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Preface

These lecture notes more or less cover the lecture Discontinuous Galerkin methode given by the author at the master and PhD
program at the Charles University in Prague, the Faculty of Mathematics and Physics.
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0.1 Some mathematical concepts

In this section for the reader’s convenience, we recall some basic tools of mathematical analysis, which are frequently used in
the book. We assume that the reader is familiar with mathematical analysis, including the theory of the Lebesgue integral, and
elements of functional analysis, see, for example, [Rud87].

If X is a set or space and n > 0 is an integer, then the symbol X™ = (X )™ denotes the Cartesian product X x --- x X
(n-times). This means that

X"=X)"={(x1,...,Tpn); T1,...,Tn € X}. (1)
By R and N we denote the set of all real numbers and the set of all positive integers, respectively. In the Euclidean space
R? (d € N) we use a Cartesian coordinate system with axes denoted by z1,...,z4. Points from R will usually be denoted by
1/2
)

r=(21,...,74), y= (y1,---,Yd), etc. By |- | we denote the Euclidean norm in R¢. Thus, |z| = (Z?Zl |

Now we introduce some function spaces and their properties, which will be used in the sequel. For deeper results and proofs,
we refer the reader to the monographs [AF03], [KJk77], [Zen90].

0.1.1 Spaces of continuous functions

Let us assume that d € N and M C R? is a domain (i.e., an open connected set). By M and M we denote its boundary
and closure, respectively. By C(M) (or C°(M)) we denote the linear space of all functions continuous in M. For k € N and a
domain M C R? CF¥(M) denotes the linear space of all functions which have continuous partial derivatives up to the order k
in M. The space C*(M) is formed by all functions from C*(M) whose all derivatives up to the order k can be continuously
extended onto M.

Let M C R9. A function f: M — R is u-Hélder-continuous with u € (0, 1], if there exists a constant L such that

|f(z) = f(y)| < Llz -y  Vo,ye M. (2)

If u =1, we speak of a Lipschitz-continuous (or simply Lipschitz) function. If M C R? is a domain, then C*#(M) denotes the
set of all functions whose derivatives of order k are p-Holder-continuous in M.
Let us put

DL

C>®(M)=()C¥(M) and COO(M):ﬁCk(M). (3)
k=1

k

1

By C§°(M) we denote the linear space of all functions v € C°° (M), whose support

suppv = {z € M; v(z) # 0} (4)
is a compact (i.e. bounded and closed) subset of the domain M.
If a; >0, i =1,...,d, are integers, then we call « = (ay,...,aq) a multi-index, and define its length as |a| = Zle ;. By

D we denote the multidimensional derivative of order |a:

peo_ O 5
Oz .. 0xgt ®)
The linear space C*(M), k =0, 1,..., equipped with the norm
[ullorary = Y sup [Du(w)] (6)
|a\§kxeM

is a Banach space. This space is separable but not reflexive.
The linear space C**(M), where k = 0,1,..., and u € (0, 1], equipped with the norm

(D*u)(x) — (D*u)(y)|
m v = |l e + sup
el i = el on ary % Lo P

is a Banach space. It is called the Hélder space. This space is neither separable nor reflexive.
Finally, the symbols V and V- mean the gradient and divergence operators, respectively, i.e.,

B [ Ou ou d )
Vu—grildu-(axl,...,axd) eR* foru:M —R (8)



and

d
aui

3 €R, foru=(uy,...,uq): M — R? (9)
Ly
i=1

V-u=divu=

where the superscript " denotes the transposed vector.
The symbols D%, V and V- are also used for the distributional derivatives; see Section 0.1.3.

0.1.2 Lebesgue spaces

First we recall some standard notation and results from the Lebesgue theory of measure and integral, see, e.g., [Rud87]. Let
M Cc R% d=1,2,..., be a Lebesgue-measurable set. Its d-dimensional Lebesgue measure will be denoted by meas(M) or for
short |M|. We recall that two measurable functions are equivalent if they differ at most on a set of zero Lebesgue measure.
Then we say that these functions are equal almost everywhere (a.e.) in M.

For s € [1,00) the Lebesgue space L*(M) is the linear space of all functions measurable on M (more precisely, of classes of
equivalent measurable functions) such that

/M |u)® dz < +o0. (10)

The space L*(M) is equipped with the norm

1/s
fallzecan = ([ 1 ac) (1)
M

In case that s = oo, the space L>°(M) consists of such measurable functions on M for which the norm
lul| oo (ar) = esssup |u| = inf ¢ sup |u(z)[; Z C M, meas(Z) =0 (12)
M zeEM\Z

is finite. The space L*(M) is a Banach space for 1 < s < oco. Moreover, it is separable if and only if 1 < s < 0o and reflexive if
and only if 1 < s < co. The space L?(M) is a Hilbert space with the scalar product

(u,v) L2 (ar) :/ uv dz. (13)
M
The Cauchy inequality holds in L?(M):

|(w,0) z2an| < Nlullzan [Vl 2 ary,  u,v € L2(M). (14)

0.1.3 Sobolev spaces
Let M Cc R? d=1,2,..., be a domain, let k > 0 be an arbitrary integer and 1 < s < co. We define the Sobolev space W*:*(M)

as the space of all functions from the space L*(M) whose distributional derivatives D®u, up to the order k, also belong to
L5(M), ie.,
Whs(M) = {u € L*(M); D € L*(M) Ya, |a| <k}, (15)

(See e.g. [KJKk77], [Fei93], [Leo09].)
The Sobolev space is equipped with the norm

1/s
llull . (ar) = Z 1 Dul| 75 (ary for 1 < s < o0, (16)
|| <K
lullwr.coary = e {IID%ull o< (ary } for s = oo,
and the seminorm
1/s
ulwreany = { Y 1Du5 for 1 < s < oo, (17)
|a|=k
U k.00 (rr) = ‘Iéllzflcc {ID%ul| oo () } for s = oc.



For 1 < s < oo, the space W*#(M) is a Banach space; it is separable if and only if 1 < s < oo and reflexive if and only if
1 < s < 0o. For s = 2, the space W*2(M) is a Hilbert space and we denote it by H*(M). Moreover, we put

lull e ary = lullwe2ary  and  ulgeary = [ulwe2 - (18)

If k =0, then we set W%*(M) = L¥(M), H(M) = L?>(M) and

| lwosary = 1+ llwosary = I+ lLs(a)- (19)
For vector-valued functions v = (vy,...,v,) € (H5(Q))™, we put
n 1/2
||U||Hk(M) = (Z ”UiH?{k(]VI)) : (20)
i=1
Moreover, with respect to (8), (17), (18) and (20), we write
IVl L2y = [0l v € HY(M), Vol = [olazn), v € H(M). (21)

0.1.4 Theorems on traces and embeddings

In the modern theory of partial differential equations the concept of a bounded domain M C R? with Lipschitz boundary dM
plays an important role. For the definition of a Lipschitz boundary, see, e.g., [KJk77], [Fei93], [Zen90] or Section 2.3.2. It is
possible to say that such a boundary OM is formed by a finite number of parts expressed as graphs of Lipschitz-continuous
functions in local Cartesian coordinate systems. On this boundary, the (d — 1)-dimensional Lebesgue measure meas;—; and
integral are defined and also an outer unit normal vector exists at a.e. point x € 9M. Moreover, Lebesgue spaces L*(OM) are
defined over OM.

Theorem 0.1 (Theorem on traces). Let 1 < s < oo and let M C R< be a domain with Lipschitz boundary. Then there exists a
uniquely determined continuous linear mapping v : Whs(M) — L*(OM) such that

v (u) = uloas  for all u € C°(M). (22)
Moreover, if 1 > s < oo, then Green’s formula

ov ou B M M 4
/M <u8xi +U8xi) dz = /BM Y ()" (v)n; dS, (23)

we Wh (M), ve W' (M), i=1,...,d,

holds, where s’ = s/(s — 1) and n = (n1,...,nq) denotes the outer unit normal to OM.

The function )" (u) € L*(9M) is called the trace of the function u € W'*(M) on the boundary M. For simplicity, when
there is no confusion, the notation u|sns = 7! (u) is used not only for u € C°°(M) but also for u € W1*(M). The continuity
of the mapping 7}/ is equivalent to the existence of a constant ¢ > 0 such that

lulonmllns@ary = 170" (W] Ls@ary < cllullwreary, we Wh(M). (24)

Let k > 1 be an integer and 1 < s < co. We define the Sobolev space W,>*(M) as the closure of the space C§°(M) in the
topology of the space W#*(M). If M is a domain with Lipschitz boundary, then Wy'*(M) = {v € Wh(M); v|op = 0}.
The space of traces on 99 of all functions u € H'(£2) is denoted by H/2(98). Hence, we can write
HY2(00) = (2w u € H(Q)}. (25)
If £ € N, we define the space
HEV2(00) = {48usu € HE(9)). (26)

We speak of Sobolev—Slobodetskii spaces on 2. (See e. g., [FFS03, Section 1.3.3].)
Note that the symbols ¢ and C will often denote a positive generic constant, attaining, in general, different values in different
places.



Embedding theorems

Definition 0.2. Let X, Y be Banach spaces. We say that X is continuously embedded into Y (we write X — Y ), if X is a
subspace of Y and the identity operator I : X — Y defined by Ix = x for all x € X is continuous, i.e., there exists C > 0 such
that

[Tv]y < Clv|lxy VYveX.

We say that X is compactly embedded into Y (X —<— Y ) if the embedding operator I is compact.

Theorem 0.3. The following properties are valid:
(i) Let k >0, 1 < s < o0 and let M C R< be a bounded domain with Lipschitz boundary. Then

, 1 1 k d
WkS(M) «— LY(M) where — = — — S k<, (27)
q S S

WHS(M) < LU(M) for all g € [1,00), if k = %
W) o R, i S k<D,
Whs(M) < C%%(M) for all o € (0,1), if k= g +1,
WES(M) < OO, if k>

(i) Let k >0, 1 < s <oo. Then

d

WkS(M) << LYM) for all q € [1,s*) with i* ==-- g, ifk < —,
s s

d
S?

®w | =

WhS(M) < LYM) for all ¢ € [1,00), ifk =
Wks(M) —— C(M), if k > g.

(We set 1/o0 :=0.)

(i4i) Let 1 < s < 0o. Then C=(M) is dense in W**(M) and C§°(M) is dense in WéC’S(M).

d) By [Leo09, Exercise 1146, page 342/, if the domain M is bounded, then the space W1>°(M) can be identified with the space
CYL(M).

Remark 0.4. In some cases, it is suitable to use the concept of the domain with boundary having the cone property. This is
more general than the concept of the Lipschitz boundary, but the above definitions and results remain valid. See [AF03].

0.1.5 Bochner spaces

In the investigation of nonstationary problems we shall work with functions which depend on time and have values in a Banach
space. Such functions are elements of the so-called Bochner spaces. If u(x,t) is a function of the space variable z and time
t, then it is sometimes suitable to separate these variables and consider u as a function u(t) = u(-,t), which, for each ¢ under
consideration, attains a value u(t) that is a function of  and belongs to a suitable space of functions depending on z. This
means that u(t) represents the mapping “z — (u(t)) () = u(z,t)”.

Let a, b € R, a < b, and let X be a Banach space with norm ||-||. By a function defined in the interval [a,b] with its values
in the space X we understand any mapping u : [a,b] — X.

We say that a function u : [a,b] — X is continuous at a point to € [a,b], if

lim ||u(t) — u(to)|| = 0. (28)

t—tg
t€(a,b]

By the symbol C([a, b]; X) we denote the space of all functions continuous in the interval [a, b] (i.e., continuous at each t € [a, b])
with values in X). The space C([a,b]; X) equipped with the norm

g x) = max (O (29)

is a Banach space.



For s € [1,00], we denote by L*(a,b; X) the space of (classes of equivalent) strongly measurable functions u : (a,b) — X
such that

b 1/s
||uLs<a,b;x>=V IIu(t)Iliigdt] <oo, ifl1<s <o, (30)
a
and
[wll oo (a,0:x) = €ss sup Jlu(t)]|x (31)
te(a,b)

= inf sup |lu(®)||x; N C (a,b), meas(N) =0 p < 400, if s =o00.
t€(a,b)\N

We speak of Bochner spaces. It can be proved that L®(a,b; X) is a Banach space. (The definition of a strongly measurable
function w : (a,b) — X can be found in [KJk77] or [Fei93, Chapter 8].)

If the space X is reflexive, so is L*(a, b; X) for s € (1,00). Let 1 < s < oo. Then the dual of L*(a,b; X) is L(a, b; X*), where
1/s+1/qg=1and X* is the dual of X (for s = 1 we set ¢ = 0c0). The duality between L9(a,b; X*) and L*(a,b; X) becomes

b
<f7 U> = / <f(t),1}(t)>x*,x dta f € Lq(a‘7 b7X*)7 v E Ls(avb;X)' (32)

The symbol (f(t),v(t))x+ x denotes the value of the functional f(¢) € X* at v(t) € X.

If X is a separable Banach space, then L*(a,b; X) is also separable, provided s € [1,00). (See, for example, [Edw65, Section
8.18.1].)

Let | - |x denote a seminorm in the space X. Then a seminorm in L*(a,b; X) is defined as

1/s

b
| Lo (ap:x) = (/ lf(O)]% dt) for 1 < s < +o0, (33)

and

|f\L°°(a,b;X) = €8S SUD¢c(q,b) |f(t)\x . (34)
Similarly we define Sobolev spaces of functions with values in X:

&' f

WS (a,b; X) = {f € L*(a,b; X);

€ L*(a,b; X), j k} (35)

where k € N, s € [1, 00] and 4/ are distributional derivatives. The norm of f € Wks(a,b; X) is defined by

au
] 1/s
s - 36
1wk o) ZH 35 ey (36)
for s € [1,00) and
I T—— A . (37
@ 7= dtd oo (a,b;%)
If s = 2, we often use the notation H*(a, b; X) = W*2(a,b; X).
Let | - |x denote a seminorm in the space X. Then a seminorm in W¥*:*(a, b; X) is defined as
blakf | 1s
| flwes (a,p:x) = / ——- @) dt for 1 <s < +o0, (38)
b W a7
and
dkf
|f|W"'v°°(a,b;X) = €SS SUDP¢¢(qa,b) ﬁ(t) (39)
b'e




For example,

dvf

9 1/2
(1) dt) . (40)

H(M)

b
|| e2% (a b0 (01)) = (/

We also define spaces of continuously differentiable functions on an interval I = [a,b] with values in X:

J
CH(I; X) :{fE C(I; X); % e C(I; X) for all j = 1,...,k}. (41)
The norm of f € C*(I; X),k=0,1,..., is defined by
s

Il = mac{ | G| gy 7= 0ok (42)

These spaces are nonreflexive Banach spaces. They are separable if X is separable.
If X is a Banach space with norm || - || x, then by X* we denote its dual space (simply dual), i.e., the space of all continuous
linear functionals on X. The space X* is also a Banach space with norm

1l = suppex L vy ¢ xv, (43)
ol

Finally, if p > 0 is an integer and w C R”, then by P,(w) we denote the space of the restrictions on w of all polynomials of
degree < p depending on = € R™. We simply speak of polynomials of degree < p on w.

For nonstationary problems, we shall use spaces of polynomial functions with respect to time. Let —oco < a < b < oco. If X
is a Banach space, then we put

a
Py(a,b; X) = {v € Cla,b; X); v(t) = Ztigoi,cpi €X,i=0,...,q, t € [a,b]}. (44)
i=0

0.1.6 Useful theorems and inequalities
Lemma 0.5 (Young’s inequality). If s,q € (1,+00), 1/s+1/q=1 and a,b > 0, then
a® b

b< —+ —. 45

wel o+l (45)
In particular, if s=q =2 and A > 0, then

1 A
b< —a®+ 202 4

D= Ty (46)

Proof. See, e.g., [FHH'11, Lemma 1.11.] O

Lemma 0.6 (Lax-Milgram). Let V' be a Hilbert space with norm || - ||, let f:V — R be a continuous linear functional on V,

and let a: V x V — R be a bilinear form on V X V that is coercive, i.e., there exists a constant o > 0 such that
a(u,u) > ofjul]? Yu eV, (47)
and continuous (also called bounded) and, hence, there exists a constant Cg > 0 such that
la(u,v)| < Calullloll  Vu,ve V. (48)

Then there exists a unique solution ug € V' of the problem

aug,v) = f(v) Yo e V. (49)
Proof. See [Cia79, Theorem 1.1.3]. O
Corollary 0.7. Let Vi be a finite-dimensional Hilbert space with norm || -||, let f: Vn — R be a linear functional on Vi, and

let a: Vn x Vy — R be a bilinear form on Vi X Vi which is coercive, i.e., there exists a constant o > 0 such that
a(u,u) > af|ul|? Yu € V. (50)
Then there exists a unique solution ug € Vi of the problem

a(ug,v) = f(v) Yv e V. (51)
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Proof. Since the space Vi is finite dimensional, the bilinear form a and the functional f are continuous. Then the application
of the Lax—Milgram Lemma 0.6 gives the assertion. Let us note that all norms on the finite-dimensional space are equivalent.
O O

Lemma 0.8 (Discrete Cauchy inequality). Let {a;}_, and {b;}I"_, be two sequences of real numbers. Then

n n 1/2 n 1/2
i=1 i=1 i=1

In the analysis of nonstationary problems, the following versions of Gronwall’s lemma will be applied.

Lemma 0.9 (Gronwall’s lemma). Lety, ¢, z, r € C([0,T]), r > 0, and let

y(t) + q(t) < z(t) +/O r(s)y(s)ds, te€l0,T]. (53)

Then

t

y@r+«w+[fmmqump(ﬁr@wh)dﬂ (54)

Sz(t)+/0tr(19) 2(9) exp </;7‘(3) ds) v, tel0,1].

Proof. Inequality (53) can be written in the form

) < hit)+ [ rluls) s (59)
where
h(t) = =(t) — q(t) (56)
Let us set
2= [ r(s)u(s)as (57)
Then 2 (t) = r(t) y(t), 21(0) = 0. Since r(t) > 0, it follows from (55) that
21 (t) < h(t)r(t) +r(t) 21 (1) (58)
If we set
w(t) = z1(t) exp (—/0 r(s) ds) , (59)
then, by (58),
w'(t) = 2] (t) exp <_/0 r(s) ds> — 21(t) r(t) exp (—/0 r(s) ds) (60)

— h(t) r(t) exp (— /O ") ds> .

Taking into account that w(0) = 0 and integrating (60) from 0 to t, we get

t 9
w(t) < /o h(9) r(9) exp (/0 r(s) ds) dv.
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This and (59) imply that

z1(t) <exp (/()tr(s) ds) /Ot h(9) r(¥) exp (— /019 r(s) ds) dy (61)
- /O 1) +(9) exp ( /ﬁ ") ds) .

Hence, by (53), (55), (61) and (56), we have

t t
y(t) +q(t) < z(t) + z1(¢) < z(t) +/ h(9) () exp (/ r(s) ds) dd
0 9
t t
= z(t) —|—/ z(9) r(¥) exp </ r(s) ds) dv
0 9
t t
- [aores ( [+ ds) ,
0 )
which immediately yields inequality (54). O O
Lemma 0.10 (Gronwall’s modified lemma). Suppose that for allt € [0,T] we have
t
() + R() < A) + 2 [ BON(0) 40, (62)
0
where R, A, B, x € C([0,T]) are nonnegative functions. Then for any t € [0,T)
VX2(t) + R(t) < ﬁm[%x VA —|—/B(19) dd. (63)
€lo,t
Proof. For any ¢ € [0,T] we set
9
o(0) =2 [ Blo)x(5)ds
0
Then ¢(0) = 0 and
¢’ () = 2B(9) x(¥) (64)

Let us consider an arbitrary fixed ¢ € [0,7] and denote

S, = max A(s).
'y

It is clear that if S; = 0 for some ¢ € [0,T], then S, = 0 for all 7 € [0,¢]. Similarly, the condition ¢(¢) = 0 for some ¥ € [0, T
implies that ¢(7) = 0 for all 7 € [0,9]. Let us set ¢t; = 0, provided S; # 0 for all t € [0,T7], and

t1 = max{t € [0,7]; S; = 0}, to = max{¥ € [0,T]; p(¥) = 0}, t3 = min(ty,t2).
By (64) and (62),

¢'(9) < 2B(W0)V/Si + (V).

t
[ aacram = o
ts 2 St'i‘@

Then for t € (t3,T] we have

and thus,

VEE| Wﬁt/ av.
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This implies that

VSt o(t) < St+/tB(19) dv. (65)
0

Now, by virtue of (62) and (65),

t
JED ERD < /S o) St—l—/B(ﬁ)dﬁ. (66)
0
Taking into account that

VS = [ max A(s) = max \/A(s),

s€[0,t] s€[0,t]
from (66) we immediately get (63). Finally, it is obvious that (63) also holds for all ¢ € [0, ¢3]. O O
Lemma 0.11 (Gronwall’s discrete lemma). Let &, by, ¢m > 0 and an, > 0 for m = 0,1,2,..., and let the sequence a,, be

nondecreasing. Then, if

o + ¢o <ay,
m—1

Tn + Cm <apm + Z bjx; form>1, (67)
=0

we have

m—1
T + Cmy <apm H (1+b;) form>0. (68)
J=0

Proof. We start from inequality (67), divided by a,, and use the assumption that the sequence a,, is nondecreasing. We get
x,
-4 <1 b < 1 b =, 69
o + + E + E (69)

Let usset vg =1 and v,,, =1 + Z?:Bl ij—j for m > 1. Then by (67) and the inequality ¢;,—1/am—1 > 0, we have

Tm— Lo — Cm—
Um = Um—1 = bm—1 ml Sbml( ml + = 1) <bp-1Vm-1, m2>1

m—1 m—1 Am—1

This implies that

m—1 m—1
Um §(1+bm_1)vm_1 S’UQ H(1+b H 1+b
7=0 7=0

O
O

Now from (69) we get (68).
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Chapter 1

DGM for elliptic problems

This chapter conserns in basic aspects of the discontinuous Galerkin method (DGM), which will be treated in an example of a
simple problem for the Poisson equation with mixed Dirichlet—~Neumann boundary conditions. We introduce the discretization
of this problem with the aid of several variants of the DGM. Further, we prove the existence of the approximate solution and
derive error estimates. Finally, several numerical examples are presented.

