quad \vec{f}(u) = (1, 0)^{T}$$

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R} imes(0,T)
ightarrow\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x, 0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

 $\varepsilon > 0 \implies \text{solution is smeared}$

exact solutions for $\varepsilon = 0$, $\varepsilon = 10^{-4}$, $\varepsilon = 10^{-3}$, $\varepsilon = 10^{-2}$

DGM 11 / 24

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

 $\varepsilon > 0 \implies \text{solution is smeared}$

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x-1/4)]$$

 $\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$ $\varepsilon > 0 \implies \text{solution is smeared}$

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x-1/4)^2]$$

 $\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$ $\varepsilon > 0 \implies \text{solution is smeared}$

exact solutions for $\varepsilon = 0$, $\varepsilon = 10^{-4}$, $\varepsilon = 10^{-3}$, $\varepsilon = 10^{-2}$

V. Dolejší

Numerical solution of PDE

DGM 11 / 24

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x, 0) = \exp[(x - 1/4)^2]$$

 $\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$ $\varepsilon > 0 \implies \text{solution is smeared}$

exact solutions for $\varepsilon = 0$, $\varepsilon = 10^{-4}$, $\varepsilon = 10^{-3}$, $\varepsilon = 10^{-2}$

V. Dolejší

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x-1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

 $\varepsilon > 0 \implies$ solution is smeared

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

 $\varepsilon > 0 \implies \text{solution is smeared}$

Abstract setting Basic properties

Elliptic and parabolic PDE

VS.

hyperbolic PDE

Cauchy problem

$$u(x,t):\mathbb{R}\times(0,T)\to\mathbb{R}:$$

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$
$$u(x,0) = \exp[(x - 1/4)^2]$$

$$\varepsilon = 0 \implies u(x, t) = \exp[(x - 1/4 - t)^2]$$

 $\varepsilon > 0 \implies \text{solution is smeared}$

Abstract setting Basic properties

Importance of the character of PDE

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

Linear convection problem (no diffusion)

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

< 合型

Importance of the character of PDE

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to <u>convection+diffusion</u>
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but <u>smeared</u>
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Why is important to know the previous properties?

- numerical solution is a kind of approximation
- many sources of inaccuracies:
 - discretization errors (finite dimensional approximation)
 - iterative errors (approximate solution of algebraic systems)
 - rounding errors (finite precision arithmetic)
- inaccuracies are propagated by PDEs and numerical scheme

- exact solution: a simple propagation of the initial solution
- numerical solution: initial solution is propagated but smeared
- numerical solution corresponds to convection+diffusion
- this effect is called numerical diffusion

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 numerical solution can be completely wro
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< □ > < 同 > < 三 > <

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one ⇒ numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

• □ ▶ • 4□ ▶ • Ξ ▶ •

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 mumerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

• □ ▶ • 4□ ▶ • Ξ ▶ •

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \Longrightarrow numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

• □ ▶ • 4□ ▶ • Ξ ▶ •

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< □ > < 同 > < 三 > <
Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

A D F A B F A B F A B

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< ロト < 同ト < ヨト < ヨ

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

• • • • • • • • • • • •

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< ロト < 同ト < ヨト < ヨ

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< □ > < 同 > < 三 > <

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

Abstract setting Basic properties

Possible pitfalls

Effect of numerical diffusion

- zero diffusion does not exist in reality
- if numerical diffusion larger than physical one
 - \implies numerical solution can be completely wrong
- e.g., numerical solution is steady whereas reality is unsteady

Effect of "finite h"

- we can prove that the proposed method is convergent
- approximate solution contains unphysical effects, e.g., spurious oscillations, negative temperature, etc.
- analysis is wrong?
- No, it converges for $h \rightarrow 0$, the solution is bad for finite h

< □ > < 凸

FEM Convection-diffusion equation

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

$$u \in H^1_0((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H^1_0((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u: (0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H^1_0((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H^1_0((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1)
ightarrow \mathbb{R}: \quad -\varepsilon u''+u'=f, \quad u(0)=u(1)=0, \ \varepsilon>0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \ \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H^1_0((0,1)): \quad \int_0^1 (\varepsilon u'v' + u'v) \, \mathrm{d}x = \int_0^1 f v \, \mathrm{d}x \quad \forall v \in H^1_0((0,1))$$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1)): \quad \int_0^1 (\varepsilon u'v' + u'v) \, \mathrm{d}x = \int_0^1 f \, v \, \mathrm{d}x \quad \forall v \in H_0^1((0,1))$$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H^1_0((0,1))$$
: $\int_0^1 (\varepsilon u' v' + u' v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H^1_0((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

