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Partial differential equations

Why partial differential equations?

» many processes can be described (approximately) by PDEs

» fluid dynamics, hydrology, heat and mass transfer, medicine,
environmental protection, financial mathematics, etc.

» these PDEs represent a mathematical description of physical,
chemical, biological, etc. rules and/or laws

» some simplification usually necessary = model error

» these PDEs are usually too complicated for an exact solution

Numerical solution of PDEs
» we solve PDEs approximately (numerically)

» we define new simplified (finite dimensional, solvable) problem
= discretization error
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Exact and approximate problems

Abstract problem described by PDEs
> let V be a functional space, we seek v € V such that
(EP) Lu=f
» [ is a differential operator, f is a right-hand side,

» let solution of (EP) exists and is unique

Abstract numerical method
» let V), be a space, dim(V}) < oo, V, C Vor V, ¢ V,

> we seek u, € V), such that
(AP) Chuh = fh,

» [ is a discrete operator, f, is an approximation of f.
» problem (AP) has to be quickly solvable
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Goals of the numerical solution of PDEs

Numerical analysis

>

vVvyYyyvyy

existence and uniqueness of wuy

stability [|up|| < oo

convergence: up — u if dof =dim(V}) — oo
estimate || — up| in terms of dof (a priori estimate)
estimate ||u — up|| based on wuy, (a posteriori estimate)

robustness: validity of previous items for large range of data

Numerical realization

>
>
>
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algorithm for fast evaluation of uj, (efficiency)
stability of the method in the finite precision arithmetic

adaptive strategies = adaptive changes of V),
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Numerical method

Numerical method in practise

> finite sequence of mathematical operations

P output is the approximate solution uy

Construction of a numerical method for the given PDE
» discretization (space, time)
> setting of arising algebraic systems (numerical quadratures)
> (iterative) solution of nonlinear algebraic systems

» solution of linear algebraic systems
Type of discretizations

finite difference method, finite element method, finite volume
method, spectral method, wavelets method, etc.
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Choice of the numerical method

Which numerical method is the best one?
Depends on many aspects of the PDE considered

» physical background of the PDE
» expected regularity of the unknown exact solution

» presence of local phenomena

» outputs of interest
» usual condition ||u — up|| < TOL is not always practical

» goal is the quantity of interest J(up),
= error: |J(u) — J(up)| < TOL

Example

P conservation laws should be discretized by a conservative
numerical method
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Two basic physical processes

Diffusion
> % —V-(a(u)Vu)=g
» parabolic (elliptic) equation
P> quantity is spread in all directions

» influence is decreasing for increasing distance of the source

Convection
5 -
> ot —V-flu)=g
» hyperbolic equation
P quantity is spread only in the direction of convection f(u)
>

influence is (almost) independent w.r.t. the distance of the
source
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Examples of physical features (1)
Only diffusion
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Examples of physical features (2)
Only convection:

ou > >
il V- (f(u)=0, f(u)=(1,0)7
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Examples of physical features (3)

Convection 4 small diffusion

ou z 7
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Elliptic and parabolic PDE VS. hyperbolic PDE

Cauchy problem

ou o _ o
ot " ox  ox?
u(x,0) = exp[(x — 1/4)]

u(x,t):Rx (0, 7T) > R:

e=0 = u(x,t)=exp[(x —1/4 —t)?]

e>0 —  solution is smeared
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Importance of the character of PDE

Why is important to know the previous properties?

» numerical solution is a kind of approximation
» many sources of inaccuracies:

» discretization errors (finite dimensional approximation)
> iterative errors (approximate solution of algebraic systems)
» rounding errors (finite precision arithmetic)

P these inaccuracies are propagated by PDEs

Linear convection problem (no diffusion)

P exact solution: a simple propagation of the initial solution

numerical solution: initial solution is propagated but smeared

>
» numerical solution corresponds to convection+diffusion
>

this effect is called numerical diffusion
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Possible pitfalls

Effect of numerical diffusion
» zero diffusion does not exist in reality

» if numerical diffusion larger than physical one
= numerical solution can be completely wrong

P e.g., numerical solution is steady whereas reality is unsteady

Effect of “finite A"
> we can prove that the proposed method is convergent

P> approximate solution contains unphysical effects, e.g.,
spurious oscillations, negative temperature, etc.