The book contains a detailed analysis of qualitative properties of DG techniques. It is based on a number of estimates with

various constants. We denote by Ca, Cp, Cc, ..., Cy, Cy, C., ...positive constants arising in the formulation of results that
can be simply named (e.g., 4 corresponds to approximation properties, g - boundedness, ¢ - coercivity, etc.) Otherwise, we
use symbols C, C1, Co, .... These constants are always independent of the parameters of the discretization (i.e., the space

mesh-size h, time step 7 in the case of nonstationary problems, and also the degree p of polynomial approximation in the
case of the hp-methods), but they may depend on the data in problems. They are often “autonomous” in individual chapters
or sections. Some constants are sometimes defined in a complicated way on the basis of a number of constants appearing in
previous considerations. For an example, see Remark 2.13.

1.1 Model problem

Let Q be a bounded domain in R?, d = 2,3, with Lipschitz boundary 0. We denote by 0Qp and 9Qy parts of the boundary
J€ such that 90 = 0Qp Uy, 00p NN = 0 and O p 75 0.
We consider the following model problem for the Poisson equation: Find a function u : 2 — R such that

—Au=f inQ, (1.1a)
u=wup on dp, (1.1b)
n-Vu=gy ondQy, (1.1c)

where f, up and gy are given functions. Let us note that n - Vu = g—:‘l is the derivative of the function u in the direction n,

which is the outer unit normal to Q. A function u € C%(Q) satisfying (1.1) pointwise is called a classical solution. Tt is suitable
to introduce a weak formulation of the above problem. Let us define the space

V= {U € Hl(Q); U|5QD = O}.

Assuming thet wu is a classical solution, we multiply (1.1a) by any function v € V, integrate over §2 and use Green’s theorem.
Taking into account the boundary condition (1.1c), we obtain the identity

/Vu'Vvdx:/fvder/ gyvdS VvelV. (1.2)
Q Q QN

We can introduce the following definition.

Definition 1.1. Let us assume the existence of u* € H*(Q) such that u*|sq, = up and let f € L*(Q), gy € L*(00y). Now
we say that a function u is a weak solution of problem (1.1), if

(a) u—u*eV,

(b) u satisfies identity (1.2).

Using the Lax—Milgram Lemma 0.6, we can prove that there exists a unique weak solution of (1.1), see, e.g., [QV99, Section
6.1.2]. In the following, we shall deal with numerical solution of problem (1.1) with the aid of discontinuous piecewise polynomial
approximations.
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1.2 Abstract numerical method and its theoretical analysis

In order to better understand theoretical foundations of the DGM, we shall describe a possible general approach to deriving

error estimates. (Readers familiar with concepts of a priori error estimates in the finite element method can skip this section.)
Let u € V' be a weak solution of a given problem. Let V}, denote a finite-dimensional space, where an approzimate solution

uy, is sought. The subscript A > 0 (usually chosen as h € (0, h) with 2 > 0) denotes the parameter of the discretization. Further,

we introduce an infinitely dimensional function space W}, such that V.C W), and V}, C W),. (If V}, C V, then we usually put

Wy, :=V and thus, W, is independent of .) Finally, let ||-|ly;, be a suitable norm in Wj. As we shall see later, the spaces V}, and

W), will be constructed over a suitable mesh in the computational domain, and hence the norm || - ||, may be mesh-dependent.
An abstract numerical method reads: Find uj, € V}, such that

Ap(up,vp) = F(vp) Yop € Vy, (1.3)

where Ay, : Wi, x Wi, — R is a bilinear form and F' : W, — R is a linear functional.
In the numerical analysis, we want to reach the following goals:

e the approximate solution uy of (1.3) exists and is unique,

e the approximate solution u; converges to the exact solution v in the ||||Wh -norm as h — 0, i.e.,

li — =0 1.4
Jim [[u = unly, =0, (1)

e a priori error estimate, i.e., we seek a > 0 independent of h such that
[u = unlly, <Ch%, he(0,h), (1.5)
where C' > 0 is a constant, independent of h (but may depend on u), and « is the order of convergence.

Obviously, an a priori error estimate implies the convergence.
The existence and uniqueness of the approximate solution is a consequence of the coercivity of Ay, i.e., there exists C. > 0
such that

An(vi,vn) > Cellonllyy,  Yon € V. (1.6)

Then Corollary 0.7 implies the existence and uniqueness of the approximate solution uy,.
In order to derive a priori error estimates, we prove the consistency of the method,

Ap(u,vp) = F(vn) Vop € Vi (1.7)
which, together with (1.3), immediately gives the Galerkin orthogonality of the error e, = uj, — u to the space Vj:
Ah(eh,vh) =0 VYo, €V (1.8)

Further, we introduce an interpolation operator (usually defined as a suitable projection) II;, : V. — V} and prove its
approximation property, namely existence of a constant o > 0 such that

v = ollyy, < Cw)h® Yv eV, he(0,h), (1.9)
where C (v) > 0 is a constant independent of h but dependent on v. A further step is the derivation of the inequality
Ap(u —Hpu,vp) < R(u —Ipu)|[vply,  Von € Vi, (1.10)

where R depends on suitable norms of the interpolation error u — ITju. B
Finally, the error estimate is derived in the following way: for each h € (0,h) we decompose the error ey, by

en =up —u==£&+mn, (1.11)

where £ := up — pu € V), and n := Iu — u € W), Putting v, := £ in (1.8), we get

Ap(en, &) = An(&, ) + An(n,§) = 0. (1.12)
It follows from the coercivity (1.6) and estimate (1.10) that
Cellélliy, < An(:€) = =Anm,€) < Rm)€llw,» (1.13)
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which immediately implies the inequality

R(n)
I€llyw, < c. (1.14)
Now, the triangle inequality, relations (1.11) and (1.14) give the error estimate in the form
R(n)
”ehHWh < ||§||W,,, + ||77||Wh, < C + H77Hwh~ (1.15)
c

This is often called the abstract error estimate, which represents an error bound in terms of the interpolation error 7.
The last aim is to use the approximation property (1.9) of the operator IT;, and to estimate the expression R(n) in terms of
the mesh-size h in the form

R(n) < Cy(u)h®, (1.16)

which together with (1.15) immediately imply the error estimate
lenllw, < (C'Cr(w) + Cw)) ne, (1.17)

valid for all h € (0,h). We say that the numerical scheme has the order of convergence in the norm ”HWh equal to a.

This concept of numerical analysis is applied in this chapter. (Among other, we specify there the spaces W}, and V},.) For
time dependent problems, treated in Chapters 2—4, the analysis is more complicated and the previous technique has to be
modified. However, in some parts of the book, error estimates are derived in a different way.

Remark 1.2. As was mentioned above, we are interested here in deriving of a priori error estimates (simply called error
estimates). We shall not deal with a posteriori error estimates, when the error is bounded in a suitable norm in terms of the
approzimate solution and data of the problem. The subject of a posteriori error estimates plays an important role in practical
computations, but is out of the scope of this book. For some results in this direction for the DGM we can refer, e.g., to the
papers [AEV11], [DEV13], [EV10], [GHHO7], [HHO6b], [HSWO0S8], [JSV10] and the references cited therein.

1.3 Spaces of discontinuous functions

The subject of this section is the construction of DG space partitions of the bounded computational domain ) and the specifi-
cation of their properties which are used in the theoretical analysis. Further, function spaces over these meshes are defined.

1.3.1 Partition of the domain

Let 7, (h > 0 is a parameter) be a partition of the closure Q of the domain € into a finite number of closed d-dimensional
simplexes K with mutually disjoint interiors such that

a= | K (1.18)

This assumption means that the domain € is polygonal (if d = 2) or polyhedral (if d = 3). The case of a 2D nonpolygonal
domain is considered, e.g., in [Sob11], where curved elements are used. See also Chapter 6, where curved elements are treated
from the implementation point of view. We call T;, a triangulation of 2 and do not require the standard conforming properties
from the finite element method, introduced e.g., in [Cia79], [BS94b], [EEHJ96], [Sch00] or [Zen90]. In two-dimensional problems
(d = 2) we choose K € T}, as triangles and in three-dimensional problems (d = 3) the elements K € T, are tetrahedra. As we
see, we admit that in the finite element mesh the so-called hanging nodes (and in 3D also hanging edges) appear; see Figure 1.1.

In general, the discontinuous Galerkin method can handle with more general elements as quadrilaterals and convex or even
nonconvex star-shaped polygons in 2D and hexahedra, pyramids and convex or nonconvex star-shaped polyhedra in 3D. As an
example, we can consider the so-called dual finite volumes constructed over triangular (d = 2) or tetrahedral (d = 3) meshes
(cf., e.g., [FFLMW99]). A use of such elements will be discussed in Section ?7?.

In our further considerations we shall use the following notation. By 0 K we denote the boundary of an element K € 7 and
set hx = diam(K) = diameter of K, h = maxge7, hx. By px we denote the radius of the largest d-dimensional ball inscribed
into K and by |K| we denote the d-dimensional Lebesgue measure of K.

Let K, K’ € T,,. We say that K and K’ are neighbouring elements (or simply neighbours) if the set K N 0K’ has positive
(d — 1)-dimensional measure. We say that I’ C K is a face of K, if it is a maximal connected open subset of either 0K N IK’,
where K’ is a neighbour of K, or 0K N9Qp or IKNIN . The symbol |T'| will denote the (d — 1)-dimensional Lebesgue measure
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Figure 1.1: Example of elements K;, [ =1,...,5, and faces I';, [ =1,...,8, with the corresponding normals nr,. The triangle
K5 has a hanging node. Its boundary is formed by four edges: 0K5 =T UT,UT7 UTs.

of I'. Hence, if d = 2, then |I'| is the length of I" and for d = 3, |I'| denotes the area of I'. By F}, we denote the system of all
faces of all elements K € 7. Further, we define the set of all boundary faces by

FP ={T e F,; T o9},
the set of all “Dirichlet” boundary faces by
Fi¥ ={l' € Fn; I C 0Qp},
the set of all “Neumann” boundary faces by
FN ={T € F,, T CoQn}
and the set of all inner faces
Fi=TFn\FP.
Obviously, Fj, = Ff UFP U F} and FP = FP U FN. For a shorter notation we put
FiP = Fh UF).

For each I' € F}, we define a unit normal vector nr. We assume that for I' € ]-"/? the normal nr has the same orientation
as the outer normal to 9€2. For each face I' € .7-",{ the orientation of nr is arbitrary but fixed. See Figure 1.1.

For each I' € F} there exist two neighbouring elements KIEL),KéR) € Tp such that I' C 8K§L) N 8K§R). (This means that
the elements KI(‘L), KIQR) are adjacent to I' and they share this face.) We use the convention that nr is the outer normal to
aKﬁm and the inner normal to 8K1£R); see Figure 1.2.

Moreover, if I' € .7-",]13, then there exists an element KﬁL) € Tp, such that I' C KISL) N on.

1.3.2 Assumptions on meshes

Let us consider a system {75 }1,e(0,5) h > 0, of triangulations of the domain Q (7, = {K}xe7,). In our further considerations
we shall meet various assumptions on triangulations. The first is usual in the theory of the finite element method:

e The system {7} he(o,k) Of triangulations is shape-regular: there exists a positive constant Cr such that

h _
plgcR VK €T, Vhe (0,h). (1.19)
K

Moreover, for each face I' € F, h € (0,h), we need to introduce a quantity hr > 0, which represents a “one-dimensional”
size of the face I'. We require that
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Figure 1.2: Interior face I', elements KI(HL) and KIER) and the orientation of nr.

e the quantity hr, T' € Fp,, h € (0,h), satisfy the equivalence condition with hg, i.e., there exist constants Cr,Cg > 0
independent of h, K and I" such that

Crhg < hpr < Cghg, VYK €T, VI € F,, T COK, Vh € (0,h). (1.20)

The equivalence condition can be fulfilled by additional assumptions on the system of triangulations {E}he(o’ﬁ) and by a

suitable choice of the quantity hr, I' € F,, h € (0,h). We introduce some assumptions on triangulations and several choices of
the quantity hr. Then we discuss how the equivalence condition (1.20) is satisfied.
In literature we can find the following assumptions on the system of triangulations:

(MAT1) The system {7 }pe(0,n) 18 locally quasi-uniform: there exists a constant Cq > 0 such that
hi < Cohrr VK, K' €Ty, K, K’ are neighbours, Vh € (0,h). (1.21)

(MAZ2) The faces I' C 0K do not degenerate with respect to the diameter of K if h — 0: there exists a constant C;y > 0 such
that

hg < Cydiam(T') VK €T, YL € F,, T COK, Yhe (0,h). (1.22)
(MA3) The system {7Tp}ye(0,n) 18 quasi-uniform: there exists a constant Cy > 0 such that
h<Cyhx YKE&ET, Vhe(0,h). (1.23)

(MA4) The triangulations 7, h € (0,h), are conforming. This means that for two elements K, K’ € Tj,, K # K', either
KNK' =0or KNK'isacommon vertex or K N K’ is a common face (or for d = 3, when K N K’ is a common edge) of
K and K'.

If condition (MA4) is not satisfied, then the triangulations 7}, are called nonconforming.

Remark 1.3. There are some relations among the mesh assumptions (MA1) — (MA4) mentioned above. Obviously, (MA3) =
(MA1) . Moreover, if the system of triangulation is shape-reqular (i.e., (1.19) is fulfilled) then (MA4) = (MA1) & (MA2) .

Exercise 1.4. Prove the implications in Remark 1.3.

Concerning the choice of the quantity hr, T' € F,, h € (0,h), in literature we can find the following basic possibilities:

(i) hr = diam(I"), T € FP, (1.24)
1 T
(i) hp=1{ 2 (hKé“ * hKéR’) for I'e 75, (1.25)
K (E) for " € ]:;?,
r
how, h ) for T € FI
(i) hp = max ( K& Mg or ,;3 (1.26)
hK(L) fOYFG.Fh,
r
: 1
(iv) he — min (hKéL), hK§R>) forI' € F}, (1.27)
K (E) forT € ]:,J?,
r

where KIQL), Kl(ﬂR) € Ty, are the elements adjacent to I' € .7-',{7 see Figure 1.2, and Kl(ﬂL) € Ty, is the element adjacent to I' € ]:,f?.
The following lemma characterizes assumptions on computational grids and the choice of hr, which guarantee the equivalence
condition (1.20).
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Lemma 1.5. Let {ﬁz}he(oﬁ) be a system of triangulations of the domain Q satisfying the shape-regularity assumption (1.19).
Then the equivalence condition (1.20) is satisfied in the following cases:

(i) The triangulations Tr,, h € (0,h), are conforming (i.e., assumption (MA4) is satisfied) and hr are defined by (1.24) or
(1.25) or (1.26) or (1.27) .

(i) The triangulations Tp, h € (0,h), are, in general, nonconforming; assumption (MA2) (i.e., (1.22)) is satisfied and hr are
defined by (1.24).

(iii) The triangulations Tn, h € (0,h), are, in general, nonconforming; assumption (MA1) is satisfied (i.e., the system
{Th}he(o,n) i locally quasi-uniform) and hr are defined by (1.25) or (1.26) or (1.27).

Exercise 1.6. Prove the above lemma and find the constants Cr and Cg. For example, in the case (c), when hr is given by
(1.25), we have

Cr=(1+C5"/2, Ca=(1+Cq)/2, (1.28)

where Cq 1is the constant from the local quasi-uniformity condition (1.21).

1.3.3 Broken Sobolev spaces

The discontinuous Galerkin method is based on the use of discontinuous approximations. This is the reason that over a
triangulation T, for any k& € N, we define the so-called broken Sobolev space

H*(Q,Th) = {ve L*(Q);v|x € HY(K)V K € Tp}, (1.29)

which consists of functions, whose restrictions on K € 7Tj, belong to the Sobolev space H¥(K). On the other hand, functions
from H*(2,T) are, in general, discontinuous on inner faces of elements K € 7;,. For v € H*(Q,T;,), we define the norm

1/2
vl e @.7) = < > ”vl%[k(K)) (1.30)
KeTy,
and the seminorm

1/2
olar@.m) = ( > IvlimK)> : (1.31)

KeTn

Let I' € F} and let KIQL), KIER) € Tn be elements adjacent to I'. For v € H*(£2,7,) we introduce the following notation:

UIEL) = the trace of U|K(L) on I, (1.32)
r

vﬁR) = the trace of U|K(R) onT,
r

1
(v)p = 3 (vlgL) + UIQR)) (mean value of the traces of v on T'),

[v]p :Ul(“L) - U(FR) (jump of v on T).

The value [v]r depends on the orientation of nr, but [v]rnr is independent of this orientation.
Moreover, let I' € .7:,]13 and KIEL) € 75 be the element such that I' C 8[(1(}) N 9. Then for v € HY(Q,T;,) we introduce the

following notation:

UIQL) =the trace of U|K1£L) on T, (1.33)

(W) =l = ol

If ' € FP, then by vlgR) we formally denote the exterior trace of v on I' given either by a boundary condition or by an
extrapolation from the interior of (2.

In case that I' € F, and []r, (- ) and nr appear in integrals fr ... dS, then we usually omit the subscript I' and simply
write [], {-) and n, respectively.

The discontinuous Galerkin method can be characterized as a finite element technique using piecewise polynomial approx-
imations, in general discontinuous on interfaces between neighbouring elements. Therefore, we introduce a finite-dimensional
subspace of H*(€2,T), where the approximate solution will be sought.
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Let Ty be a triangulation of 2 introduced in Section 1.3.1 and let p > 0 be an integer. We define the space of discontinuous
piecewise polynomial functions

= {v e L*(Q);v|x € B(K) VK € T}, (1.34)

where P,(K) denotes the space of all polynomials of degree < p on K. We call the number p the degree of polynomial
approzimation. Obviously, Sy, C H*(Q,T;,) for any k > 1 and its dimension dim Sy, < occ.

1.4 DGM based on a primal formulation

In this section we shall introduce the so-called discontinuous Galerkin method (DGM) based on a primal formulation for the
solution of problem (1.1). The approximate solution will be sought in the space Sp, C H'(2,73). In contrast to the standard
(conforming) finite element method, the weak formulation (1.2) given in Section 1.1 is not suitable for the derivation of the
DGM, because (1.2) does not make sense for u € H'(Q,T,) ¢ H'(Q2). Therefore, we shall introduce a “weak form of (1.1) in
the sense of broken Sobolev spaces”.

Let us assume that u is a sufficiently regular solution of (1.1), namely, let u € H?(§). Then we speak of a strong solution.
In deriving the DGM we proceed in the following way. We multiply (1.1a) by a function v € H*(£2,T3), integrate over K € Ty,
and use Green’s theorem. Summing over all K € 7, we obtain the identity

Z / Vu-Vodr — Z/ ng - Vu)vdS = /fvdx (1.35)
KeTh KeTh

where ng denotes the outer unit normal to K. The surface integrals over 0K make sense due to the regularity of w. (Since
u € H?(K), the derivatives Ou/dz; have the trace on 0K and du/dz;|ox € L*(OK) for i =1,...,d; see Theorem 0.1 on traces.)
We rewrite the surface integrals over 0K according to the type of faces I' € Fy, that form the boundary of the element K € Tp:

Z/ ng -Vu)vdS = Z /np Vu)vdS + Z /np Vu)vdS (1.36)

KeTn rerp rery
+ Z /np VU(L) (L) - (Vu%R))vlgR)) ds.
rer}

(There is the sign in the last integral, since nr is the outer unit normal to 3K§L) but the inner unit normal to 6K§R), see

Section 1.3.1 or Figure 1.2.)
Due to the assumption that u € H?({2), we have

“_»

[ = [Vulr =0, Vul) =vul = (Vu)r, T'eFL (1.37)
Thus, the integrand of the last integral in (1.36) can be written in the form
r- (Vo) ol —np - (V)P ol = np - (V) o] (1.38)

By virtue of the Neumann boundary condition (1.1c),

Z /np Vu)vdS = / gnvdS. (1.39)

rery o

Now, (1.33) and (1.35)—(1.39) imply that

Z /Vu Vudzr — Z/ (Vu) [v]dS — Z /n VuvdS

KeTh rer} rerp

= /vu Vode— / (Vu) [ (1.40)

KeTy FE]:ID
:/fvdx—l—/ gnvdS, ve  HY (D, Th).
Q 0N

Here and in what follows, in integrals over I' the symbol n means nr.
Relation (1.40) is the basis of the DG discretization of problem (1.1). However, in order to guarantee the existence of the
approximate solution and its convergence to the exact one, some additional terms have to be included in the DG formulation.
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In order to mimic the continuity of the approximate solution in a weaker sense, we define the interior and boundary penalty
bilinear form

JP (u,v) = Z /Fa[u} [v]dS + Z /FouvdS (1.41)

rer} rerp

Z /Fo[u] [v]dS, u,v € HY(Q, Th).

rerip

The boundary penalty is associated with the boundary linear form

Jp(v) = Z /FUuDvdS. (1.42)

rerpP
Here o > 0 is a penalty weight. Its choice will be discussed in Section 1.6. Obviously, for the exact strong solution u € H?(Q),
J7 (u,v) = JpH(v) Yoe HY(Q,Th), (1.43)

since [u]r = 0 for T € F{ and [u]r = ur = up for T € FP.
The interior penalty replaces the continuity of the approximate solution on interior faces, which is required in the standard
conforming finite element method. The boundary penalty introduces the Dirichlet boundary condition in the discrete problem.
Moreover, the left-hand side of (1.40) is not symmetric with respect to u and v. In the theoretical analysis, it is advantageous
to have some type of symmetry. Hence, it is desirable to include some additional term, which “symmetrizes” the left-hand side
of (1.40) and which vanishes for the exact solution. Therefore, let u € H'(Q) N H?(Q,Ty,) be a function which satisfies the
Dirichlet boundary condition (1.1b). Then we use the identity

Z /n~<Vv) [u] dS = Z /n~VqudS Yo e H*(Q,Th), (1.44)
reFmp T rerp /T

which is valid since [u]p = 0 for T' € F/, [u]r = ur = up for I' € FP and (Vv). = Vor for T' € FP by definition.