1D convection-diffusion equation

$$u:(0,1) \rightarrow \mathbb{R}: \quad -\varepsilon u'' + u' = f, \quad u(0) = u(1) = 0, \quad \varepsilon > 0.$$

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation

$$u \in H_0^1((0,1))$$
: $\int_0^1 (\varepsilon u'v' + u'v) \, dx = \int_0^1 f v \, dx \quad \forall v \in H_0^1((0,1))$

$$0 = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots x_{N+\frac{1}{2}} = 1, \quad K_i := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], \ i = 1, \dots, N$$

FEM FVM DGM

Finite element method

FEM solution

• $V_h = \{v_h \in C_0([0,1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$ • $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

• reasonable discretization of diffusion \Rightarrow we prove convergence

FEM FVM DGM

Finite element method

FEM solution

• $V_h = \{v_h \in C_0([0, 1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$ • $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) \, \mathrm{d}x = \int_0^1 f \, v_h \, \mathrm{d}x \quad \forall v_h \in V_h$$

• reasonable discretization of diffusion \Rightarrow we prove convergence

FEM FVM DGM

Finite element method

FEM solution

•
$$V_h = \{v_h \in C_0([0, 1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) dx = \int_0^1 f v_h dx \quad \forall v_h \in V_h$$

• reasonable discretization of diffusion \Rightarrow we prove convergence

FEM FVM DGM

Finite element method

FEM solution

•
$$V_h = \{v_h \in C_0([0, 1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) dx = \int_0^1 f v_h dx \quad \forall v_h \in V_h$$

• reasonable discretization of diffusion \Rightarrow we prove convergence

FEM FVM DGM

Finite element method

FEM solution

•
$$V_h = \{v_h \in C_0([0, 1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) dx = \int_0^1 f v_h dx \quad \forall v_h \in V_h$$

• reasonable discretization of diffusion \Rightarrow we prove convergence

FEM FVM DGM

Finite element method

FEM solution

•
$$V_h = \{v_h \in C_0([0, 1]); v_h|_{K_i} = P^1(K_i), i = 1, ..., N\}$$

• $u_h \in V_h$:

$$\int_0^1 (\varepsilon u'_h v'_h + u'_h v_h) dx = \int_0^1 f v_h dx \quad \forall v_h \in V_h$$

- reasonable discretization of diffusion \Rightarrow we prove convergence
- discretization of convective term "does not respect physics"

FEM FVM DGM

Finite element method

• Solution suffers from spurious oscillations for small ε

A stabilization is a possible remedy

Numerical solution of PDE

DGM 16 / 24

3

FEM FVM DGM

Finite element method

 \bullet Solution suffers from spurious oscillations for small ε

A stabilization is a possible remedy

Numerical solution of PDE

DGM 16 / 24

3

FEM FVM DGM

Finite element method

- Solution suffers from spurious oscillations for small arepsilon
- A stabilization is a possible remedy

Numerical solution of PDE

DGM 16 / 24

FVM DGM

Finite volume method

Piecewise constant approximation

•
$$V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$$

• we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

$$u|_{x_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{x_{i+\frac{1}{2}}} := u_i$

FEM FVM DGM

Finite volume method

Piecewise constant approximation

• $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$

• we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

? upwinding:
$$a > 0 \Rightarrow u|_{x_{i+\frac{1}{2}}} := u_i$$

• $u|_{X_{i+\frac{1}{2}}} =$

Numerical solution of PDE

FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

= ?? upwinding:
$$a > 0 \Rightarrow u|_{x_{i+\frac{1}{2}}} := u_i$$

• $u|_{x_{i+\frac{1}{2}}}$

FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

 $-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |\mathcal{K}_i|$

? upwinding:
$$a > 0 \Rightarrow u|_{x_{i+\frac{1}{2}}} := u_i$$

• $u|_{x_{i+\frac{1}{2}}} = ?$

FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

?? upwinding:
$$a > 0 \Rightarrow u|_{X_{i+\frac{1}{2}}} := u_i$$

• $U|_{x_{i+1}}$

Numerical solution of PDE

FEM FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

$$u|_{\mathbf{x}_{i+\frac{1}{2}}} = \ref{eq: upwinding:} \quad a > 0 \Rightarrow u|_{\mathbf{x}_{i+\frac{1}{2}}} := u_i$$

Numerical solution of PDE

FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} = |K_i|$$

•
$$\boldsymbol{u}|_{\mathbf{x}_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow \boldsymbol{u}|_{\mathbf{x}_{i+\frac{1}{2}}} := u_i$