» analysis is wrong?

» No, it converges for h — 0, the solution is bad for finite h
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1D convection-diffusion equation

u:(0,1) > R: —ed"+d =F w0)=u(l)=0, ¢>0.

solution has a steep gradient near x = 1 (boundary layer)

Weak formulation
u € H((0,1)): fol(eu’v’ +dv)dx = fol fvdx Vv e H}(0,1))

Partition of domain

O:x% <x3 <Xyl = 1, Ki:= [x,._%,x,.Jr%], i=1,...,N
K K; Kip
T;—3/2 Ti—1/2 Tit1/2 Ti+3/2
V. Dolejsi Numerical solution of PDE

DGM 14 /23



Finite element method

FEM solution
> Vh:{VhE CQ([O,].]); Vh‘K,- :Pl(Ki), I':].,...,N}
> u, € Vy:

1 1
/ (eupvy, + upvp) dx = / fvpdx Yvy €V
0 0

> reasonable discretization of diffusion =- we prove convergence
> discretization of convective term “does not respect physics”
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Finite element method

» Solution suffers from spurious oscillations for small €

» A stabilization is a possible remedy
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Finite volume method

o o & &

Ti-3/2 Ti—1/2 Tit1/2 Tit+3/2

Piecewise constant approximation
> Vi, = {vy € L3([0,1]); valx, = PU(K;), i=1,...,N}

> we integrate —cu” + au’ = 1 over K; and use Gauss theorem
—e[u (VR + Al = | Kil

> ”’Xi+1 =7 upwinding: a>0 = u|xi+l = uj
2 2
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Finite volume method

06 |
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» Oscillations free approximation
» Low accuracy for larger ¢

» A higher order reconstruction is a possible remedy
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Comparison of FEM and FVM

comparison of FEM and FVM for time-independent convective problem

Finite element method Finite volume method
» continuous approximation P discontinuous approximation
» high order of accuracy » |ow order of accuracy
» many theoretical results » lack of theory
» fine for diffusive problems > fine for convective problems

Voo

Discontinuous Galerkin method

P piecewise polynomial discontinuous approximation

P theoretical justification

» higher freedom (adaptation, parallelization, etc.)
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Discontinuous Galerkin method

e=10" e=10"
14 — 14 .
exact exact
1o | DGM ----e- 12| DGM ----e-
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(Ps-approximation, same number of DoF)
» not ideal but works very well for both ¢
» additional techniques (remedies) are possible
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Overview of DGM (1)

Basic properties — positive

>

| 2
>
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efficient method for the numerical solution of various PDEs
piecewise polynomial BUT discontinuous approximation
suitable for very large range of problems

» elliptic, parabolic, hyperbolic

» linear, nonlinear, degenerate
space-time DGMs are available
flexibility in the mesh design

» non-matching and non-uniform grids
» anisotropic grids
» varying polynomial approximation degrees

(nice) block structure of arising algebraic systems

easy paralelization
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Overview of DGM (2)

Basic properties — theoretical

» formulation of the method is more complicated

» numerical analysis of the method is more complicated

Basic properties — practical
» more degrees of freedom = larger algebraic systems
» it can be compensated by mesh adaptation

» less of available “standard” libraries,

» multi-level preconditioners
» domain decomposition preconditioners

A lot of work to do!
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Plan of the course

QOutline

>

vVvYvyyvyy

Abstract error analysis

DGM for the Laplace problem: complete error analysis
numerical approximation based on upwinding

DGM for the nonlinear convection-diffusion equation
DGM for time dependent problems

DGM for compressible flow problems and other applications

Organization issues

» standard lectures (lecture notes are available)

>

3 quizes during the semestr

» oral exam
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