Now, without a deeper motivation, we introduce five variants of the discontinuous Galerkin weak formulation. Each particular
method is commented on in Remark 1.10. Hence, we sum identity (1.40) with —1, 1 or O-multiple of (1.44) and possibly add
equality (1.43). This leads us to the following notation. For u,v € H?(Q,T;,) we introduce the bilinear diffusion forms

g (wo) =Y /KVu~Vvda:— 3 /F(n-<Vu> ] + - (Vo) [u]) dS, (1.452)

KET, rerip
ap(u,v) = Vu-Vudz — (n-(Vu) [v] = n - (Vo) [u]) dS, (1.45b)
" K;’h /K F;}{D /F
ak, (u,v) = Vu-Vudz — n - (Vu) [v]dS, (1.45¢)

and the right-hand side linear forms

FZ(U):/vadm—i— Z /FngdS— Z /Fn~VqudS, (1.46a)

rery rerp
F,‘f(v):/ﬂfvder > /FngdSJr > /Fn~VqudS, (1.46b)
rerpy rerp

F,i(v):/ﬂfvdx—k Z /FngdS. (1.46¢)

rerpy

Moreover, for u,v € H?(,T;,) let us define the bilinear forms

A, (u,v) = aj, (u,v), (1.47a)
Aj (u,v) = aj(u,v), (1.47b)
Ay (u,v) = aj (u,v) + Jf (u,0), (1.47c)
Ay (u,v) = ap(u,v) + Jj (u,v), (1.47d)
A7 (u,v) = @i (u,0) + I (u,v), (1.47¢)



and the linear forms

0 (v) = F(v), (1.48a)
0 (v) = F(v), (1.48Db)
07 (v) = Fj(v) + Jp(v), (1.48c)
0% (v) = Fy(v) + Jp(v), (1.48d)
67 (v) = Fp(v) + J3(v) (1.48¢)

Since Sy, C H%(Q, Tr), the forms (1.47) make sense for up, vy, € Spy,. Consequently, we define five numerical schemes.

Definition 1.7. A function u, € Shp is called o DG approximate solution of problem (1.1), if it satisfies one of the following
identities:

(i) Ay (un,vn) = €,(vn) Vv € Shyp, ( )
(1) Ap(un,vn) =€ (vn)  Von € Shp, (1.49Db)
(ZZZ) AZ (uh,vh EZ’U(’U}L) Yo, € Shp, (149(3)
(iv) A7 (up,vp) =€, (vn) Yup € Shyp, ( )
(v) A (up,on) = £, (vn)  Yop, € Shp, (1.49¢)
where the forms A5, A}, ..., and 65,05, ..., are defined by (1.47) and (1.48), respectively.
The diffusion forms a5, a}, a} defined by (1.45) can be simply written in the form

ap(u,v) = Z /K Vu-Vodr — Z /F(n (Vu) [v] + ©On - (Vo) [u]) dS, (1.50)

KeT, reFp

where © = 1 in the case of the form aj, © = —1 for a}} and © = 0 for a}, and the bilinear forms A5, AR, A7, A}? and Aih"’
defined by (1.47) can be written in the form

Ap(u,v) = ap(u,v) + 9J7 (u, v), (1.51)

where 9 = 0 for A3 and A} and ¥ = 1 for A37, A% and A}°.
Similarly we can write

Fh(v):/vadx—i— Z /FngdS—@ Z /Fn'VUuDdS, (1.52)

rery rerp
with © =1 for F}, © = —1 for F}! and © =0 for F,fb, and then the right-hand side form reads
lp(v) = Fp(v) +9J3(v), (1.53)

where ¥ = 0 for £5 and ¢} and ¥ =1 for £;, £;> and Ei,f.

The form a} (© = —1), a}, (© = 0) and a}, (© = 1) represents the so-called nonsymmetric, incomplete and symmetric variant
of the diffusion discretization, respectively.

If we denote by Ay any form defined by (1.47) and by £, we denote the form defined by (1.53), i.e., any form given by
(1.48), the discrete problem (1.49) can be formulated to find uy € Sh), satisfying the identity

Ah(uh,vh) = Eh(vh) Yy € Shp. (154)

The discrete problem (1.54) is equivalent to a system of linear algebraic equations, which can be solved by a suitable direct or
iterative method. Namely, let {¢;, ¢ = 1,..., Ny} be a basis of the space Sy, where Nj, = dim Sp,, (= dimension of Sp;). The
approximate solution uy, is sought in the form wuy(z) = Z;V:hl uwp;(z), where u/, j =1,..., Ny, are unknown real coefficients.
Then, due to the linearity of the form A;,, the discrete problem (1.54) is equivalent to the system

Np,

> Anlps, e’ = l(p;), G=1,...,Nn. (1.55)
j=1

It can be written in the matrix form

AU =L,
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where A = (a;;) ) —y = (An(pj, i)y, U = (u) ) and L = (€4 (07)) 3.
From the construction of the forms A, and £}, one can see that the strong solution u € H?(2) of problem (1.1) satisfies the
identity

Ap(u,v) = by (v) Yv e H*(Q,Th), (1.56)

which represents the consistency of the method. Relations (1.54) and (1.56) imply the so-called Galerkin orthogonality of the
error e = up — u of the method:

Ah(eh,vh) =0 Vuw, € Shp, (157)
which will be used in analysing error estimates.

Remark 1.8. Comparing the above process of the derivation of the DG schemes with the abstract numerical method in Section
1.2, we see that we can define the function spaces

V =H*Q), Wy=H T, Vi=>Sh: (1.58)

However, as we shall see later, the space W), will not be equipped with the norm || - ||g2(q,7,,) defined by (1.30), but by another
norm introduced later in (1.103) will be used.

Remark 1.9. The interior and boundary penalty form J; together with the form J7, replace the continuity of conforming finite
element approximate solutions and represent Dirichlet boundary conditions. Thus, in contrast to standard conforming finite
element techniques, both Dirichlet and Neumann boundary conditions are included automatically in the formulation (1.54) of the
discrete problem. This is an advantage particularly in the case of nonhomogeneous Dirichlet boundary conditions, because it is
not necessary to construct subsets of finite element spaces formed by functions approximating the Dirichlet boundary condition
in a suitable way.

Remark 1.10. Method (1.49a) was introduced by Delves et al. ([DH79], [DP80], [HD79], [HDP79]), who called it a global
element method. Its advantage is the symmetry of the discrete problem due to the third term on the right-hand side of (1.45a).
On the other hand, a significant disadvantage is that the bilinear form A3 is indefinite. This causes difficulties when dealing
with time-dependent problems, because some eigenvalues of the operator associated with the form Ay can have negative real parts
and then the resulting space-time discrete schemes become unconditionally unstable. Therefore, we prove in Lemma 1.36 the
continuity of the bilinear form A3, but further on we shall not be concerned with this method any more.

Scheme (1.49b) was introduced by Baumann and Oden in [BBO99], [OBB98] and is usually called the Baumann—Oden
method. It is straightforward to show that the corresponding bilinear form A} is positive semidefinite due to the third term on
the right-hand side of (1.45b). An interesting property of this method is that it is unstable for piecewise linear approzimations,
i.e., forp=1.

Scheme (1.49c) is called the symmetric interior penalty Galerkin (SIPG) method. It was derived by Arnold ([Arn82]) and
Wheeler ([Whe78]) by adding penalty terms to the form A5 . (In this case ap and Fj, are defined by (1.50) and (1.52) with
© = 1.) This formulation leads to a symmetric bilinear form, which is coercive, if the penalty parameter o is sufficiently large.
Moreover, the Aubin—Nitsche duality technique (also called Aubin—Nitsche trick) can be used to obtain an optimal error estimate
in the L?(2)-norm.

Method (1.49d), called the nonsymmetric interior penalty Galerkin (NIPG) method, was proposed by Girault, Riviére and
Wheeler in [RWG99]. (Here © = —1.) In this case the bilinear form A}° is nonsymmetric and does not allow one to obtain an
optimal error estimate in the L2()-norm with the aid of the Aubin-Nitsche trick. However, numerical experiments show that
in some situations (for example, if uniform grids are used) the odd degrees of the polynomial approximation give the optimal
order of convergence. On the other hand, a favorable property of the NIPG method is the coercivity of A,°(-,-) for any penalty
parameter o > 0.

Finally, method (1.49¢), called the incomplete interior penalty Galerkin (IIPG) method (© = 0), was studied in [DSWO04],
[Sun03], [SW05]. In this case the bilinear form A;Z’U s nonsymmetric and does not allow one to obtain an optimal error estimate
in the L?(Q)-norm. The penalty parameter o has to be chosen sufficiently large in order to guarantee the coercivity of Ai,f.
The advantage of the IIPG method is the simplicity of the discrete diffusion operator, because the expressions from (1.44) do
not appear in (1.45¢). This is particularly advantageous in the case when the diffusion operator is nonlinear with respect to Vu.
(See, e.g., [Dol08a] or Chapter 7 of this book.)

It would also be possible to define the scheme Al (u,v) = £} (v) Vv € Shy, where Al (u,v) = dl (u,v) and £} (v) = F}(v), but
this method does not make sense, because it does not contain the Dirichlet boundary data wp from condition (1.1Db).

In the following, we shall deal with the theoretical analysis of the DGM applied to the numerical solution of the model
problem (1.1). Namely, we shall pay attention to the existence and uniqueness of the approximate solution defined by (1.54)
and derive error estimates.
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1.5 Basic tools of the theoretical analysis of DGM

Theoretical analysis of the DG method presented in this book is based on three fundamental tools: the multiplicative trace
inequality, the inverse inequality, and the approximation properties of the spaces of piecewise polynomial functions. In this
section we introduce and prove these important tools under the assumptions about the meshes in Section 1.3.2.

Our first objective will be to summarize some important concepts and results from finite element theory, treated, e.g., in
[CiaT9].

Definition 1.11. Let n > 0 be an integer. We say that sets w, @ C R™ are affine equivalent, if there exists an invertible affine
mapping F,, : © = w such that F,, () = w and

r=Fy(2)=By2+b, cw, TE€, (1.59)
where B, is an n X n nonsingular matriz and b,, € R™.

If 9 : & — R, then the inverse mapping F, ! allows us to transform the function © to v : w — R by the relation

v(z) = o(F; (2)), =€w. (1.60)
Hence,
v=>00F;' d=wvoF, (1.61)
and
0(2) = v(x) for all &, x in the correspondence (1.59).
If B is an n x n matrix, then its norm associated with the Euclidean norm | - | in R"™ is defined as ||B|| = sup,cgn |Bz|/|z].

The following lemmas give us bounds for the norms of matrices B,, and B! and the relations between Sobolev seminorms
of functions v and ¢ satisfying (1.61). First, we introduce the following notation for bounded domains w, @:

hy, =diam(w), hg = diam(®), (1.62)
p. = radius of the largest ball inscribed into @, (1.63)

ps = radius of the largest ball inscribed into @.

Lemma 1.12. Let w, @ C R™ be affine-equivalent bounded domains with the invertible mapping F, () = B,& + b, € w for
T €®. Then

he _ hs
IBoll < 5=, B < =. (1.64)
2p5 2pw
Further, the substitution theorem tmplies that
| det(B.,)| = |wl/[&, (1.65)

where |w| and |@| denote the n-dimensional Lebesgue measure of w and @, respectively.
For the proof of (1.64) see [Cia79], Theorem 3.1.3. The proof of (1.65) is a consequence of the substitution theorem. Further,
we cite here Theorem 3.1.2 from [Cia79).

Lemma 1.13. Let w, @ C R™ be affine-equivalent bounded domains with the invertible mapping F,(Z) = B,& + b, € w for
T ew. If v e W™ (w) for some integer m > 0 and some « € [1,00], then the function © = vo F,, € W™ (@). Moreover, there
exists a constant C' depending on m and d only such that

[8lwm.a@) < ClBo|™ |det(Bo)| ™ [olwm.a ), (1.66)
|'U|W7n,oc(w) S C ||]B(:1||m |det<Bw)‘1/a |6|W7n,oc(a). (1.67)

In our finite element analysis, we have n = d and the set w represents an element K € T;, and & is chosen as a reference
element K, i.e., the simplex with vertices

a1 =(0,0,...,0), a = (1,0,...,0), as = (0,1,0,...,0),... (1.68)
.oy Gay1=(0,0,...,1) € RY

The elements K and K are considered as closed sets. The Sobolev spaces over K and K are defined as the spaces over the
interiors of these sets. (In Section ??, we shall also apply the above results to the case withn =1, w=T € F, and @ = (0,1).)
As a consequence of the above results we can formulate the following assertions.
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Corollary 1.14. If K € T;, and v € H™(K), where m > 0 is an integer, then the function 8(2) = v(Fg(#)) € H™(K) and

d_m, .,
[lam k) < cchje 0] gm gy (1.69)
_d
10l g (i) < Cehe [0l (k) (1.70)
where c. > 0 depends on the shape reqularity constant Cr but not on K and v.
Exercise 1.15. Prove (1.69) —(1.70) using the shape-regularity assumption (1.19) and the results of Lemmas 1.12 and 1.13.
In deriving error estimates we shall apply the following important result from [Cia79, Theorem 3.1.4].

Theorem 1.16. Let @ C R™ be a bounded domain and for some integers p > 0 and m > 0 and some numbers «, 5 € [1, 0], let
the spaces WPTL(%) and W™P (D) satisfy the continuous embedding

WP (@) — WA (@), (1.71)
Let TI be a continuous linear mapping of WPTL(&) into W™ (&) such that
p=¢ VoeP,®). (1.72)

Let a set w be affine-equivalent to the set . This means that there exists an affine mapping x = F,,, F,(&) = B,Z&+b, € w for
I € W, where B, is a nonsingular n X n matriz and b, € R™. Let the mapping 11, be defined by

Mv(z) = () (F; (), (1.73)

for all functions © € WPTLY(@) and v € WPTL¥(w) such that () = v(F, (%)) = v(x). Then there exists a constant C(ﬁ,@)
such that

o — Blwms (@) < C(ﬁa@)wwpﬂ,a(a), (1.74)

and
p+1
w

= _ h
|U - HwU|Wmﬁ(w) < C’(H,w) |w|(1/6) (1/a) |'U|Wp+1,a(w) (1.75)

m
w

Vv e WPthe(w),

with h,, = diam(w), p, defined as the radius of the largest ball inscribed into W and |w| defined as the n-dimensional Lebesgue
measure of the set w. We set 1/o0 := 0.

Exercise 1.17. Prove (1.75) using (1.74), (1.66), (1.67), (1.64) and (1.65).

_ Another important result used often in finite element theory is the Bramble-Hilbert lemma (see [Cia79, Theorem 4.1.3] or
[Zen90, Theorem 9.3]).

Theorem 1.18 (Bramble-Hilbert lemma). Let us assume that w C R™ is a bounded domain with Lipschitz boundary. Let
p > 0 be an integer and o € [1,00| and let f be a continuous linear functional on the space WPT1(Q) (i.e., f € (WPTL2(w))*)
satisfying the condition

flv) =0 Vove P, (w). (1.76)
Then there exists a constant Cgp > 0 depending only on w such that

|f ()] < Crallfllwriew)):-

Vwritae) Vv € wrthe(y), (1.77)

1.5.1 Multiplicative trace inequality

The forms aj, and JJ given by (1.45) and (1.41), respectively, contain several integrals over faces. Therefore, in the theoretical
analysis we need to estimate norms over faces by norms over elements. These estimates are usually obtained using the multi-
plicative trace inequality. In the literature, it is possible to find several variants of the multiplicative trace inequality. Here, we
present the variant, which suits our considerations.

Lemma 1.19 (Multiplicative trace inequality). Let the shape-regularity assumption (1.19) be satisfied. Then there exists a
constant Cpy > 0 independent of v, h and K such that

loliZ2om) <Car (I10llz200) [0l o) + b Mol ) (1.78)
KcT, ve HY(K), h e (0,h).

25



nr

Figure 1.3: Simplex K with its face I'.

Proof. Let K € T, be arbitrary but fixed. We denote by xj the center of the largest d-dimensional ball inscribed into the
simplex K. Without loss of generality we suppose that xy is the origin of the coordinate system.

Since the space C°(K) is dense in H'(K), it is sufficient to prove (1.78) for v € C*°(K). We start from the following
relation obtained from Green’s identity (23):

/ v’e - -ndS = / V- (vix)dz, v e C®(K), (1.79)
oK K
where n denotes here the outer unit normal to K. Let nr be the outer unit normal to K on a side I' of K. Then

x-np = |z||nr|cosa = |x|cosa = pg, x €T, (1.80)

see Figure 1.3. From (1.80) we have

/8Kv2:r,~nd5': Z /FUQ.’B-anS:pK Z /FUZdSZpKHUHZLz(aK). (1.81)

T'CoK I'CoOK

Moreover,
/ V. (vzm)dx:/ (*V -z +x-Vo?) dx (1.82)
K K
= d/ v? dx + 2/ ve - Vodr < d||v||2L2(K) + 2/ vz - Vol de.
K K K
With the aid of the Cauchy inequality, the second term of (1.82) is estimated as
2/ v - Vou|dz < 2 sup |:c|/ [v]| V| de < 2hk||v]| 2 (k) [v] 1 (k) (1.83)
K zeK K
Then (1.19), (1.79), (1.81), (1.82) and (1.83) give
1
[0]1Z2 a5 < o [2hK||v”L2(K)|v‘H1(K) +dHU||%2(K)] (1.84)
d 2
< Cr |2||vll2(m) 0] m (x) + E”U”LQ(K) ;

which proves (1.78) with Cp; = Cgr max{2,d}. O O

Exercise 1.20. Prove that the multiplicative trace inequality is valid also for vector-valued functions v : QQ — R", i.e.,
lol3aory <Car (Iolleic) [0l oy + i olla )« v € (HY(E))", K €T (1.85)

Hint: Use (1.78) for each component of v = (v1,...,v,), sum these inequalities and apply the discrete Cauchy inequality (52).
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1.5.2 Inverse inequality

In deriving error estimates, we need to estimate the H'-seminorm of a polynomial function by its L2-norm, i.e., we apply the
so-called inverse inequality.

Lemma 1.21 (Inverse inequality). Let the shape-regularity assumption (1.19) be satisfied. Then there exists a constant C; > 0
independent of v, h and K such that

vl k) < Crhig vllreey Vv € Ppy(K), VK €Ty, Yh € (0,h). (1.86)

Proof. Let K be a reference triangle and F : K- K, K € Ty be an affine mapping such that Fi (I?) = K. By (1.69) (for
m = 1) and (1.70) (for m = 0) we have

41, . -4
|U|H1(K) < Cch;( |U|H1(f{)7 ”’UHLZ([A{) < CChK2 ||U||L2(K)~ (1.87)
From [Sch98, Theorem 4.76], we have
0l g1 7y < esP? 10l 2y 0 € Bo(K), (1.88)

where ¢ > 0 depends on d but not on ¥ and p. A simple combination of (1.87)—(1.88) proves (1.86) with C; = ¢, 2 p?. Let us
note that (1.88) is a consequence of the norm equivalence on finite-dimensional spaces. O O

Other inverse inequalities will appear in Section 77, Lemma ?7.

1.5.3 Approximation properties

With respect to the error analysis of the abstract numerical method treated in Section 1.2, a suitable Spp-interpolation has to
be introduced. Let T, be a given triangulation of the domain Q. Then for each K € T, we define the mapping mx ,, : L*(K) —
P,(K) such that for every ¢ € L?(K)

Trpp € Pp(K), / (T pp)vde = / pvdr Vv e Py(K). (1.89)
K K

On the basis of the mappings mx , we introduce the Sp,-interpolation Ilj,, defined for all ¢ € L%(Q2) by

(Hpp) |k = T p(plr) VK € Th. (1.90)

It can be easily shown that if o € L?(Q), then

Ippe € Shp, /(thcp)v de = / pvdr Vv € Shy. (1.91)
Q Q

Hence, 11y, is the L?(Q)-projection on the space Sh,.
The approximation properties of the interpolation operators mg , and Iy, are the consequence of Theorem 1.16.

Lemma 1.22. Let the shape-regularity assumption (1.19) be valid and let p,q,s be integers, p > 0, 0 < q < p, where p =
min(p + 1,s). Then there exists a constant C4 > 0 such that

‘77[(7;,;11 — U|H’1(K) < CAhl;(_q|U|Hu,(K) Vo e HS(K) VKeT,Vhe (0, fl) (192)

Hence, if p > 1 and s > 2, then

||7TK)pU — 'UHLQ(K) < CAhl;{|U|HM(K) Voe H(K)VK € T, Yh € (O,B), (1.93)
1Tk 50 — Vi) < Calls olguy Vv € HY(K)VK €T, Yh € (0,h), (1.94)
Tk p0 — V|2 ) < Calls > vlgury Vv € HY(K)VK € T, Yh € (0,h). (1.95)
Moreover, we have
||7TK711) - ’U”Loo(K) < CAhK|'U|W1‘oc(K) Yo e Wl’OO(K) VKeT,Vhe (O,E) (196)

Exercise 1.23. Prove Lemma 1.22 using Theorem 1.16 and assumption (1.19).