FVM DGM

Finite volume method

Piecewise constant approximation

- $V_h = \{v_h \in L^2([0,1]); v_h|_{K_i} = P^0(K_i), i = 1, ..., N\}$
- we integrate $-\varepsilon u'' + au' = 1$ over K_i and use Gauss theorem

$$-\varepsilon[u'(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}} + {a[u(\cdot)]_{x_{i-1/2}}^{x_{i+1/2}}} = |K_i|$$

•
$$u|_{x_{i+\frac{1}{2}}} = ??$$
 upwinding: $a > 0 \Rightarrow u|_{x_{i+\frac{1}{2}}} := u_i$

FEM FVM DGM

Finite volume method

- Oscillations free approximation
- Low accuracy for larger ε
- A higher order reconstruction is a possible remedy

Numerical solution of PDE

FEM FVM DGM

Finite volume method

- Oscillations free approximation
- Low accuracy for larger ε
- A higher order reconstruction is a possible remedy

Numerical solution of PDE
FEM FVM DGM

Finite volume method

- Oscillations free approximation
- Low accuracy for larger ε
- A higher order reconstruction is a possible remedy

FVM DGM

Finite volume method

- Oscillations free approximation
- Low accuracy for larger ε
- A higher order reconstruction is a possible remedy

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FEM FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FEM FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FEM FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FEM FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- Iow order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- Iow order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- Iow order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

FVM DGM

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- lack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Comparison of FEM and FVM

comparison of FEM and FVM for time-dependent convective problem

Finite element method

- continuous approximation
- high order of accuracy
- many theoretical results
- fine for diffusive problems

Finite volume method

- discontinuous approximation
- low order of accuracy
- Iack of theory
- fine for convective problems

- piecewise polynomial discontinuous approximation
- theoretical justification
- higher freedom (adaptation, parallelization, etc.)

Convection-diffusion equation

DGM

Discontinuous Galerkin method

 $(P_4$ -approximation, same number of DoF)

- not ideal but works very well for both ε
- additional techniques (remedies) are possible

Convection-diffusion equation

DGM

Discontinuous Galerkin method

 $(P_4$ -approximation, same number of DoF)

- not ideal but works very well for both ε
- additional techniques (remedies) are possible

Convection-diffusion equation

DGM

Discontinuous Galerkin method

 $(P_4$ -approximation, same number of DoF)

- not ideal but works very well for both ε
- additional techniques (remedies) are possible

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

Basic properties – positive

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems

easy paralelization

- efficient method for the numerical solution of various PDEs
- piecewise polynomial BUT discontinuous approximation
- suitable for very large range of problems
 - elliptic, parabolic, hyperbolic
 - linear, nonlinear, degenerate
- space-time DGMs are available
- flexibility in the mesh design
 - non-matching and non-uniform grids
 - anisotropic grids
 - varying polynomial approximation degrees
- (nice) block structure of arising algebraic systems
- easy paralelization

Overview Plan of the course

Overview of DGM (2)

Basic properties – theoretica

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

A lot of work to do
Overview Plan of the course

Overview of DGM (2)

Basic properties – theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Overview Plan of the course

Overview of DGM (2)

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

• more degrees of freedom \Rightarrow larger algebraic systems

- it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties – practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom ⇒ larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

more degrees of freedom ⇒ larger algebraic systems

- it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

• more degrees of freedom \Rightarrow larger algebraic systems

- it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

A lot of work to do!

DGM 22 / 24

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Basic properties - theoretical

- formulation of the method is more complicated
- numerical analysis of the method is more complicated

Basic properties - practical

- more degrees of freedom \Rightarrow larger algebraic systems
 - it can be compensated by mesh adaptation
- less of available "standard" libraries,
 - multi-level preconditioners
 - domain decomposition preconditioners

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

イロト イヨト イヨト イヨ

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

イロト イヨト イヨト イヨ

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Plan of the course

Outline

- Abstract error analysis
- DGM for the Laplace problem: complete error analysis
- numerical approximation based on upwinding
- DGM for the nonlinear convection-diffusion equation
- DGM for time dependent problems
- DGM for compressible flow problems and other applications

Organization issues

- standard lectures (lecture notes are available)
- 3 quizes during the semester (can replace the exam)
- oral exam

Overview Plan of the course

Modelling of mesoscale atmosphere by DGM

compressible Navier-Stokes equations with the gravity term

▶ ∢ ⊒

Overview Plan of the course

Modelling of mesoscale atmosphere by DGM

compressible Navier-Stokes equations with the gravity term