The above results immediately imply the approximation properties of the operator IIj,,.
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Lemma 1.24. Let the shape-regularity assumption (1.19) be satisfied and let p,q,s be integers, p > 0, 0 < ¢ < p, where
w=min(p+1,s). Then

|th1} — ’U|H<1(Q,Th) < CAh“_q‘UlH;L(Q’Th), ve H(QTh), he (O,B), (1.97)

where p=min(p + 1, s) and Cy is the constant from (1.92). Hence, if p > 1 and s > 2, then

Mo — vl L2) < Caht|vlgua,ry, v € H*(Q,Th), he(0,h), (1.98)
Mhp = 0| g1 g7y < Cal Holuua gy, v € H(QTh), he (0,h), (1.99)
|th’U — ’U‘H2(Q,7’h) < CAh'u72|’U|Hn(Q,Th), NS HS(Q,E), h e (O, il) (1100)

Proof. Using (1.90), definition of the seminorm in a broken Sobolev space (1.31) and the approximation properties (1.92), we
obtain (1.97). This immediately implies (1.98)— (1.100). O O

Moreover, using the combination of the multiplicative trace inequality (1.78) and Lemma 1.22, we can prove the approxima-
tion properties of the operator I, in the norms defined over the boundaries of elements.

Lemma 1.25. Let the shape-regularity assumption (1.19) be satisfied and let p > 1,5 > 2 be integers and o > —1. Then

Z h?(Hthv - UH%?(@K) S2CMCI24h2'LL71+a|U|§_I[L(Q7'7—}L)’ (1101)
KeTh
Z RV (Hppv — U)HZLZ(aK) SQCMC,%hQ“_Ha|U|%{u(n,7—h)7 (1.102)
KeTn

v e H(Q,Ty), he(0,h),
where p =min(p + 1,s), Car is the constant from (1.78) and C4 is the constant from (1.92).

Proof. (i) Let v € H*(Q,Ty). For simplicity we put n = v —v. Then relation (1.90) implies that n|x = 7Tx pv|x — V|
for K € T,. Using the multiplicative trace inequality (1.78), the approximation property (1.92), and the seminorm definition
(1.31), we have

S helnlFaony < On 30 A (Inleeo) sy + P Il )
KeTh KeTh
<Cum Z h%Ch (h?(hgl + hf(lh%) 0% (1)
KeTh
<20 CARP ol o 1) -
(ii) Similarly as above, using the vector-valued variant of the multiplicative trace inequality (1.85), identities (21) and the
approximation property (1.92) we get

> nIVil om0y < O Y R (190l 190l 0y + bR IV )
KeTh KeTh

=Cn Y hix (|77|H1(K) 1|2y + h}1|77|§11(1<))
KeTy

<Cu > 5 Ch (MR 4 RS ol ey
KeTh
<20y CHRP 2 0l o, -

O O

1.6 Existence and uniqueness of the approximate solution

We start with the theoretical analysis of the DGM, namely we prove the existence of a numerical solution defined by (1.54).
Then, in Section 1.7, we derive error estimates. We follow the formal analysis of the abstract numerical methods in Section 1.2.
Therefore, we show the continuity and the coercivity of the form Aj given by (1.47) in a suitable norm. This norm should reflect
the discontinuity of functions from the broken Sobolev spaces H'(£2, 7). To this end, we define the following mesh-dependent
norm

1/2
e, = (el oz + 5 (ww) (1.103)
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where | - [g1(q,7;,) and J{ are given by (1.31) and (1.41), respectively.
In what follows, because there is no danger of misunderstanding, we shall omit the subscript 7;. This means that we shall
simply write || - || = | - [l . We call || - || the DG-norm.

Exercise 1.26. Prove that || - || is a norm in the spaces H' (0, Tp,) and Shyp.

1.6.1 The choice of penalty weight o

In the following considerations we shall assume that the system {ﬂz}he(oﬁ) of triangulations satisfies the shape-regularity
assumption (1.19) and the equivalence condition (1.20).
We consider the penalty weight o : Upc FID = R in the form

Cw
hr’
where Cy, > 0 is the penalization constant and hy(~ h) is the quantity given by one of the possibilities from (1.24)—(1.27) with
respect to the considered mesh assumptions (MA1)-(MA4), see Lemma 1.5. Let us note that in some cases it is possible to
consider a different form of the penalty parameter o, as mentioned in Remark 1.51.

Under the introduced notation, in view of (1.41), (1.42) and (1.104), the interior and boundary penalty form and the
associated boundary linear form read as

Ty = 3 /F %V[u] wlds,  Jpe) =Y / W i v dS. (1.105)

rerip reryp

rerFP, (1.104)

olr =o0r =

In what follows, we shall introduce technical lemmas, which will be useful in the theoretical analysis.

Lemma 1.27. Let (1.20) be valid. Then for each v € H*(Q,Tp,) we have
2
h—1/ v]?dS <— h—1/ v|?dS, 1.106
D het [WPrdS < 30 hi' [ ol (1.106)

rer/p KeTh
> hp/ (v)*dS <Cg > hK/ ]2 ds. (1.107)
reFp 7T KeTs, oK
Hence,
2Cw _
Z or|l[v)l72ry < N Z hi IvllZ2 o) (1.108)
rerP T kem,
1 2 Ca 2
Z —[[{ 72y < = Z hi vl 2205 - (1.109)
or CW
rer/p KeTn
Proof. (i) By definition (1.32), the inequality
(Y+6)?<2(v*+6%), 7,0€R, (1.110)

and (1.20) we have

> h;l/r[v]2d5

rer/p
2 2
= h;l/‘fu#)—u@‘ as+ 3 h;l/ o] as
reri r rerp r
2 2 2
<2y h;l/ (u@] + U(FR)] > s+ > h;l/ uﬂ s
rer! r rerp r

_ _ |2 _ _ R)|?
<207t Y hKEL)/F]uQ‘ ds + 207 ZIhKlﬁR)/r‘vé )‘ s
Ter;,

rer
<207t Y h;g/ [o]? ds.

KeTh 9K

This and (1.104) immediately imply (1.108).
(ii) In the proof of (1.107) we proceed similarly, using (1.32), (1.20) and (1.110). Inequalities (1.108) and (1.109) are obtained
from (1.106), (1.107) and (1.104). O O
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1.6.2 Continuity of diffusion bilinear forms

First, we shall prove several auxiliary assertions.

Lemma 1.28. Any form a; defined by (1.45) satisfies the estimate

lan (u, )| < JJullio V1o Yu,v € HA(Q,Th), (1.111)
where
ol =llvll® + > /071(” (Vv))?ds (1.112)
rerp 't
:|v|§{1(977—h) + J7 (v,v) + Z / o (n - (Vv))?2ds.
NS r
Proof. It follows from (1.45) that
lan(u,0)] < Y / |Vu - Vol dz (1.113)
KeT, 'K

+ ) /F|n-(Vu>[v]|dS+ > /F|n-<Vv>[u]|dS.

rerip rerfp

X2 X3
(For the form al the term Y3 vanishes, of course.) Obviously, the Cauchy inequality, the discrete Cauchy inequality, and (1.31)
imply that
X1 < Y lulm ol < lula g ol @,n). (1.114)
KeTy,

Further, by the Cauchy inequality,

X2< Y (/Fal(n- <Vu>)2d5>1/2 (/F a[v]2dS>1/2 (1.115)

and
1/2

1/2
xs< | Y /Fafl(n-<vv>)2ds > /Fa[u]?ds : (1.116)

NSV NSV

Using the discrete Cauchy inequality, from (1.114)—(1.116) we derive the bound

lan (u, v)| < [ulgr o7 [V E Q. 7) (1.117)
1/2 1/2
s> /a—l(n-<vu>)2ds 3 /U[U}st
rezp T rerm /T
1/2 1/2
+ Y /U’l(n~<Vv>)2dS > /J[u]2dS
rerp /T resm /T
1/2

< lubnom + Y /071(n~<Vu>)2dS+Jﬁ(u,u)
reFm 't
1/2
< lBpam+ X [ o (Vs + o)
T

rerip

= [[ullio [[0]l1,0-
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O O
Exercise 1.29. Prove that || - ||1,, introduced by (1.112) defines a norm in the broken Sobolev space H?(S2,Ty,).

Corollary 1.30. By virtue of (1.47a)—(1.47b), Lemma 1.28 and Ezxercise 1.29, the bilinear forms A3 and A} are bounded with
respect to the norm || - ||1,, in the broken Sobolev space H*(2,Tp,).

Exercise 1.31. Prove Corollary 1.30.
Further, we shall pay attention on the expression J{ (u,v) for u,v € H(Q,Tp,).

Lemma 1.32. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then

5 (s 0)] < T () 2T (0, 0) 2 0 € HYQ,Th), (1.118)
and
o 2C1VVC(M _ _

Jh(vav) S v — hKQHU”QL?(K) +hK1||UHL2(K)‘U‘H1(K) (1119)

r &=,

h

CwCy _
<=a 2 (30200032 0s0) + WBingay) Vv € HHQTh).
KeTh

Proof. Let u,v € H'(Q,Ty,). By the definition (1.41) of the form J¢ and the Cauchy inequality,

o< 3 [ ol blias (1120)

rerip
1/2 1/2
< Z /0[u]2dS Z /a[v]zdS
rerp 't rerp 't

= J,‘:(u7u)1/2Jﬁ(v,v)1/2.

Further, the definition of the form J7, (1.104), (1.20) and (1.108) imply that

C 20 _
Jw)y= 3" [ opPdS= Y SPllaw < 5> hitlvlRa ok
r hr

T
rerip reriP KeTn

Now, using the multiplicative trace inequality (1.78), we get

- 2CwCu _ _
Ji(v,0) < O Z (hK2||U||2L2(K) + hK1||UHL2(K)\U\H1(K)) . (1.121)
T
KeTy,
The last relation in (1.119) follows from (1.121) and Young’s inequality. O O

Lemmas 1.28 and 1.32 immediately imply the boundedness also of the forms A7, Ay” and Ai}f with respect to the norm
- ll1.o-

Corollary 1.33. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then the forms Aj defined by (1.47) satisfy the
estimate

[Ap(u,v)| <2lull10llv]h,e Yu,v e HQ(Q,E). (1.122)

Proof. For the boundedness of A, = A} and A, = A}, see Corollary (1.30). Let Ay, = A} or A, = A7 or A, = Aih’d. Then,
by virtue of (1.47c)—(1.47¢), Lemmas 1.28 and 1.32 we have

[An(u, )| < Jan(u, 0)] + |7 (u,0)] < [lullio [0lle + 7 (u,w) /27 (0,0) 2
< lulle lvlle + lulle vlle = 2llullio [[v]10-
O O
The following lemma allows us to estimate the expressions with integrals over I' € Fj, in terms of norms over elements

KeT,.
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Lemma 1.34. Let the weight o be defined by (1.104). Then, under assumptions (1.19) and (1.20), for any v € H?(Q,Tp) the
following estimate holds:

_ CqC
> /a Hn- (V))?ds < =24 % (hK||vU||L2(K)|VU|H1(K)+HV7)H%2(K))
resmp 7t KeTs
CaC
=2 > (hK\”|H1(K) |U|H2(K)+|v|%{1(K)>
KeT,
CeCnm 2| 12 2
< e 3 (hK\u|H2(K)+3|v|H1(K)). (1.123)
KeTh
Moreover, if v € Spy, then
CqC
> /Fafl(n.<wh>)2dsg gWM (Cr + Dlval3n o) (1.124)

NV
Proof. Using (1.109) and the multiplicative trace inequality (1.78), we find that

L (Vo))2
Z/Fa (n - (Vv))?dsS

rerp

Ca
S o Z hic||[Voll72 o5
KeTh

CaC _
S g M Z hK (HVUHLQ(K) |VU|H1(K) + hKIHV’U”%Q(K)) 5
w KeTh

which is the first inequality in (1.123). The second one directly follows from Young’s inequality.
If v € Sy, then (1.123) and the inverse inequality (1.86) imply that

_ CaC

> / o7 (n- (Vo)) dS < =22 N7 (Crl|VonllEa ) + [ VonlEa) )
rerfp r KeTh
CGC Cg(J
= 2cr+1) > IVunllre ) = Mer+ D)onlF 0,75,);
Cw
KeTh
which we wanted to prove. O O

We continue in the derivation of various inequalities based on the estimation of the || - ||1,o-norm.

Lemma 1.35. Under assumptions of Lemma 1.34, there exist constants C, Coy > 0 such that

J7 (u, )2 < llulll < [|ull1o < Co Ra(u) Vue H*(Q,Tn), he(0,h), (1.125)
T7 (0n,vn)? < lonlll < onlle < Collonll ¥V on € Snp, b € (0,h), (1.126)
where
1/2
Ro(u) = < > (|u|%{1(K) + Wi lul bz ) + h?””“%%x))) ., we H(Q,Th). (1.127)

KeTs

Proof. The first two inequalities in (1.125) as well as in (1.126) follow immediately from the definition of the DG-norm (1.103)
and the ||-[|; ,-norm (1.112). Moreover, in view of (1.123) and (1.119), for u € H?*(2, T5) we have

Il =lulis o) + w0 + Y [ o7 (Tuo)?as
rexp /T
Cw Cu _
<Y |u|%11(K)+TT > <3hK2||u||%2(K)+|U@11(K))
KeTh KeT,

CaCy

20w Z (iﬁ(\uﬁmx) +3|u|%’{1(K))'

KeTh
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Now, after a simple manipulation, we get
3CG C]V[ CW CM
o < 3 (10 (1+ 25502 + SLE)
KeTy

2 CG CM
K 9Cy

5 3Cw Cy

2
+ |u|H2(K)h CT

+llullZe i

Hence, (1.125) holds with

B 3CcCy  CwCyn CqCuy 30w Car\\'?
Cg—<max<1—|— 5C + Gy 20w ' Cr >> .

Further, if v, € Spyp, then (1.112), (1.124) and (1.103) immediately imply (1.126) with C, = (1 + Cg Cax(Cr + 1)/Cw)'/2.
O O

In what follows, we shall be concerned with properties of the bilinear forms Aj defined by (1.47). First, we prove the
continuity of the bilinear forms A, defined by (1.47) in the space Sp, with respect to the norm || - ||.

Lemma 1.36. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then there exists a constant Cp > 0 such that the form
Ay, defined by (1.47) satisfies the estimate

|An(un, vn)| <Cp llunll lonll - ¥ un, vn € Shp- (1.128)
Proof. Estimates (1.122) and (1.126) give (1.128) with Cp = 2C2. O O
Further, we shall prove an inequality similar to (1.128) replacing uj, € Sk, by u € H?(2, Tp).
Lemma 1.37. Let assumptions (1.19), (1.20) and (1.104) be satisfied. Then there exists a constant Cg > 0 such that
|An(u,vn)| <Cp Ra(u) ||lonll ¥ u € H*(Q,Tn) Y vn € Spyp ¥ h(0, ), (1.129)
where R, is defined by (1.127).
Proof. By (1.122) and (1.125),

| Ap(u, vp)| < < 2C,CoRq(u)[lonll,

which is (1.129) with Cp = 2C,C,,. O O
1.6.3 Coercivity of diffusion bilinear forms
Lemma 1.38 (NIPG coercivity). For any Cw > 0 the bilinear form Ay° defined by (1.47d) satisfies the coercivity condition
AT (v,0) > |lof|? Yo e HA(Q,Th). (1.130)
Proof. From (1.45b) and (1.47d) it immediately follows that
n,o n o o 2

A7 (v,0) = aj(v,0) + JF (0,0) = [l F o, 75 + 7 (v, 0) = (V]I (1.131)

which we wanted to prove. O O

The proof of the coercivity of the symmetric bilinear form Aj? is more complicated.

Lemma 1.39 (SIPG coercivity). Let assumptions (1.19) and (1.20) be satisfied, let
Cw > 4CGCM(1 + C[), (1.132)

where Cyr, Cr and Cg are the constants from (1.78), (1.86) and (1.20), respectively, and let the penalty parameter o be given
by (1.104) for allT € F{P. Then

Ai’a(’l}hﬂ)h) *|||’Uh||| Yy, € Shp Vhe (O,B)
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Proof. Let § > 0. Then from (1.41), (1.104), (1.45a) and the Cauchy and Young’s inequalities it follows that

ay, (vp,vp) = ‘vhl%l(ﬂ,ﬁ) -2 Z /n (Vop)[vp] dS (1.133)
rerp 't
1 1
1 ’ 1 ’
> |vnl3 .7y — 2 5 > /hp(n.<wh>)2ds Y /hf[vh}QdS
rerp 't reFp /T T

6 g
Z |vh|%{l(ﬂ,7’h) — W — @Jh (’Uh,’Uh),

where

w:%E:ﬁﬁMWmFM. (1.134)

Further, from assumption (1.20), inequality (1.107), the multiplicative trace inequality (1.78) and the inverse inequality (1.86)
we get
w< e > hilVonl3e (1.135)
=5 L2?2(0K)
KeTh
CaC _
< G5 2N bk (l'Uh|H1(K)|VUh|H1(K) +hz<1|vh|12r{1(z<>)
Ke,ﬁl
CeCu(1+Cr)
< f'vh‘%l(ﬂ,ﬁ)'

Now let us choose

0= 20@0}\/[(1 + C[) (1136)
Then it follows from (1.132) and (1.133)—(1.136) that
. 1 4CcCu(1+Cy) .,
chon,n) 2 5 (10nBrsny = 220 = g (0,00 (1.137)
w
1 2 o
> 5 (w7 = 7 (0n,on) ) -
Finally, definition (1.47c) of the form A}“ and (1.137) imply that
A3 (vn,vp) = aj(vn, vn) + J§ (Vn, vn) (1.138)
1 - 1 2
> < (Il m + I8 @nson)) = 5w,
which we wanted to prove. O O

Lemma 1.40 (IIPG coercivity). Let assumptions (1.19) and (1.20) be satisfied, let
Cw > CaCuy(1+Cy), (1.139)

where Cyr, Cr and Cg are constants from (1.78), (1.86) and (1.20), respectively, and let the penalty parameter o be given by
(1.104) for allT € FP. Then

A7 (vny op) > %|||vh|||2 Von € Shyp-
Proof. The proof is almost identical with the proof of the previous lemma. O O
Corollary 1.41. We can summarize the above results in the following way. We have

An(vh,vn) = Cellonll® Y vn € Shp, (1.140)
with

Ce =1 for Ay = A)° if Cw > 0,

Cc 21/2 for Ah:A;’U if Cw ZZLCGCM(l-i-C[)7
Cc 21/2 fO?”A}LZAIh’(7 ifCWZCGCM(1+CI).

Corollary 1.42. By virtue of Corollary 0.7, the coercivity of the forms Ay, implies the existence and uniqueness of the solution
of the discrete problems (1.49c) —(1.49¢) (SIPG, NIPG and IIPG method).
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1.7 Error estimates

In this section, we derive error estimates of the SIPG, NIPG and IIPG variants of the DGM applied to the numerical solution
of the Poisson problem (1.1). Namely, the error u, — u will be estimated in the DG-norm and the L?({2)-norm.

1.7.1 Estimates in the DG-norm

Let u € H?(f2) denote the exact strong solution of problem (1.1) and let and uy, € Shp be the approximate solution obtained by
method (1.54), where the forms Aj, and ¢}, are defined by (1.47¢)—(1.47e) and (1.48c)—(1.48e), respectively. The error of the
method is defined as the function e, = up —u € H?(Q, T5). It can be written in the form

en =&6+mn, with & =up —Hppu € Shp, n=ppu—u € H*(Q,T), (1.141)

where Il is the Spp-interpolation defined by (1.90). Hence, we split the error into two parts £ and 7. The term 7 represents the
error of the Sj,-interpolation of the function u. (It is possible to say that 7 approximates the distance of the exact solution from
the space Sy, where the approximate solution is sought.) The term 1 can be simply estimated on the basis of the approximation
properties (1.92) and (1.97). On the other hand, the term & represents the distance between the approximate solution uy and
the projection of the exact solution on the space Sp,. The estimation of £ is sometimes more complicated.

We shall suppose that the system of triangulations {7} he(0,7) satisfies the shape-regularity assumptions (1.19) and that the
equivalence condition (1.20) holds.

First, we shall prove the so-called abstract error estimate, representing a bound of the error in terms of the Sj,-interpolation
error 7).

Theorem 1.43. Let assumptions (1.19) and (1.20) be satisfied and let the exact solution of problem (1.1) satisfy the condition
u € H?(Q). Then there exists a constant Car > 0 such that

llenll € Cag Ra(n) = Cag Ra(Mppu —u), h € (0,h), (1.142)
where Ry, (n) is given by (1.127).

Proof. We express the error by (1.141), i.e., e = up, — u = £ + 1. The error e, satisfies the Galerkin orthogonality condition
(1.57), which is equivalent to the relation

An(& vn) = —An(n,vn)  Von € Spy. (1.143)
If we set vj, 1= € € Sj, in (1.143) and use (1.47c)—(1.47¢) and the coercivity (1.140), we find that
Collell® < An(&,€) = —An(n,€). (1.144)
Now we apply Lemma 1.37 and get

|An(n,€)] < Cp Ra(n) €]l

The above and (1.144) already imply that

Cp
el = &= Ba(n). (1.145)
c
Obviously,
lenll < HEM =+ [Hlnll- (1.146)
Finally, (1.125) gives
Inlll <Co»Ra(n). (1.147)
Hence, (1.146), (1.145) and (1.147) yield the abstract error estimate (1.142) with Cag = C, 4+ C5/Ce. O O

The abstract error estimate is the basis for estimating the error e; in terms of the mesh-size h.

Theorem 1.44 (DG-norm error estimate). Let us assume that s > 2, p > 1, are integers, u € H*(Q) is the solution of
problem (1.1), {Th}ne(o,n) 8 a system of triangulations of the domain Q satisfying the shape-regularity condition (1.19), and
the equivalence condition (1.20) (c¢f. Lemma 1.5). Moreover, let the penalty constant Cyy satisfy the conditions from Corollary
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1.41. Let up € Spp be the approzimate solution obtained by using of the SIPG, NIPG or IIPG method (1.49c) —(1.49¢e). Then
the error ep, = up — u satisfies the estimate

lleall < Coh*ulmngay, b€ (0,h), (1.148)
where = min(p + 1, s) and C1 is a constant independent of h and u. Hence, if s > p+ 1, we get the error estimate
llenlll <CLAP|ul o+ q)-

Proof. It is enough to use the abstract error estimate (1.142), where the expressions |n|g1(ky, [7lm2(x) and [[9]|L2(kx), K € Th,
are estimated on the basis of the approximation properties (1.93) —(1.95), rewritten for n|x = (Ippu — u)|x = 7T p(u|Kx) — ulx
and K € T

1nllz2x) < Ca Riglulmn (i), (1.149)
|77|H1(K) <Ca hl;(_l|U|Hu(K),
Il ) < Ca il e (i) -

Thus, the inequality hx < h and the relation )7 |u|H“(K) |u\H“(Q) imply

1/2
Ru(n) = (Z (190 aey + el caey + Wil )) (1.150)

KeTy
< VBCAR*Hul g gy,

which together with (1.142) gives (1.148) with the constant C; = v/3Cag Ca. O O

In order to derive an error estimate in the L?(Q2)-norm we present the following result.

Lemma 1.45 (Broken Poincaré inequality). Let the system {Tp} he(0,h) of triangulations satisfy the shape-regularity assumption
(1.19). Then there exists a constant C > 0 independent of h and vy, such that

||”hHL2(Q <C Z |Uh|H1 &) T Z dia ( )IH ]”%2(1“) (1.151)

KeTh reFip
Yoy € Spp Vh € (0, B)
The proof of the broken Poincaré inequality (1.151) was carried out in [Arn82] in the case where ) is a convex polygonal
domain, 9Qp = 9N and the assumption (MA2) in Section 1.3.2 is satisfied. The proof of inequality (1.151) in a general case

with the nonempty Neumann part of the boundary can be found in [Bre03].
From Theorem 1.44 and (1.151) we obtain the following result.

Corollary 1.46 (L?(9)-(suboptimal) error estimate). Let the assumptions of
Theorem 1.4/ be satisfied. Then

||€hHL2(Q) < CQh'u71|u|HM(Q), h e (0, 71), (1152)
where Cy is a constant independent of h. Hence, if s > p+ 1, we get the error estimate
llenllz2 @) <C2hPlu| g1 (q)- (1.153)

Remark 1.47. The error estimate (1.153), which is of order O(hP), is suboptimal with respect to the approzimation property
(1.97) with ¢ =0, p=p+1<s of the space Sy, giving the order O(hPT1). In the next section we shall prove an optimal error
estimate in the L*(Q2)-norm for SIPG method using the Aubin—Nitsche technique.

1.7.2 Optimal L?(Q)-error estimate

Our further aim is to derive the optimal error estimate in the L?(£2)-norm. It will be based on the duality technique sometimes
called the Aubin—Nitsche trick. Since this approach requires the symmetry of the corresponding bilinear form and the regularity
of the exact solution to the dual problem, we shall consider the SIPG method applied to problem (1.1) with 9Qp = 9Q and
O0x = (. This means that we seek u satisfying

—Au=jf inQ, (1.154a)
u=up on O (1.154b)
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Moreover, for an arbitrary z € L%(€2), we shall consider the dual problem: Given z € L?(Q2), find 1 such that
—AY=2z inQ, =0 onIN. (1.155)
Under the notation
V =H}(Q) ={ve H(Q); v=0on 00}, (1.156)

the weak formulation of (1.155) reads: Find ¢ € V' such that

/ Vi/}-Vvdx:/ zvdr = (2,v)2(q) VoveW. (1.157)
Q Q

Let us assume that ¢ € H?(Q2) and that there exists a constant Cp > 0, independent of z, such that

[¥lla20) < Cpllzllrz2(a)- (1.158)

This is true provided the polygonal (polyhedral) domain €2 is convex, as follows from [Gri92]. (See Remark 1.50.) Let us note
that H2(Q) C C(Q), if d < 3.
Let Ap, be the symmetric bilinear form given by (1.47c), i.e.,

Ap(u,v) = af, (u,v) + Jg (u,v), u,v € H*(, Th), (1.159)

where a5 and J are defined by (1.45a) and (1.105), respectively.
First, we shall prove the following auxiliary result.

Lemma 1.48. Let ¢ € H%(Q) be the solution of problem (1.155). Then
Ap(¥,v) = (v,2)12(0) Vv € H*(Q,Th). (1.160)
Proof. The function 1 € H?((2) satisfies the conditions
[Wlr=0 VYT eF,  tlog=0. (1.161)
Let v € H*(Q,T;,). Using (1.155), (1.161) and Green’s theorem, we obtain

(v,2)2(0) :/ vdr = — [ Ayvdzr
Q Q
= / Vip-Vodz— Y [ Vy-nvdS
KeT;, " K KeT;, 79K
= Z / V¢ - Vode
KeTy, K
- > /<V¢>.n[u]ds+ > /(Vv>~n[¢]d5
rest T rert T
- > /w.mds+ > /Vv~n1/)dS
rerp T rerp
+ > /a[¢][v}ds+ > /cﬂ/}vdS
rer; T rerp 't
Hence, in view of the definition of the form A, we have (1.160). O O

Theorem 1.49 (L?(Q)-optimal error estimate). Let us assume that s > 2, p > 1, are integers, §) is a bounded convexr polyhedral
domain, u € H*(2) is the solution of problem (1.1), {Th}tneon) 8 a system of triangulations of the domain S satisfying the
shape-regularity condition (1.19), and the equivalence condition (1.20) (c¢f. Lemma 1.5). Moreover, let the penalty constant Cy
satisfy the condition from Corollary 1.41. Let uj, € Shyp be the approzimate solution obtained using the SIPG method (1.49c)
(i.e., © =1 and the form A, = A7 is given by (1.45a) and (1.47c). Then

lenllzz(o) < Csh*|ulmu(o), (1.162)

where e, = up — u, p=min{p + 1, s} and C5 is a constant independent of h and u.
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Proof. Let 1 € H?() be the solution of the dual problem (1.157) with z := e, = u, —u € L*(Q) and let II,;9) € Si1 be the

approximation of 1 defined by (1.90) with p = 1. By (1.160), we have
An(¥,v) = (en,v)r2(0) Vv e H*(Q,Th).
The symmetry of the form Aj,, the Galerkin orthogonality (1.57) of the error and (1.163) with v := ey, yield

lenll7ziq) = An(®, en) = Anlen,v)
= Apn(en, ¥ — p11p).

Moreover, from (1.122), it follows that

Ap(en, ¥ —pyp) <

where, by (1.112),

o=l + 30 [ o ne (vopRas.

rerip

(el

By (1.125) and (1.150) (with u = 2), we have
[ = pi¥|1,0 < Co Ra(v — Mp1th) < V3CoCahlth| a2 (a)-
Now, the inverse inequality (1.86) and estimates (1.100), (1.99) imply that
|veh|H1(K) = |V(u - uh)|H1(K)

< |V(u = Uppu) | g1y + IV Tppu — up) g (5

< |u = Wapul 2y + Crhi! IV (Wpu — un) |2 x)

< Calh 2 ul ey + Crhg (IV Mapu — )| 220y + 1V (w = un) || 2 () )
< Ca(l+ CrRE 2 [ul i) + Crhid | Venl| L2 )

By (1.123), (1.168) and the discrete Cauchy inequality,

> / -(Ven))*dS

rerip
< GcCu
=
CaCym
w

S° (hxclVenllzar [Venl o) + IV enlZa) )
KeTh

IN

{CA(l + C[)h'u_l|eh|H1(Q7Th)|U|HM(Q) + (1 + C[)|€h|?{1(9’7-h)} .

Since |en|g1(0,7;,) < llenll, using (1.148) and (1.169), we have

CoC
3 / (Ver)?dS < “EM 0 (14 Cp)(Cr + Calr D ul g

FE]:ID w
Thus, (1.148) and (1.166) yield the estimate
leall} o < Csh>*Dlulf q)
with C5 = C1 {1+ CaCrChi (1 + C1)(Cr + Ca)}. Tt follows from (1.165), (1.167), and (1.170) that
Ap(en,tp — Mp1yp) < Ceh* (| g2y |ulge ),

where Cy = 2¢/3C,C 4/C5.
Finally, by (1.164), (1.171), and (1.158) with z = ey,

lenllZ20) < CoCohulguoyllenll L2,

which already implies estimate (1.162) with C5 = CpCs. O
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Remark 1.50. As we see from the above results, if the exact solution u € HPTY(Q) and the finite elements of degree p are used,
the error is of the optimal order O(hP*1) in the L*(Q)-norm. In the case, when the polygonal domain is not convex and/or the
Neumann and Dirichlet parts of the boundary Qn # 0 and Qp # 0, the exact solution v of the dual problem (1.155) is not
an element of the space H*(Q). Then it is necessary to work in the Sobolev-Slobodetskii spaces of functions with noninteger
derivatives and the error in the L?(2)-norm is not of the optimal order O(hP*Y). The analysis of error estimates for the DG
discretization of boundary value problems with boundary singularities is the subject of works [Wih02] and [FS12], where optimal
error estimates were obtained with the aid of a suitable graded mesh refinement. The main tools are here the Sobolev—-Slobodetskii
spaces and weighted Sobolev spaces. For the definitions and properties of these spaces, see [BS94b] and [KS87].

Remark 1.51. In [RWG01] the Neumann problem (i.e., 9Q = 0Qn) was solved by the NIPG approach, where the penalty
coefficient o was chosen in the form

Cw

B
hF

T € F, (1.173)

0’|F:

instead of (1.104), where B8 > 1/2. If triangular grids do not contain any hanging nodes (i.e., the triangulations Ty, are
conforming), then an optimal error estimate in the L?(Q)-norm of this analogue of the NIPG method was proven provided
that 8 > 3 for d = 2 and B > 3/2 for d = 3. In this case the interior penally is so strong that the DG methods behave
like the standard conforming (i.e., continuous) finite element schemes. On the other hand, the stronger penalty causes worse
computational properties of the corresponding algebraic system, see [Cas02].

1.8 Numerical examples

In this section, we demonstrate by numerical experiments the error estimates (1.148), (1.152) and (1.162). In the first example,
we assume that the exact solution is sufficiently regular. We show that the use of a higher degree of polynomial approximation
increases the rate of convergence of the method. In the second example, the exact solution has a singularity. Then the order of
convergence does not increase with the increasing degree of the polynomial approximation used. The computational results are
in agreement with theory and show that the accuracy of the method is determined by the degree of the polynomial approximation
as well as the regularity of the solution.

1.8.1 Regular solution
Let us consider the problem of finding a function v : Q@ = (0,1) x (0,1) — R such that

—Au = 87 sin(27x1 ) sin(2729)  in Q, (1.174)
u=0 on Of.

It is easy to verify that the exact solution of (1.174) has the form
u =sin(27rx) sin(2rxe), (x1,22) € Q. (1.175)

Obviously, u € C>(€Q).
We investigate the experimental order of convergence (EOC) of the SIPG, NIPG and IIPG methods defined by (1.49¢)—
(1.49¢). We assume that a (semi)norm ||es|| of the computational error behaves according to the formula

len|| = CRECC, (1.176)

where C' > 0 is a constant, h = maxge7, hx, and EOC € R is the experimental order of convergence. Since the exact solution is
known and therefore ||ep|| can be exactly evaluated, it is possible to evaluate EOC in the following way. Let ||ep, || and ||en, || be
computational errors of the numerical solutions obtained on two different meshes 75, and Tp,, respectively. Then from (1.176),
eliminating the constant C', we obtain

_ log(|len, [I/llens 1)
EOC = =8 b (1.177)

Moreover, we evaluate the global experimental order of convergence (GEOC) from the approximation of (1.176) with the aid of
the least squares method, where all computed pairs [k, ep,] are taken into account simultaneously.

We used a set of four uniform triangular grids having 128, 512, 2048, and 8192 elements, shown in Figure 1.4. The meshes
consist of right-angled triangles with the diameter h = v/2/\/#7T,/2, where #T;, is the number of elements of 7;,. EOC is
evaluated according to (1.177) for all pairs of “neighbouring” grids. Tables 1.1-1.2 show the computational errors in the
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Figure 1.4: Computational grids used for the numerical solution of problems (1.174) and (1.179).

L?(Q)-norm and the H' (€2, 75,)-seminorm and EOC obtained by the SIPG, NIPG and IIPG methods using the P,, p=1,...,6,
polynomial approximations. These results are also visualized in Figure 1.5.

We observe that EOC of the SIPG technique are in a good agreement with the theoretical ones, i.e., O(hP™!) in the L?(£2)-
norm (estimate (1.162)) and O(hP) in the H'(Q, T;)-seminorm (estimate (1.148)). On the other hand, the experimental order
of convergence of the NIPG and IIPG techniques measured in the L?(Q)-norm is better than the theoretical estimate (1.152).
We deduce that

p+1 for podd,

P for p even. (1.178)

lenllzzq) = O(WP), p= {

This interesting property of the NIPG and ITPG techniques was observed by many authors (cf. [OBB98] and [HSS02]), but up
to now a theoretical justification has been missing, see Section 1.8.3 for some comments. The EOC in the H'(Q, T, )-seminorm
of NIPG and ITPG methods is in agreement with (1.148).

1.8.2 Singular case

In the domain ©Q = (0,1) x (0,1) we consider the Poisson problem

—Au=g in Q, (1.179)
u=0 on 09,

with the right-hand side g chosen in such a way that the exact solution has the form
u(21, 29) =2r%r122(1 — 1) (1 — 29) = 72 5in(20) (1 — 21) (1 — 22), (1.180)

where 7, ¢ are the polar coordinates (r = (22 4+ 22)'/2) and a € R is a constant. The function u is equal to zero on 9 and its
regularity depends on the value of «. Namely, by [BS90],

ue H3(Q) VB e (0, a+3), (1.181)

where H?() denotes the Sobolev—Slobodetskii space of functions with noninteger derivatives.
We present numerical results obtained for a = —3/2 and o = 1/2. If a = —3/2, then u € H?(Q) for all 8 € (0, 3/2), whereas
for the value a = 1/2, we have u € H?(Q) for all 8 € (0,7/2). Figure 1.6 shows the function u for both values of a.
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SIPG NIPG IIPG
p h/V2 | llenllr2q@)  EOC | llenllp2ey  EOC | llenllr20)  EOC
1 1/8 6.7452E-02 — 2.9602E-02 — 6.3939E-02 —
1 1/16 1.8745E-02 1.85 7.6200E-03 1.96 1.7383E-02 1.88
1 1/32 4.8463E-03 1.95 1.9292E-03 1.98 4.4579E-03 1.96
1 1/64 1.2252E-03 1.98 4.8536E-04 1.99 1.1239E-03 1.99
GEOC 1.93 1.98 1.95
2 1/8 3.9160E-03 - 1.0200E-02 - 4.7447E-03 -
2 1/16 4.9164E-04 2.99 2.5723E-03 1.99 8.4877E-04 2.48
2 1/32 6.1644E-05 3.00 6.4259E-04 2.00 1.8081E-04 2.23
2 1/64 7.7184E-06 3.00 1.6032E-04 2.00 4.2670E-05 2.08
GEOC 3.00 2.00 2.26
3 1/8 3.1751E-04 - 5.5550E-04 - 3.2684E-04 -
3 1/16 1.9150E-05 4.05 3.4481E-05 4.01 2.0077E-05 4.02
3 1/32 1.1775E-06 4.02 2.1333E-06 4.01 1.2414E-06 4.02
3 1/64 7.3124E-08 4.01 1.3250E-07 4.01 7.7176E-08 4.01
GEOC 4.03 4.01 4.02
4 1/8 2.3496E-05 — 3.7990E-05 — 2.7046E-05 —
4 1/16 7.5584E-07 4.96 2.4304E-06 3.97 1.2929E-06 4.39
4 1/32 2.3824E-08 4.99 1.5512E-07 3.97 7.2190E-08 4.16
4 1/64 7.4627E-10 5.00 9.7626E-09 3.99 4.3310E-09 4.06
GEOC 4.98 3.97 4.20
5 1/8 1.4133E-06 - 2.3017E-06 - 1.6501E-06 -
5 1/16 2.2193E-08 5.99 3.6590E-08 5.98 2.6160E-08 5.98
5 1/32 3.4686E-10 6.00 5.7147E-10 6.00 4.0753E-10 6.00
5 1/64 5.4139E-12 6.00 8.8468E-12 6.01 6.3670E-12 6.00
GEOC 6.00 6.00 6.00
6 1/8 7.3313E-08 - 1.1239E-07 - 9.5990E-08 -
6 1/16 5.8381E-10 6.97 1.5138E-09 6.21 1.1620E-09 6.37
6 1/32 4.5855E-12 6.99 2.2864E-11 6.05 1.6380E-11 6.15
6 1/64 3.8771E-14 6.89 3.5354E-13 6.02 2.4417E-13 6.07
GEOC 6.95 6.09 6.19

Table 1.1: Computational error and EOC in the L?(Q)-norm for the regular solution of problem (1.174).
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SIPG NIPG 1IPG
P h/V2 |€h\H1(Q,Th) EOC |eh|H1(Sl,’Th) EOC \€h|H1(Q,Th) EOC
1 1/8 1.5018E+-00 - 1.2423E+4-00 - 1.4946E+-00 -
1 1/16 7.7679E-01 0.95 6.4615E-01 0.94 7.7519E-01 0.95
1 1/32 3.9214E-01 0.99 3.2741E-01 0.98 3.9181E-01 0.98
1 1/64 1.9666E-01 1.00 1.6450E-01 0.99 1.9658E-01 1.00
GEOC 0.98 0.97 0.98
2 1/8 2.4259E-01 - 1.9985E-01 - 2.1634E-01 -
2 1/16 6.2760E-02 1.95 5.0217E-02 1.99 5.5693E-02 1.96
2 1/32 1.5849E-02 1.99 1.2536E-02 2.00 1.4053E-02 1.99
2 1/64 3.9743E-03 2.00 3.1305E-03 2.00 3.5244E-03 2.00
GEOC 1.98 2.00 1.98
3 1/8 2.5610E-02 - 2.4029E-02 - 2.3425E-02 -
3 1/16 3.2202E-03 2.99 3.0531E-03 2.98 2.9699E-03 2.98
3 1/32 4.0238E-04 3.00 3.8298E-04 2.99 3.7253E-04 3.00
3 1/64 5.0260E-05 3.00 4.7890E-05 3.00 4.6607E-05 3.00
GEOC 3.00 2.99 2.99
4 1/8 2.2049E-03 - 2.2096E-03 - 2.0645E-03 -
4 1/16 1.4023E-04 3.97 1.3801E-04 4.00 1.3039E-04 3.98
4 1/32 8.8035E-06 3.99 8.5962E-06 4.00 8.1650E-06 4.00
4 1/64 5.5077E-07 4.00 5.3601E-07 4.00 5.1038E-07 4.00
GEOC 3.99 4.00 3.99
5 1/8 1.5680E-04 - 1.6457E-04 - 1.5090E-04 -
5 1/16 4.9305E-06 4.99 5.1666E-06 4.99 4.7527E-06 4.99
5 1/32 1.5413E-07 5.00 1.6126E-07 5.00 1.4865E-07 5.00
5 1/64 4.8146E-09 5.00 5.0316E-09 5.00 4.6439E-09 5.00
GEOC 5.00 5.00 5.00
6 1/8 9.5245E-06 - 1.0198E-05 - 9.3719E-06 -
6 1/16 1.5092E-07 5.98 1.5951E-07 6.00 1.4762E-07 5.99
6 1/32 2.3666E-09 5.99 2.4862E-09 6.00 2.3083E-09 6.00
6 1/64 3.7008E-11 6.00 3.8770E-11 6.00 3.6051E-11 6.00
GEOC 5.99 6.00 6.00

Table 1.2: Computational error and EOC in the H!(£2, 7;)-seminorm for the regular solution of problem (1.174).

42



0.01 | i ; |
2
o) e )
0.0001 - I 0.01 e )
O o v b o(h?) x x o
3 - -
A ofh®) x v ,
— .- *
- - * - = | B} = P
n 16-06 R 00001 [ 13 -
I -~ ) 5} - °
e - -
1e-08 |- = o R 1606 o4y o = 4
. . .
ons) & . e o
te-10 |- A0 8 1e-08 s 4
s ’ Py —— O(h%) o
o8y w o [ ——
te-12 - RS xS te10f o i
7\ o ) P5 —-m— (0”)
o) @ P6 --o
le-14 L 1e-12 1
0.01 0.1 0.01 0.1
1 100
0.01 | i ; |
¢ 00001 - P 0.01 R
£ |
| x ech = . e o
Z 1e-06 s P 0.0001 | (s -
oty * g e o e
’ . - o .
4 A ) - B
1e-08  O(h*) o e p 1006 1 oo - P ]
< o L o
. . P
1e-10 | e 4 16-08 5. ) i
6. =4 P1 —— O(h™) = a4
Oh~) = . P2 --x-—-
1e-12 - P3 x| 1e-10 ) |
Sy o P4 £ h) o
o) P5 --=— o)
P6 ---c
1e-14 ‘ 1e-12 !
0.01 0.1 0.01 0.1
1 100
0.01 | i ; |
o(h?)
0.0001 | e A 0.01 g
U o(hz) T x o]
= teosf P 0.0001 £ (s P
o(h*) *~ ’ = //' e o /'/ o)
L y
1e-08 O(h4)D /, B 1e-06 O(h4)D' .// . i
T o )
‘./ PR e
1e-10 - O e 1e-08 5 - g
6. 0 o e o) = o Pl
ope) ™ P2 - ‘ P2
le12 o 1e-10 . P3 %o
o) & Ps —a. o) e Ps a
P6 --o- P6 --o
1e-14 L 1e-12 1
0.01 0.1 0.01 0.1

Figure 1.5: Computational error and EOC in the L?(Q)-norm (left) and in the H(Q,T;)-seminorm (right) for the regular
solution of problem (1.174).

43



0.15

01 |

R’
R
it —

NS 0.05
R
iR e
Rnnr’]e
R

N
N

™ \
R
RS
AT
\

W

Figure 1.6: Exact solution (1.180) for & = —3/2 (left) and o = 1/2 (right).

We carried out computations on 4 triangular grids introduced in Section 1.8.1 by the SIPG, NIPG and ITPG technique with
the aid of P,, p =1,...,6, polynomial approximations. Tables 1.3—1.4 and Tables 1.5—1.6 show the computational errors in
the L?(Q)-norm as well as the H'(Q, T;,)-seminorm, and the corresponding experimental orders of convergence for o = 1/2 and
a = —3/2, respectively. These values are visualized in Figures 1.7—1.8 in which the achieved experimental order of convergence
is easy to observe.

These results lead us to the proposition that for the SIPG method the error behaves like

u—up|r2) = O(*),  ue H(Q) (1.182)
u = un|gro) = O(W*™),  uwe H(Q),

where © = min(p + 1, 8), and for the IIPG and NIPG methods like

lu—upllp2@) = O(W"),  uwe H(Q) (1.183)
\u—uh|H1(Q) :O(huil), UEHﬂ(Q),

where p = min(p + 1,8), @ = min(p, 3), and p is given by (1.178). The statements (1.182)—(1.183) are in agreement with
numerical experiments (not presented here) carried out by other authors for additional values of a.

Moreover, the experimental order of convergence of the SIPG technique given by (1.182) corresponds to the result in [Fei89),
where for any g € (1,3/2) we get

o — Il r2) < CB)R*||v]lgs @), v € H (), (1.184)
v — Inv|i) < C(B)R" o]l gs), v e HQ),

where Iv is a piecewise polynomial Lagrange interpolation to v of degree < p, p = min(p + 1,8) and C(8) is a constant
independent of A and v. By [BSO01, Section 3.3] and the references therein, where the interpolation in the so-called Besov
spaces is used, the precise error estimate of order O(h%/2) in the L?(Q)-norm and O(h'/?) in the H'(,7;,)-seminorm can be
established, which corresponds to our numerical experiments.

Finally, the experimental order of convergence of the NIPG and IIPG techniques given by (1.183) corresponds to (1.184)
and results (1.178).

1.8.3 A note on the L*(Q)- optimality of NIPG and IIPG

Numerical experiments from Section 1.8.1 lead us to the observation (1.178), which was presented, e.g., in [BBO99], [Riv08] and
the references cited therein. The optimal order of convergence for the odd degrees of approximation was theoretically justified in
[LN04], where NIPG and ITPG methods were analyzed for uniform partitions of the one-dimensional domain. See also [Che06],
where similar results were obtained.

On the other hand, several examples of 1D special non-uniform (but quasi-uniform) meshes were presented in [GR09], where
the NIPG method gives the error in the L?(2)-norm of order O(h?) even for odd p. A suboptimal EOC can also be obtained
for the ITPG method using these meshes, see [Riv08], Section 1.5, Table 1.2.

In [DH10], it was shown that the use of odd degrees of polynomial approximation of IIPG method leads to the optimal order
of convergence in the L?(2)-norm on 1D quasi-uniform grids if and only if the penalty parameter (of order O(h~1)) is chosen
in a special way. These results lead us to the hypothesis that the observation (1.178) is not valid in general.
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SIPG NIPG IIPG
p h/V2 | llenllr2q@)  EOC | llenllp2ey  EOC | llenllr20)  EOC
1 1/8 2.1789E-03 — 8.1338E-04 — 1.8698E-03 —
1 1/16 5.7581E-04 1.92 2.1069E-04 1.95 4.8403E-04 1.95
1 1/32 1.4740E-04 1.97 5.3806E-05 1.97 1.2267E-04 1.98
1 1/64 3.7248E-05 1.98 1.3609E-05 1.98 3.0848E-05 1.99
GEOC 1.96 1.97 1.97
2 1/8 5.7796E-05 - 1.0098E-04 - 5.9762E-05 -
2 1/16 7.2545E-06 2.99 2.6758E-05 1.92 1.1004E-05 2.44
2 1/32 9.1150E-07 2.99 6.9525E-06 1.94 2.4341E-06 2.18
2 1/64 1.1434E-07 2.99 1.7734E-06 1.97 5.8760E-07 2.05
GEOC 2.99 1.94 2.22
3 1/8 2.6233E-06 - 4.0597E-06 - 2.7474E-06 -
3 1/16 1.9366E-07 3.76 3.3583E-07 3.60 2.1985E-07 3.64
3 1/32 1.4898E-08 3.70 2.8012E-08 3.58 1.7889E-08 3.62
3 1/64 1.1930E-09 3.64 2.3717E-09 3.56 1.4838E-09 3.59
GEOC 3.70 3.58 3.62
4 1/8 2.6498E-07 — 4.1937E-07 — 3.0663E-07 —
4 1/16 2.1097E-08 3.65 3.4292E-08 3.61 2.4522E-08 3.64
4 1/32 1.7819E-09 3.57 2.8705E-09 3.58 2.0460E-09 3.58
4 1/64 1.5429E-10 3.53 2.4482E-10 3.55 1.7516E-10 3.55
GEOC 3.58 3.58 3.59
5 1/8 5.8491E-08 - 9.3494E-08 - 7.2011E-08 -
5 1/16 4.9611E-09 3.56 8.1022E-09 3.53 6.1832E-09 3.54
5 1/32 4.2999E-10 3.53 7.0989E-10 3.51 5.3944E-10 3.52
5 1/64 3.7656E-11 3.51 6.2465E-11 3.51 4.7387E-11 3.51
GEOC 3.53 3.52 3.52
6 1/8 1.9318E-08 - 2.9767E-08 - 2.6495E-08 -
6 1/16 1.6677E-09 3.53 2.6000E-09 3.52 2.3079E-09 3.52
6 1/32 1.4570E-10 3.52 2.2856E-10 3.51 2.0259E-10 3.51
6 1/64 1.2809E-11 3.51 2.0149E-11 3.50 1.7847E-11 3.50
GEOC 3.52 3.51 3.51

Table 1.3: Computational error and EOC in the L?(2)-norm for the solution of problem (1.179) with o = 1/2.
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SIPG NIPG 11IPG
p_ h/V2 |eh|H1(Sl,Th) EOC |eh|H1(Sl,’Th) EOC |eh|H1(Q,Th) EOC
1 1/8 5.0805E-02 - 4.2283E-02 - 5.0531E-02 -
1 1/16 2.5722E-02  0.98 2.1564E-02  0.97 2.5653E-02  0.98
1 1/32 1.2919E-02  0.99 1.0877E-02  0.99 1.2902E-02  0.99
1 1/64 6.4715E-03  1.00 5.4607E-03  0.99 6.4674E-03  1.00
GEOC 0.99 0.98 0.99
2 1/8 4.0313E-03 - 3.2281E-03 - 3.5738E-03 -
2 1/16 1.0230E-03  1.98 8.0878E-04  2.00 9.0960E-04  1.97
2 1/32 2.5750E-04  1.99 2.0223E-04  2.00 2.2938E-04  1.99
2 1/64 6.4585E-05  2.00 5.0547E-05  2.00 5.7592E-05  1.99
GEOC 1.99 2.00 1.99
3 1/8 2.2371E-04 - 2.2267E-04 - 2.0664E-04 -
3 1/16 3.2897E-05  2.77 3.2455E-05  2.78 3.0237E-05  2.77
3 1/32 5.0341E-06  2.71 4.9281E-06  2.72 4.5992E-06  2.72
3 1/64 8.0276E-07  2.65 7.8150E-07  2.66 7.2933E-07  2.66
GEOC 2.71 2.72 2.72
4 1/8 2.8019E-05 - 2.6863E-05 - 2.3759E-05 -
4 1/16 4.5630E-06  2.62 4.3388E-06  2.63 3.8426E-06  2.63
4 1/32 7.7950E-07  2.55 7.3892E-07  2.55 6.5504E-07  2.55
4 1/64 1.3572E-07  2.52 1.2850E-07  2.52 1.1398E-07  2.52
GEOC 2.56 2.57 2.57
5 1/8 8.0765E-06 - 8.3686E-06 - 7.0904E-06 -
5 1/16 1.3891E-06  2.54 1.4415E-06  2.54 1.2239E-06  2.53
5 1/32 2.4249E-07  2.52 2.5191E-07  2.52 2.1413E-07  2.51
5 1/64 4.2611E-08  2.51 4.4293E-08  2.51 3.7673E-08  2.51
GEOC 2.52 2.52 2.52
6 1/8 3.2423E-06 - 3.4916E-06 - 2.9734E-06 -
6 1/16 5.6456E-07  2.52 6.0843E-07  2.52 5.1885E-07  2.52
6 1/32 9.9090E-08  2.51 1.0684E-07  2.51 9.1177E-08  2.51
6 1/64 1.7456E-08  2.50 1.8826E-08  2.50 1.6072E-08  2.50
GEOC 2.51 2.51 2.51

Table 1.4: Computational error and EOC in the H*(, 7;,)-seminorm for the solution of problem (1.179) with a = 1/2.
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Figure 1.7: Computational error and EOC in the L?(2)-norm (left) and the H (2, T;,)-seminorm (right) for the the solution of
problem (1.179) with o = 1/2.
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SIPG NIPG IIPG

p h/V2 | llenllr2q@)  EOC | llenllp2ey  EOC | llenllr20)  EOC

1 1/8 9.2233E-03 — 1.4850E-02 — 7.9896E-03 —
1 1/16 3.2898E-03 1.49 5.3458E-03 1.47 2.8145E-03 1.51
1 1/32 1.1569E-03 1.51 1.8699E-03 1.52 9.8230E-04 1.52
1 1/64 4.0594E-04 1.51 6.5039E-04 1.52 3.4327E-04 1.52
GEOC 1.50 1.51 1.51

2 1/8 2.3410E-03 - 4.6812E-03 - 1.7779E-03 -
2 1/16 8.1979E-04 1.51 1.6138E-03 1.54 6.0110E-04 1.56
2 1/32 2.8885E-04 1.50 5.6696E-04 1.51 2.0820E-04 1.53
2 1/64 1.0199E-04 1.50 2.0059E-04 1.50 7.2989E-05 1.51
GEOC 1.51 1.51 1.53

3 1/8 9.7871E-04 - 3.1394E-03 - 1.0279E-03 -
3 1/16 3.4597E-04 1.50 1.1136E-03 1.50 3.6119E-04 1.51
3 1/32 1.2235E-04 1.50 3.9426E-04 1.50 1.2736E-04 1.50
3 1/64 4.3269E-05 1.50 1.3948E-04 1.50 4.4971E-05 1.50
GEOC 1.50 1.50 1.50

4 1/8 6.4002E-04 — 1.6788E-03 — 7.8547E-04 —
4 1/16 2.2608E-04 1.50 5.9262E-04 1.50 2.7649E-04 1.51
4 1/32 7.9902E-05 1.50 2.0934E-04 1.50 9.7529E-05 1.50
4 1/64 2.8245E-05 1.50 7.3980E-05 1.50 3.4442E-05 1.50
GEOC 1.50 1.50 1.50

5 1/8 3.8770E-04 - 1.1048E-03 - 6.0190E-04 -
5 1/16 1.3695E-04 1.50 3.9046E-04 1.50 2.1214E-04 1.50
5 1/32 4.8400E-05 1.50 1.3801E-04 1.50 7.4886E-05 1.50
5 1/64 1.7109E-05 1.50 4.8784E-05 1.50 2.6455E-05 1.50
GEOC 1.50 1.50 1.50

6 1/8 2.7881E-04 - 7.5211E-04 - 5.2298E-04 -
6 1/16 9.8519E-05 1.50 2.6580E-04 1.50 1.8457E-04 1.50
6 1/32 3.4822E-05 1.50 9.3954E-05 1.50 6.5195E-05 1.50
6 1/64 1.2310E-05 1.50 3.3215E-05 1.50 2.3039E-05 1.50
GEOC 1.50 1.50 1.50

Table 1.5: Computational error and EOC in the L?(Q2)-norm for the solution of problem (1.179) with o = —3/2.
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SIPG NIPG 1IPG
P h/V2 |eh|H1(Q,’Th) EOC |eh|H1(Q,Th) EOC |eh|H1(Q,Th) EOC
1 1/8 4.0604E-01 - 3.9606E-01 - 4.0035E-01 -
1 1/16 2.8999E-01  0.49 2.8508E-01  0.47 2.8631E-01  0.48
1 1/32 2.0555E-01  0.50 2.0312E-01  0.49 2.0309E-01  0.50
1 1/64 1.4539E-01  0.50 1.4413E-01  0.50 1.4370E-01  0.50
GEOC 0.49 0.49 0.49
2 1/8 1.9294E-01 - 2.3736E-01 - 1.8460E-01 -
2 1/16 1.3627E-01  0.50 1.6750E-01  0.50 1.3052E-01  0.50
2 1/32 9.6419E-02  0.50 1.1842E-01  0.50 9.2389E-02  0.50
2 1/64 6.8224E-02  0.50 8.3741E-02  0.50 6.5385E-02  0.50
GEOC 0.50 0.50 0.50
3 1/8 1.4304E-01 - 2.3656E-01 - 1.5217E-01 -
3 1/16 1.0145E-01  0.50 1.6731E-01  0.50 1.0794E-01  0.50
3 1/32 7.1853E-02  0.50 1.1833E-01  0.50 7.6459E-02  0.50
3 1/64 5.0852E-02  0.50 8.3679E-02  0.50 5.4113E-02  0.50
GEOC 0.50 0.50 0.50
4 1/8 9.4937E-02 - 1.7438E-01 - 1.0791E-01 -
4 1/16 6.7297E-02  0.50 1.2334E-01  0.50 7.6474E-02  0.50
4 1/32 4.7649E-02  0.50 8.7229E-02  0.50 5.4139E-02  0.50
4 1/64 3.3715E-02  0.50 6.1686E-02  0.50 3.8306E-02  0.50
GEOC 0.50 0.50 0.50
5 1/8 7.8490E-02 - 1.4046E-01 - 9.6583E-02 -
5 1/16 5.5605E-02  0.50 9.9348E-02  0.50 6.8396E-02  0.50
5 1/32 3.9357E-02  0.50 7.0261E-02  0.50 4.8400E-02  0.50
5 1/64 2.7843E-02  0.50 4.9686E-02  0.50 3.4238E-02  0.50
GEOC 0.50 0.50 0.50
6 1/8 6.4288E-02 - 1.2563E-01 - 9.3368E-02 -
6 1/16 4.5518E-02  0.50 8.8855E-02  0.50 6.6077E-02  0.50
6 1/32 3.2208E-02  0.50 6.2836E-02  0.50 4.6744E-02  0.50
6 1/64 2.2782E-02  0.50 4.4434E-02  0.50 3.3060E-02  0.50
GEOC 0.50 0.50 0.50

Table 1.6: Computational error and EOC in the H!(£2, 7, )-seminorm for the solution of problem (1.179) with o = —3/2.
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Figure 1.8: Computational error and EOC in the L?(2)-norm (left) and the H (2, T;,)-seminorm (right) for the the solution of
problem (1.179) with o = —3/2.
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However, extending theoretical results either to NIPG method or to higher dimensions is problematic. Some attempt was
presented in [dDBHM12], where the optimal order of convergence in the L?(2)-norm on equilateral triangular grids was proved
for the ITPG method with reduced interior and boundary penalties.
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Chapter 2

DGM for convection-diffusion problems

The next chapters 2—4 will be devoted to the DGM for the solution of nonstationary, in general nonlinear, convection-diffusion
initial-boundary value problems. Some equations treated here can serve as a simplified model of the Navier—Stokes system
describing compressible flow, but the subject of convection-diffusion problems is important for a number of areas in science and
technology, as is mentioned in the introduction.

In this chapter we shall be concerned with the analysis of the DGM applied to the space discretization of nonstationary
linear and nonlinear convection-diffusion equations. The time variable will be left as continuous. This means that we deal with
the so-called space semidiscretization, also called the method of lines. The full space-time discretization will be the subject of
Chapters 7?7 and 4.

The diffusion terms are discretized by interior penalty Galerkin techniques (SIPG, NIPG and ITPG) introduced in Chapter
1. A special attention is paid to the discretization of convective terms, where the concept of the numerical flux (well-known
from the finite volume method) is used. We derive error estimates for a nonlinear equation discretized by all three mentioned
techniques. These estimates are suboptimal in the L°°(L?)-norm and they are not uniform with respect to the diffusion
coefficient. However, for the symmetric SIPG variant, the optimal error estimate in the L>°(L?)-norm is derived. Finally, for a
linear convection-diffusion equation, we derive error estimates uniform with respect to the diffusion coefficient.

2.1 Scalar nonlinear nonstationary convection-diffusion equation

Let Q ¢ RY d = 2,3, be a bounded polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz boundary 92 =
ONp Uy, 00p NIy = 0, and T > 0. We shall assume that the (d — 1)-dimensional measure of Qp is positive. Let us
denote Qr = Q x (0,7).

We are concerned with the following nonstationary nonlinear convection-diffusion problem with initial and mixed Dirichlet—
Neumann boundary conditions: Find u : Q7 — R such that

d

IR .
e —+ ; oz, =eAu+g in Qr, (2.1a)
u|8QDX(0’T) = up, (2.1b)

ou
< 87”|8§2N><(0,T) = 9N, (2.1¢)
u(z,0) =u’(z), xe€Q. (2.1d)
We assume that the data satisfy the following conditions:

f=(f1,---, fa), fs € CYR), f. are bounded, f,(0)=0, s=1,...,d, (2.2a)
e >0, (2.2b)
g € C([0,T]; L*()), (2:2¢)
up = trace of some u* € C([0,T]; H*(Q)) N L*>°(Q7) on 9Qp x (0,T), (2.2d)
gn € C([0,T); L*(89)), (2.2¢)
u’ € L*(9). (2.2f)
The constant ¢ is a diffusion coefficient, fs, s = 1,...,d, are nonlinear convective fluxes and ¢ is a source term. It can be seen
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that the assumption that f5(0) = 0 is not limiting. If u satisfies (2.1a), then it also satisfies the equation

d
@ + Z a(fs(u) — fs(o))

5 oz, =cAu+g,

s=1

and the new convective fluxes f, := fo(u) — fs(0), s = 1,...,d, satisfy (2.2a). Let us note that in Section 4.2 we shall be
concerned with more complicated situation, where both convection and diffusion terms are nonlinear.
It is suitable to introduce the concept of a weak solution. To this end, we define the space

Hyp(Q) = {v € H'(Q); vlo, =0},
and the following forms:
(u,v) = (u,v)r2(0) = / wdz, u,v € L*(Q),
Q

a(u,v)zs/Vu~Vvda:, u, v € H'(Q),

b(u, v) /Z‘ag;b dz, we HY(Q)NL®Q), ve L}Q),

(u,v)N:/ wvdS, u, v e L*(00n).
0N

Definition 2.1. A function u is called the weak solution of problem (2.1), if it satisfies the conditions

u—u* € L*0,T; Hyp(Q), ue L™(Qr), (2.3a)

%(u(t),v) +b(u(t),v) + a(u(t),v) = (g(t),v) + (gn(t),v)§y Yv € Hip(Q) (2.3b)
(in the sense of distributions in (0,T)),

w(0) =wup in Q. (2.3c)

Let us recall that by u(t) we denote the function in Q such that u(t) (z) = u(x,t), z € Q.

With the aid of techniques from [Rek82], [Lio96] or [Rou05], it is possible to prove that for a function w satisfying (2.3a)—
(2.3b) we have u € C([0,T7]; L?(£2)), which means that condition (2.3c) makes sense, and that there exists a unique solution of
problem (2.3). Moreover, it satisfies the condition du/dt € L?(Qr). Then (2.3b) can be rewritten as

(ag(tt) ’ U) + b(u(t),v) + a(u(t),v) = (g(t),v) + (gn(t),v) N (2.4)
Yov e H&D(Q) and almost every t € (0,7).

We say that u satisfying (2.3) is a strong solution, if
u € L*(0,T; H*(Q)), % € L*(0,T; H'(Q)). (2.5)

It is possible to show that the strong solution u satisfies equation (2.1) pointwise (almost everywhere) and u € C([0,T], H*(9)).

2.2 Discretization

In this section we introduce a DG space semidiscretization of problem (2.1). We use the notation and auxiliary results from
Sections 1.3-1.5.

By 7 (h > 0) we denote a triangulation of the domain 2 introduced in Section 1.3.1. We start from the strong solution u
satisfying (2.5), multiply equation (2.1a) by an arbitrary v € H?(, T), integrate over each K € Ty, and apply Green’s theorem.
We obtain the identity

/K 815(:) vdx + /8K§fs(u( JnsvdS — / Zfs azg (2.6)

—I—E/ Vu(t)-Vvdx—e/ (Vu(t) -n)vdS = / t)vdx.
K oK
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Here n = (n1,...,n4) denotes the outer unit normal to K. It is possible to write

> fa(ung = f(u) - m, Zfs(u)axs = f(u) - Vv. (2.7)

Summing (2.6) over all K € T}, using the technique introduced in Section 1.4 for the discretization of the diffusion term, we
obtain the identity

(Z520) + Anult)o) + Bn(u(o) o) = )0 29)
where
Ap(w,v) = eap(w,v) + eJp (w,v), (2.9)
ap(u,v) Vu-Vudr — ((Vu) - nv] + ©(Vv) - nfu]) dS, (2.10)
h KeTy / FGZ:]:ID/

JP (u,v) = olu] [v] dS, (2.11)
- d Ov
bp(u, v) P {/aKZ:fé )nsvdS — /K Z_:fs(u(t))a% dm} , (2.12)

0n(0) () = (g(£),0) + (gn (£), 0)w + € Z/ ov—O(Vu-m) Jup(t) ds. (2.13)

rerp

(The symbols (- ),[] are defined in (1.32) and (1.33).) We call aj, and J;, the diffusion form and the interior and boundary
penalty form, respectively. Similarly as in (1.104), the penalty weight o is given by

C
UlF:UF:T‘;V, FE]‘}{D, (214)

where hr characterizes the “size” of I' € F}, defined in Section 1.6 and Cy > 0 is a suitable constant. The symbol l;h corresponds
to the convection terms. It will be further discretized.

Similarly, as in Section 1.4, for © = —1, © = 0 and © = 1 the form a; (together with the form J7) represents the
nonsymmetric variant (NIPG), incomplete variant (IIPG) and symmetric variant (SIPG), respectively, of the diffusion form.

Remark 2.2. Let us note that in contrast to Chapter 1, the form A contains the diffusion coefficient €, compare (1.45a) —
(1.45¢) with (2.9). Therefore, the estimates from Chapter 1, which will be used here, have to be equipped with the multiplication
factor e > 0. We do not emphasize it in the following.

NOW we shall pay a special attention to the approximation of the convective terms represented by the form by. The integrals
Jor 2os—1 fs(u(t))nsvdS can be expressed in terms of the expressions [ 25:1 fs(u(t))nsv dS, which will be approximated with
the aid of the so-called numerical flur H(u,w,n):

d
/F > fulu(t)nwds ~ / H(uf,ut® n)o”ds, T eF. (2.15)
s=1

Here H : R x R x B; — R is a suitably defined function and By = {n € R%;|n| = 1} is the unit sphere in R?. The simplest are
the central numerical fluzes given by

d
H(vi,vz,m Zfs <U1 +U2> ns, H(Ul’w’n)zzwns-
s=1

However, in the most of applications it is suitable to use upwinding ' numerical fluxes as, for example,

S folu)ns, i P >0 uy + Uy
H = 5= here P = 2.16
(ulau27n) { Zle fs(UQ)ns, if P S 0 ) where Zf n ( )

1The concept of upwinding is based on the idea that the information on properties of a quantity u is propagated in the flow direction. Therefore,
discretization of convective terms is carried out with the aid of data located in the upwind direction from the points in consideration.
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or the Lax—Friedrichs numerical fluzx
Zd fo(w1) + f(v2)
H(”la”Qvn): %ns*)\hjlivﬂa

where A > 0 has to be chosen in an appropriate way. For more examples and theoretical background of numerical fluxes we
refer to [FFS03].

If I' € FP, then it is necessary to specify the meaning of u%R) in (2.15). It is possible to use the extrapolation from the
interior of the computational domain

W =u® TeFP (2.17)
In the theoretical analysis, we shall assume that the numerical flux satisfies the following properties:
1. continuity: H(u,v,n) is Lipschitz-continuous with respect to u, v: there exists a constant Ly > 0 such that
|H(u,v,m) — Hu*,v*",n)| < Lg(lu—u*|+ |v—20%]), (2.18)

u, v, u*, v* €R, n € By.

2. consistency:

d
H(u,u,m) = fo(uns, uweR, n=(ny,...,nq) € By, (2.19)
s=1
3. conservativity:
H(u,v,n) =—H(v,u,—n), u,v€R, neBy. (2.20)

By virtue of (2.18) and (2.19), the functions fs,s = 1,...,d, are Lipschitz-continuous with constant Ly = 2Lg. From (2.2a)
and (2.19) we see that

H(0,0,m) =0 VneB. (2.21)

Using the conservativity (2.20) of H and notation (1.32) — (1.33), we find that

/ H(u ) n)ol ds (2.22)

KETh FC@K rern

= Z /H ), )( —’UF dS+ Z /H (L),ugR),n)vl(ﬂL)dS

rer! rerp
S /Hugm,u(;‘), n) [v] dS
TeF,

Let us recall that in integrals fr the symbol n denotes the normal nr.
Then, by virtue of (2.15) and (2.22), we define the convection form by, (u,v) approximating by, (u, v):

(u, v) Z/H ) W n) ) ds — Z/f - Vudaz, (2.23)

reFn KeTh
u, v € H' (Q,Th), ue L®(Q).

By the definitions (2.12), (2.23) and the consistency (2.19), we have
b (u,v) = by (u,v) Yu € HX(Q) Yo € H*(Q, Ty). (2.24)

Let Sp, be the space of discontinuous piecewise polynomial functions (1.34). Since Sp, C H2(Q, Tn) N L*(Q), the forms
(2.10), (2.11), (2.13) and (2.23) make sense for u := uyp, v := v, € Spp. Then, we introduce the space DG-discretization of (2.1).

%)



Definition 2.3. We define the semidiscrete approximate solution as a function up : Q7 — R satisfying the conditions

up, € CH([0,T7]; Shp)s (2.25a)
dup(t) _
( ot ,’Uh) + Ah(uh(t), 'Uh> + bh(uh(t), ’Uh) = Eh(’l}h> (t) (2.25b)
Yoy € Spp, Vt € [O,T],
(un(0),v) = (u®,vn)  Vn € Shy. (2.25¢)

We see that the initial condition (2.25¢) can be written as uy(0) = I,u°, where IIp, is the operator of the L?(£2)-projection
on the space Sy, (cf. (1.90)).

The discrete problem (2.25) is equivalent to an initial value problem for a system of ordinary differential equations (ODEs).
Namely, let {¢;, i =1,..., Ni} be a basis of the space Sp;,, where Nj, = dim S;,. The approximate solution wy, is sought in the
form

Np
up(z,t) = Zuy (t)pj(x), (2.26)
j=1
where v/ (t) : [0,7] = R, j =1,..., Ny, are unknown functions. For simplicity, we put

By (un,vn) = Lh(vn) — An(un,vn) — ba(un, vn),  Un,vh € Shp.
Now, substituting (2.26) into (2.25b) and putting vy, := p;, we get

Np,

dud (t . )
> dt( ) (5.00) = B | Y_w(psoi |, i=1,..., Ny, (2.27)
j=1 j=1
which is the system of the ODEs for the unknown functions v/, j = 1,..., Nj. This approach to the numerical solution of initial

boundary value problems via the space semidiscretization is called the method of lines.

If we apply some ODE solver to problem (2.27), we obtain a fully discrete problem. In Chapter ?? we shall pay attention
to some full space-time discretization techniques. In what follows we shall be concerned with the analysis of the semidiscrete
problem (2.25).

Taking into account that the exact solution with property (2.5) satisfies [ulr = 0 for " € .7-',{7 ulpa, x(0,r) = up and using
(2.8) and (2.24), we find that u satisfies the consistency identity

(3u(t)

N o) Anu(0),00) 4 bt 1) = () (0 (2.29)

for all v, € Shp and almost all ¢ € (0,T). This will be used in the error analysis.

Exercise 2.4. Verify the relation (2.28).

2.3 Abstract error estimate

In this section we shall analyze the behaviour of the error in method (2.25). We shall use results derived in Sections 1.6 and 1.7
dealing with the properties of the diffusion form a;, and the penalty form JJ. Similarly as in (1.103), we use the DG-norm

1/2
ol = (10B o) + 7)) v e HY@,Th), (2:29)
In the error analysis we shall suppose that the following basic assumptions are satisfied.

Assumptions 2.5. Let the following assumptions be satisfied:

assumptions (2.2) on data of problem (2.1),

properties (2.18) - (2.20) of the numerical flux H,

{E}he(o,ﬁ) is a system of triangulations of the domain § satisfying the shape-regularity assumption (1.19) and the equiv-
alence condition (1.20) of hr and hx (c¢f. Lemma 1.5),

the penalization constant Cyy satisfies the conditions from Corollary 1.41 for SIPG, NIPG and IIPG wversions of the
diffusion form ay,.

We shall again apply the multiplicative trace inequality (1.78), the inverse inequality (1.86) and the approximation properties
(1.93)—(1.95) and (1.98)—(1.100).
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2.3.1 Consistency of the convection form in the case of the Dirichlet boundary condition

We shall be concerned with Lipschitz-continuity and consistency of the form by. The consistency analysis is split in two cases. In
this section we consider the case when the Dirichlet boundary condition is considered on the whole boundary 05, i.e., 90Q2p = 9
and 0Qpy = 0. Analyzing the consistency of the form by, in the case of mixed boundary conditions is more complicated and is

presented in Section 2.3.2.
In what follows we shall assume that s > 2, p > 1 are integers.

Lemma 2.6. Let 'y =0 (then Fp, = ]—"éD), Then there exist constants Cy1,...,Cps > 0 such that

1/2
|br (u, v) = bp(U, v)| < Ch |0 (u—UIiz<Q>+ > hK||u_u||2L2(8K)> ;
KeTy

w, € HY(Q,Th) NL®(Q), ve HY(Q,T), he(0,h),
b (un, vn) — b (@n, vn)| < Co2|llvnlll lun — @nllL2(q),
Up, Up, Vp € Shp, h e (O,B).

If ppu is the Spp-interpolant of u € H*(Q) defined by (1.90) and we put n = u — pyu, then
|bn (u, vi) — b (Wapu, va)| < CosRo()lllvnll,  va € Shp, h € (0,h),

where

2 2 2 1/2
Ron) = (D2 (Inli3aaey + Wkl ae))) -
KeTh

Moreover, if & = up, — Ippu, then under the above assumptions,
[bn (w, o) = b (un, vi)| < Coallonlll (Ro(n) + €]l 220)) »  vh € Shp, € (0, h).

Proof. (i) By (2.23), for u, @, v € HY(Q,Ts),

b (u,v) — byp(a,v) = Z/ f(a))-Vode

KeT,

=01

+ Z/ H“F 7“1‘ n)— H(UiﬂL),U{ﬂ ,n)) [v]dS.

rer,

=02

_ D

Let us recall that for T' € 72 we define the functions ulgR and Ur by extrapolation: u(R) u% and ﬂfﬂR)
From the Lipschitz-continuity of the functions fs, s =1,...,d, and the discrete Cauchy inequality we have

i< Y | wau\

KeTh

’ dz < VdLg|u - all 2o |v]m @.7)-

Relation (2.35), the Lipschitz-continuity (2.18) of H, the Cauchy inequality, (1.20), (2.11) and (2.14) imply that

ool 2 35 ([ =t [ - ot 1 as
T'e

o (5 [05) (2 [ (0 - o) )

/\

/2
> / 2hc|u — al? dS)

< Liny| g2 (0,0 1/2<
KeTn
1/2
/2C’
G J 1/2 < Z hK“’U, u||L2(dK)> .

KeTy
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(2.34)

(2.35)
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(Let us note that the third inequality in (2.37) is valid only if F), = F{P.) Taking into account (2.35)—(2.37) and using the
discrete Cauchy inequality, we get

|bn(u, v) = bp (4, v)| (2.38)

1
_ 2Cq ., ’
<VALgllu = | 20y |vlms .7 + Ly CiGJh (v,0)"/? ( > hrllu— )72k )
w KeT,
1

2
Z hiflu — U||L2 oK ) (|U‘?{1(Q,Th) + Jﬁ(v,v))

KeTh

2C’G

D=

<de|U, - UHLQ(Q) + L2

1/2
This immediately implies (2.30) with C; = (max(dLQ,ZL%ICg/CW)) .

(ii) Further, let up, @n, vp, € Shp. Using the multiplicative trace inequality (1.78) and the inverse inequality (1.86), for
¢ € Shp we obtain

Z hillelZzor) < Cumr Z (”90”%2(1() + hicllell 2 x) |<P|H1(K)) (2.39)
KeTy KeTh
<Cu Y, (||<P||2L2(K) + CI||<P||2L2(K)) = Cu(1+Cllell72 ()
KeTh

Now, if we set ¢ := up — 4y, and use (2.30) with v := up, @ := @, and v := vp,, we get (2.31) with Cpe = Cp1 (1 +Cp (1 +C1))1/2.
(iii) In order to prove (2.32), we start from (2.30) with u € H*(Q), @ := p, v and v := vy € Spy. Using the multiplicative
trace inequality (1.78) and Young’s inequality, we find that

Z hKHU—thU||2L2(aK) = Z hK||77||%2(aK) (2.40)
KeTy KeTs
<Cur Y2 (Inlaaey + haclmll ool )
K€7-h

<O Y (Il + 5l + 5k e ) < 3 Cu o),
KeTh

where Ry(7) is defined in (2.33). Consequently,
[|w th||L2(Q) + Z hKHU*thU”L’Z(aK) (1+ CM)Rb( ) )
KeTh

which together with (2.30) immediately yield (2.32) with Cy3 = Cy1(1 + 3Car/2)'/2.
(iv) The triangle inequality gives

|br (w, ) = b (un, v)| < [bn(u, v) = bp(Mppu, vp)| + b (Hppu, vp) — by (un, vn)l.

From relations (2.32) and (2.31) with @, = Hp,u and € = uy, — pu, we get (2.34) with Cpy = max(Cha, Cps). O O

2.3.2 Consistency of the convective form in the case of mixed boundary conditions

Since Lemma 2.6 is valid only if a Dirichlet boundary condition is prescribed on 02, we shall be concerned here with the
consistency of the form b, in the case of a nonempty Neumann part 9Qy of the boundary 0€2. We shall start from several
auxiliary results.

The first lemma shows the existence of a vector-valued function with suitable properties. Its proof is based on the usual
definition of a domain with the Lipschitz boundary.

Lemma 2.7. There exists a vector-valued function ¢ € (W (Q))¢ such that
p-n>1 ondQ, (2.41)

where m is the unit outer normal to OS).
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Proof. By [KJk77] or [Nec67], it follows from the Lipschitz-continuity of 92 that there exist numbers «, 8 > 0, Cartesian
coordinate systems

T T

X, = (xr,la <oy Tpd—1, xr,d) = (-’I;;; xr,d) ’ (242)
Lipschitz-continuous functions
/ T .
ar A\, = {xr = (Xr1yee oy Trda1) 3|Tril <a,i=1,...,d— 1} - R (2.43)
with a Lipschitz constant L > 0, and orthogonal transformations A, : R? — R? r = 1,...,m, such that
VeeodQ 3Ire{l,....m} Fazl el : z=A"(z,a.(z))). (2.44)

Under the notation

{(m’r,wr,d) eR%a,(2)) < xpg < ap(2) + B,z € AT} , (2.45)
= {(m;,xr,d) eR%a.(2)) — B < pa <ap(z)), z. € Ar} ,
Ar ={(@}, 270): 1rq = ar(a],) €R, a, € A},

we have

VI CA(Q), A CA09), V7 cARN\Q, oec|]U, (2.46)
r=1
where the sets U, are defined by the relations
U, =VIUA UV, U, =AY0,). (2.47)

The mappings A, can be written in the form

A(x) =Quz+2° zeRY (2.48)
where 20 € R? and Q, are orthogonal d x d matrices, i.e., Q,Q: = I = unit matrix. Then the transformation of a d-dimensional
vector y € R reads as

yeR? = Q,y € RY. (2.49)

The sets U, are open. There exists an open set Uy such that

UocQ, Qcl|JU. (2.50)
r=0

By the theorem on partition of unity ([KJk77]), there exist functions ¢, € C§°(U,), r =0,...,m, such that 0 < ¢, <1 and

m

thr(m) =1forzcQ and ng,«(a:) =1 for z € 99Q. (2.51)
r=0

r=1

Since the functions a, are Lipschitz-continuous in A,, they are differentiable almost everywhere in A,. Hence, there exists
the gradient

T

Va,(z)) = (88330::1 (xl),..., afj;_l (x;)) for a.e. al. € A, (2.52)
and
[Va.| <L ae inA, r=1,...,m. (2.53)

(Here a.e. is meant with respect to (d — 1)-dimensional measure.) Then there exists an outer unit normal

ny (2, an(z))) = ! (Va(2), —1) (2.54)

" V1+|Va,(20)?
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to OV F for a.e. X, = (2., a,(x.)) € A, (with respect to (d — 1)-dimensional measure defined on A, — cf. [KJk77]) and
n(z) = Q. n.(A,(z)), a.e.z€dQ, A ()€ A,, (2.55)

is the outer unit normal to 8Q.T
If we set eg = (0,...,0,—1) € R?, then by (2.52) and (2.53)
1 1 ~

n.(X,) eq= > , X, €A, r=1,...,m. 2.56
(%r) - ea VIt Va @R = VIt L2 (2:56)

By virtue of the orthogonality of Q,, for a.e. x € 9Q, with A,.(z) € A, we have

n(x) - (Q eq) = (@) no(A, (@) - (0 ea) (2.57)
— (@ @) (@] )
— (nrl @) @) - (T e)

1
=n.(A.(2) - eq> ——, r=1,...,m.
(A a2 e
Now we define the function ¢ by
p(r) =1+ L2 ngr(a:) Ql ey, =R (2.58)
r=1

Obviously, ¢ € (C5°(R%))? and thus ¢ € W1>°(Q)?. Moreover, by (2.51), (2.57) and (2.58),

p(x) n(z) > ZapT(x) =1, z€0Q,

what we wanted to prove. O

Now we shall prove a “global version” of the multiplicative trace inequality.

Lemma 2.8. There exists a constant C'y; > 0 such that

1/2
||UH2L2(aQ) < Cy 4 ol <||U|2L2(Q) + Z hK||”||%2(aK)> + ||UH%2(Q) )
KeTs,

ve HY(Q,Ty), he(0,h). (2.59)

Proof. Let v € HY(Q,Ts), h € (0,h) and K € Ty,. Let ¢ € (Wh>(Q))¢ be the function from Lemma 2.7. By Green’s theorem,

/ v2<p~nd5:/ V~(v2<p)dx:/ (v2V - + 2up - V) da.
oK K K

The summation over all K € T}, implies that

/(mvtp~nd5’+2/r[v]<p-nd52 Z/K(v V-p+2vp-Vov)da. (2.60)

rerf KeTh

In view of (2.41) and (2.60),

UQng/ vip-ndS < /v2V~<p—|—211<p-Vvdx—|— / v2]| || dS.
/89 o0 Z K| | Z FH ]|‘|

KeTs rerl

Taking into account that ¢ € (W1>°(Q))? and using the Cauchy and Young’s inequalities, we find that

2
[0]17 2 (a0) < ||‘P||(W1~°°(Q))d( E / |[W?]]AS + [[v]l 720 + 2 E vl L2 (k) |U\H1(K))~ (2.61)
rerf r KeTh

60



Further, by the Cauchy inequality, (1.20), (1.107), (2.11) and (2.14), we have

Z/\ ds_zz/| v)| dS

rer! rer!
1/2 1/2
<2 3 [obPas| (X [otwas
rerf rerf

1/2
< 20 M2CY2 I7 (0, 0)1)? ( > hK||U||L2(6K> '
KeTy

Now, it follows from (2.61), (2.62) and the discrete Cauchy inequality that

1/2
—1/2,~1/2 70
loll32(o0) < Il o {20512 Ce 2 75 (0, )2 ( > hKuvn%z(aK))
KeTy,

+ vllZ20) + 2l0llz2 @) [vlEr @) 1
(

(2.62)

O

(2.63)

which implies (2.59) with C}; = max(2Cy,, 1/201/2, 2)[lell w00 (- O
Now we shall apply the above results to the derivation of the consistency estimate of the form b;,. This form can be expressed
as
br(w,v) = b (w,v) + b7 (w, v),
where

b (w,0) = — 3 / Zfs da+ 3 /Hw\(L) B p)fole dS

KeTy, reri
+ Z/Hw| ,n)o| " ds
rerp

and, due to (2.19),

b (w,v) = Z /Hw| n)vlp (L) 45 = Z /Zfs w| nsv\(FL)dS.

reryy rerpy
Let us set & = up, — Ippu € Sy, We are interested estimating the expression
bn (1, €) — bn(un, €) = (b (u,€) = by (un, €)) + (03 (w, &) — by (un, €)) -
Then, by (2.34) with vy, = &,
1677 (u, €) = bi” (un, )| < Coallélll (Ro(n) + €] 2) »

where Ry(n) is defined by (2.33).
It remains to estimate the second term on the right-hand side of (2.66).

Lemma 2.9. Let u € H*(Q), up, € Shp, § = up, — ppu. Then
|05 (u, &) = by (un, €)| < Cn (Rc(U)Q + IENNEN 22 (0) + ”5”%2(9)) ;

where

—1 2 2 1/2
Ren) = (3 (0 Il + huclnfis ) )
KeTh

and Cy s a constant independent of u, up and h.
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Proof. By (2.65), Lipschitz-continuity (2.18), Cauchy and Young’s inequalities, and the relation up, — u = n + £, where 1 =
Mppu — u, we get

b3 (u, &) — by (un, €)| < CLllu = unll L2000 1€l L200x) (2.70)

1 3
< Opllu = unll200) 1€l 2 00) < CL <2||77|%2(asz) + 2||§||%2(an)>
with Cj, = 2Lg. Moreover, using the multiplicative trace inequality (1.78) and Young’s inequality, we find that

11172 (00) < Z 1% 205y < Cnmr Z (hf(l||77||%2(x) + ||77||L2(K)|77|H1(K)>
KeT, KeTh

_ 1 _ 1
<Cm ) (hK1||77||2L2(K) + ihKlllnH%?(K) + §hK|77|%11(K))
KeTs

< ZCuR.(n)?, (2.71)

o w

where R.(n) is defined in (2.69).
We estimate |[|€ H%%a@) according to Lemma 2.8. Taking into account that £ € Sp, and using the multiplicative trace

inequality (1.78) and the inverse inequality (1.86), we find that

> hucllélaory < Cur Y b (€llzaao el ey + AR IR ) (2.72)
KeTn KeTn

< Cu(1+Cn) €720

Hence, in view of (2.59) and (2.72), we have

€132 00) < Chr {(Car(1+CD) + 1)V gl €l 2oy + 1132 ) | (2.73)
< C* (Mellelze) + €132y )

where C* = C,(Cr (1 + C;) + 1)Y/2. Finally, (2.70), (2.71) and (2.73) yield estimate (2.68) with Cy = 3C1, max(2Cy, 3C*),
which we wanted to prove. O [

Let us summarize the above results.

Corollary 2.10. Let uw € H*(Q), s> 2, up, € Spp, & = up, — Mppu, n =Ipu —u. Then

|bn (u, &) = b (un, &) (2.74)
< G (1€l (Ro(m) + el 2en) + b (Ren)?® + [€132(ey ) )

where n =0, if 00x =0, and Sy = 1, if 00N # 0.

Proof. Estimate (2.74) is an immediate consequence of (2.67) and (2.68) with the constant C, = Cpg + Cy. O O

2.3.3 Error estimates for the method of lines

Now we derive the error estimates of the method of lines (2.25) under the assumption that the exact solution u satisfies the
condition
ou c
ot
where s > 2 is an integer. Assumption (2.75) implies that u € C([0,T]; H*(f)).
Let IIppu(t) be the Spp-interpolation of u(t) (¢ € [0,T]) from (1.90). We set

L*(0,T; H(%)), (2.75)

E=up —ppu € Sy, n=Ipu—ue H(Q,Tp). (2.76)
Then the error e; can be expressed as

en =up—u=~&+n. (2.77)
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Subtracting (2.28) from (2.25b), where we substitute vy, := &, we get

(5.€) + 4169 = 009 - tu(un. ) — (he6) — 4u(0. (2.78)

(Of course, & = £(t), n =n(t) for t € [0,T], but we do not emphasize the dependence on ¢ by our notation, if it is not necessary.)
In what follows we shall estimate the individual terms on the right-hand side of (2.78).
The Cauchy inequality implies that

an on
— <||= . 2.79
(509)| =[5, Vetsmen (2.79)
Moreover, using the result of Lemma 1.37, we have
| An(n,€)] < eCpRa()I€]l, (2.80)
where C is the constant from (1.129) and
1/2
Rq () = < S (Il ey + Bl iy + B2l K>)> . (2:81)
KeTn
Finally, we define the term
2C% 2
Ro(n) = == (Rom) + eRa(m)) "+ 2C1 (Re0)? + 10wl ) (2.82)
%7}

where Ry(n) is defined by (2.33), Re(n) is defined by (2.69), and the constant Cy is defined as ¢; = max(Cj 4 1,Cp). This
notation will be useful in the following.

Now we prove the so-called abstract error estimate, representing a bound of the error in terms of the Sp,-interpolation error
1. Let us recall that in order to increase the readability of the derivation of the error estimate, we number constants appearing
in the proofs.

Theorem 2.11. Let Assumptions 2.5 from Section 2.3 be satisfied. Let u be the exact strong solution of problem (2.1) satisfying
(2.75) and let up, be the approximate solution obtained by scheme (2.25). Then the error ey, = up, — u satisfies the estimate

T
llen ()72 (0 +€Cc€/ llen (@)]* dv (2.83)

T
< Cse </ Rq(n(t)) dt + [In(®)]|72 (0 +Cc/0 |||77(19)|||2d19> 7
€(0,7), he(0,h),

where Cc is the constant from the coercivity inequality (1.140) of the form LA, = aj, + J, Rq(n) is given by (2.82) and Ca(e)
is a constant independent of h and u, but depending on e (see (2.93)).

Proof. As in (2.76), we set £ = up — Hppu € Spp, n = Hppu —u. Then (2.77) holds: e, = up —u = +n. Due to the coercivity
(1.140) of the form Ay,

eColl€ll® < An(€,9). (2.84)
It follows from (2.78), (2.84) and the relation
(5-¢) = 5 5 elan (2.85)
that
1d o
3 53 162 + € Celll? < bu(w.&) — taun©) — (1.6 = An(r. ). (2.86)
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Now from (2.74), (2.79), (2.80), using the inequality (v + §)? < 2(y2 + 62) and Cauchy and Young’s inequalities, we derive the
estimates

d
@\f”%z(m +2:Co€]I? (2.87)

<20 <|||§|| (Ro(n) + ll€llL2@)) + Re(n) + ||§||2L2(Q))
+ 2010l 22 () 1€l L2y + 26CpRa(m) €]l

<2C: { I CIEN 220 + Ro(n) + € Ra ()

+ Re(n)? + €720 + |5t77||2L2(Q)}

C? 2
< eCellél® + == (I€llz2() + Ro(n) + eRa(n))
ECC

+ 2C1{R0(77)2 + €z + |8t77||2L2(Q)}

1
< <Cllel + G (1+ = ) el + Roto

where €y = max(Cy, + 1,Cp), C3 = 2max(Cy, C2) and Rg(n) is given by (2.82). Hence,
d 1
GO+ <Calle I < G (1+ 5= ) 160Ny + Ralato) (2.58)

Since u, % € L%(0,T; H*(R)), the right-hand side of (2.88) is integrable over (0,7). From (2.76) and (2.25c) we see that

£(0) = 0. The integration of (2.88) from 0 to ¢t € [0,T] yields
t
IEONZ20) + 800/0 €)1 dv (2.89)

1 t t
<1t ) [ 1 ar+ [ Roma.

Now we shall apply Gronwall’s Lemma 0.9 with

t
y(t) = €172 (q)» q(t) = ECc/ E@)I* dv,
0
eCo+1 ¢
(1) = ;252 () = | Bon(d) dv.
eCe 0
Further, let us set
T
R(ne) = [ Ron(d) o, (2.90)
0
- eCeo+1 eCo+1
c(e) =1+Cs o Texp <C’3 Co T) .

We easily show that

t

2(1) < / " Ro(n() a0 = R(n.¢), exp ( / Cet 1T) ,

r(s)ds) < exp (03 =
(1) + /0 " (9)2(0)exp ( [9 t r(s)ds) 49 < R(n,2)er ().

This, (2.89) and Gronwall’s lemma 0.9 yield the estimate

IE®)320) +<Ce / IE@IPd0 < Rp,e)er(e), te [0,T], he (0,h). (2.91)
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By virtue of the relation e;, = £ + 7 and the inequality (v + §)? < 2(72 + 62), we can write

2 2 2
lealBacay <2 (€132 + WliZaey) - Meall® < 2 (I + )

Using (2.91), we deduce that
! 2
||eh(t)\|%2m)+500/0 llen ()" do (2.92)

<2 (Rm,s)cl(s) - In(0) 1350y + <C / ||n<ﬂ>|||2dz9) Lt (0,7, he(0,h),

which already implies estimate (2.83) with the constant

- eCeo +1 eCo+1
Ca(e) =2 (1 + C3 =Co Texp <C’3 Co T)) . (2.93)
O O

2.4 FError estimates in terms of h

Now we derive the first main result of this chapter on the error estimate of the method of lines for the solution of the nonlinear
convection-diffusion problem. It will be obtained by estimating the right-hand side of (2.83) in terms of h.
We assume that s > 2 and the exact solution u satisfies the regularity assumption

o

ot
Then u € C([0,T], H*(2)). As usual, we put n(t) = u(u) — Ippu(t), t € (0,7), and g = min(p + 1,s). Recalling (1.149), we
have

L(0,T; H*(Q)). (2.94)

In()lz2(x) < Ca belu()| ey, K €Tn, t€(0,T), (2.95)
()| () < Ca bl )| ugrey, K € Tho t € (0,T),
()| 2y < Ca bl > [u() | (rey, K € Tho t € (0,T),

where Cy is the constant from Lemma 1.22. Then, a simple manipulation gives

> <|77(t)|12ql(1<) + hcIn()Fz ) + hfczHU(t)HL?(K)) < BCHRPH D |u(t) B 0y
KeTh,

for any ¢t € (0,T). This together with (2.81) implies that
Ra(n(t)) = Ra (u(t) — Wppu(t)) < V3CAR" Hu(t)| gugoy, € (0,T). (2.96)
Similarly, from (2.33), we obtain
Ry(n(t)) = Ry (u(t) = Wppu(t)) < V2CAR*|u(t) | gui), ¢ € (0,T). (2.97)
Moreover, (2.69) and (2.95) give
Re(n(t)) < V20u0" V2 u(t)| gy, t € (0,T). (2.98)

Further, we shall use the notation dyu = 9u/0t and 0,(Ilp,u) = O(Iy,u)/0t. Then definition (1.90) of the interpolation
operator Ilj, and the relation

Or(Tlppu(t)) = pp(Oru(t)) € Shp (2.99)
imply that
Hatn||L2(Q) = (|0 (M ppu — u)HLz(Q) = [[Mhp(Opu) — 8tuHL2(Q) < Cah” |atu‘Hu(Q) : (2.100)

Exercise 2.12. Using the theorem on differentiating an integral with respect to a parameter, prove (2.99).
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Summarizing (2.82) with (2.96), (2.97), (2.98) and (2.100), we see that for ¢t € (0,7"), we have
Ran(t)) = Qgc (Ron(®) + <Ran®)) + 203 (Reln(®))? + [0m(®)3(0)

2
< 208 (VACaR (D)l nncoy + VECAR O (2.101)

+ACLCAR 7 u(t) iy + 2C1CHR |0u(t) 1 g

_ 20303
- eCe

+ 4 CER2 ) ([l ) + 100(®) By ey ) (b + B2)

W20 u(t) | Fn 0y (2h° + 2V6eh + 3¢%)

< Cah2m V) (6712 4 bt 2+ 1h2) (\u(t)ﬁmm + |8tu(t)|?{#(m) :
where
Cy = 4C% max (‘[Cl Cl> (2.102)
Ce
The integration of (2.101) over (0,7 yields

/ Ro(n (2.103)
< Oyh?H=2 (5—1h2 +h+e+ h2) <|U\%2(0,T;Hu(m) + |atu|%2(0,T;H“(m)) .
Furthermore, using (2.29), (1.119) and (2.95), we get
2 o
In@)I" =In() 7 .7 + I7 (n(t), n(1)) (2.104)

< Y (OB + CwCuCrt (3hE IO 32 + (1) iy ) )
KeTy

< C5h2(#71)|“(t)ﬁ{u(9)7 te(0,7),
where Cy = Cf‘(élCWCMC{«l + 1). Hence,

T
eCo /0 lIn()II” dt < eCoCsh” = fulZ2 (g s (2 - (2.105)

Remark 2.13. The above estimates illustrate a typical situation in numerical analysis, where a number of constants appear.
They are often defined recursively in a complicated way on the basis of constants introduced before. As an example we illustrate
this situation by the process leading to the determination of the constant Cy defined by (2.102). This relation contains the
constant C'4 appearing in Lemmas 1.22 and 1.24 and the constant Cy, which is defined recursively in the following way:

Cy = max(Cp + 1, 53)7
Cp = Cps + Ch,
Cps = max(Chpa, Cp3),
N = %CLmaX(ZC’M,i%C*),
Cr =2Lg,
C* = Cl(Cu(1+Cp) + 1)Y2,
Chy = max(2Cy*Cel” 2) [l w.= (e,
Cha = Cpi (1 + Car(1+ C1))Y2,
Chs = Cp1 (1 +3Cr/3)"2,
Ch = (max(d L%,2L% Cq/Cw))'/?,
where C~‘B is the constant from Lemma 1.37, Cys is the constant from Lemma 1.37 (multiplicative trace inequality), Ly is the
constant from the Lipschitz continuity (2.18) of the numerical flux H, Ct is the constant from the inverse inequality (1.86),
Cw is the constant from the definition (1.104) of the weight in the penalty form J7, Cq is the constant from the equivalence

condition (1.20), ¢ is the function from Lemma 2.7 and Ly is the constant from the Lipschitz continuity of the convective fluzes
fs, s=1,...,d.
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Now we are ready to present the final error estimates.

Theorem 2.14. Let Assumptions 2.5 from Section 2.3 be satisfied. Let u be the exact strong solution of problem (2.1) satisfying
(2.75) and let up, be the approzimate solution obtained by the scheme (2.25). Then the error ep, = up — u satisfies the estimate

T
2 2
2.1
i [en(O)30) +Coe [ llen®)I a0 (2.106

< Cy(e)n?r=Y) (|U|2L2(0,T;Hu(n)) + \3tu\%2(o,T;Hu(Q))) ;. he(0,hn),
where Ce is the constant from the coercivity inequality (1.140) of the form éAh =ap+J and 6'2(5) s a constant independent
of h and u, specified in the proof.
Proof. If t € [0,T], then the estimation of the right-hand side of (2.83) by (2.103), (2.105) and (2.95) implies that

T
len ()12 () + 006/0 llen (@)1 v

T T
< Ca(e) (/0 Rq(n(t)) dt + [[n(t)|I72(q) +€Cc/0 |||77(19)|||2d19> :

< Cy(e)h? 2 (|u|iz(o,T;Hu(Q)) + |8tu|%2(O,T;H“(Q))> ;
where Cs(e) is the constant from Theorem 2.11 given by (2.93) and
Co(e) = Ca(e)(Ca + CoCs + C3F) ('R + h + e + 7). (2.107)
This proves (2.106). O O
Remark 2.15. Estimate (2.106) implies that

llu — Uh||Loo(0’T;L2(Q)) = O(h“_l) forh —0+. (2.108)
This is in contrast to the approximation properties (1.98) implying that
|w = Tppull Lo (0,722 (0)) = O(hH). (2.109)

Numerical experiments presented in the next section demonstrate that the error estimate (2.106) is suboptimal in the L°(0,T; L?(2))-
norm. Similarly as in Section 1.7.2 we can derive optimal error estimate in this norm. This is the subject of the next section.

Remark 2.16. From (2.107) and (2.93) we can see that the error estimate (2.106) cannot be used for € very small, because the
definition (2.93) of the constant Cs(e) contains the term of the form exp(C/e), which blows up exponentially for € — 0+. This
is caused by the technique used in the theoretical analysis (application of Young’s inequality and Gronwall’s Lemma) in order
to overcome the nonlinearity in the convective terms. The nonlinearity of the convective terms represents a serious obstacle for
obtaining a uniform error estimate with respect to € — 0+. In Section 2.6 we shall be concerned with error estimates of the
DGM applied to the numerical solution of a linear convection-diffusion-reaction equation, uniform with respect to the diffusion
parameter € — 0+.

2.5 Optimal L>(0,T; L*(2))-error estimate

With respect to Remark 2.15, in this section we derive an optimal error estimate in the L>(0,7; L*(Q))-norm. Similarly as in
Section 1.7.2, the analysis is based on the duality technique. Therefore, we consider only the SIPG variant of the DGM and the
Dirichlet boundary condition on the whole boundary 9.

Let Q C R%, d = 2,3, be a bounded convex polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz boundary 9
and T > 0. We are concerned with the nonstationary nonlinear convection-diffusion problem to find v : Q7 = Q x (0,7) —» R
such that

d

ou | of(u) _ |

T + 82:; 0. eAu+g in Qr, (2.110a)
Ul per (0.1 = UD> (2.110b)
u(z,0) =u’(z), z€Q. (2.110c¢)
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The diffusion coefficient ¢ > 0 is a given constant, g : Q7 — R, up : 92 x (0,7) — R and u° : @ — R are given functions
satisfying (2.2¢), (2.2d) with 9Qp = 9Q, (2.2f), and f; € C1(R), s =1,...,d, are fluxes satisfying (2.2a).

Let us recall the definitions of the forms introduced in Section 2.1 by (2.9), (2.10) (with © = 1), (2.13), (2.11) and (2.23).
Namely, for functions u, € H?(£2,T) we write

Ap(w,v) = ean(w,v) + £J7 (w,v), (2.111)
an(u, o) _K;—h/KVu~chdx—F§h/F(<Vu>-n[<p]+(Vg0> “nfu]) dS, (2.112)
o) = 3 [ tilllas. (2.113)
i) = | g(t)sodware% [ (7o = (V- m)up(e)as. (2.114)
ba(u, ) = —K;n/}(ifs(u)gidx+F§£/FH(u|§L>7u|§R)7n) [plr s

+F§f [l e as.

By (-, -) we denote the scalar product in the space L?(Q2). The weight o is again defined by (2.14). We assume that the numerical
flux H has properties (2.18)—(2.20) from Section 2.2.
Let the exact solution u of problem (2.110) satisfy the regularity condition (2.94). Moreover, let u;, € C*([0,T]; Spp) denote
the approximate solution defined by (2.25) and let IIp;, be the operator of the L?(Q)-projection on the space Sy, (cf. (1.90)).
In Section 2.3.3, we derived the (sub-optimal) estimate from identity (2.78). The term A (Ilp,u — u,§) appearing on the
right-hand side of (2.78) cannot be estimated in “an optimal way” (i.e., of order O(h*)), because, by virtue of (2.80) and (2.96),

|An(Thpu — u, €)] = |Ap(n, )] < eCpRa)Il],

and R,(n) = O(h*~1). Therefore, instead of the L?(Q)-projection II;,, we introduce a new projection Py, for which the terms
mentioned above vanish.

Hence, for every h € (0,k) and t € [0, T], we define the function Pp,u(t) as the Ap-projection of u(t) on Sy, i.e., a function
satisfying the conditions

Phpu(t) € Shp, Ah(Php’U,(t),(ph) = Ah(u(t),goh) V(ph € Shp. (2115)

We are interested in estimates of the functions

0 0
X(6) = u(t) ~ Popu(t) and Dx(t) = gox(t) = o (u(t) ~ Payu(t)), 1€ (0,7,
in the DG-norm || - ||| given by (2.29) and in the L?(Q2)-norm. First, we derive estimates of these functions in the DG-norm.

Lemma 2.17. There ezists a constant Cp. > 0 independent of u,e and h such that

Ix @Il <Cpe W~ Hu(®)lpn(e), t € [0,T], (2.116)
oex ()l <Cpe W'~ Opu(u) ey, t € (0,71, (2.117)

for all h € (0, h).
Proof. In what follows we usually omit the argument ¢ of the functions u, Ppyu, ppu, etc. By (1.138) and (2.115), we obtain

1
SellTapu - Pryull® < An(Mppu — Pryu, Mhpu — Ppyu) (2.118)
= Ah(thu — Php'LL, thu — Phpu) + Ah(Phpu —Uu, thu — Phpu)

=0
= Ah(thu —u, thu — Phpu).

Using the result of Lemma 1.37, we find that

Ap(Mppu — u, Ty — Pryu) < eCp Ry (Mppu — ) [|[Tppu — Pryul,
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where R, is given by (2.81). This and (2.118) imply that
ITpu — Prpull < 205 Ro(Mppu — u). (2.119)

Further, recalling (1.125), we have

llu — Topual] < Co R — iy, (2.120)
Now it is sufficient to use the triangle inequality

Il = e = Papulll < flu = Mapull] + [Mapu = Pryull,

which implies that

lIXIl < (Co +2Cp) Ra(Mypu — u). (2.121)
Finally, the combination of (2.96) and (2.121) gives

IX@)Ill < V3Ca(Co +2C) 0 u(t)|uey, ¢ € (0,T),

which proves (2.116) with Cp. = V3CA(Cy + 253).
Let us deal now with the norm |||0;x|||. As

Ap (u(t) — Phpu(t), (,Dh) =0 Yop € Shp, Vte (O,T)7
from the definitions (2.111) of Ay, for all ¢ € Shp, we have

0= % (An (u(t) = Prpu(t), on)) = An (8(u(t) _afhpu(t)), th> ; (2.122)

ie.,
Ah(atx7 (ph) =0 Y € Shp. (2123)
Similarly as in (2.118), using the coercivity (1.140) of the form A and relation (1.129) from Lemma 1.37, we find that
€
2 110 (Wppu — Py
< A, (6} (thu — Phpu), O (thu — Phpu)) + Ap (8t (Phpu - u), O (thu — Phpu))

=0

= Ah (6} (thu - u), 8,5 (thu - Phpu))
< Cp Rq (0(Wnpu — u)) [0 (T — Py

Hence, we have
10 (Mnpu = Pryu)| < 2C5 R (9 (Mppue — w))
Then, similarly as in (2.120), we get
10:(u = Mapu)|| < CoRa (9 (u — Mapu)) ,
which together with the triangle inequality gives

10¢ (v = Prpu) @)l < [10¢(w — Mppw) ()| + |0 (Hnpu — Prpu) @) (2.124)
< (2Cp + Cy) Ry (0 (u — Mypu)(t)), te€ (0,T).

Finally, we use relation (2.99) and estimate (2.96) rewritten for Oyu(t) — I, (yu(t)):
Ra(Qpu(t) — My (Brult))) < V3CAR ™ |0pu(t) | gy -

This and (2.124) already give (2.117). O O
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In what follows, for an arbitrary z € L?(Q) we shall consider the elliptic dual problem (1.155): Given z € L?(Q2), find v such
that

—AY=z inQ, vlpn=0. (2.125)

Similarly as in (1.157), the weak formulation of problem (2.125) reads: Find ¢ € H}(2) such that

/Vi/J-Vvd:c:/zvdx Yo € Hi (Q). (2.126)
Q Q

As the domain Q is convex, for every z € L?(Q) the weak solution v is regular, i.e., ¢ € H?(Q), and there exists a constant
Cp > 0, independent of z such that

[¥lla20) < CpllzllL2(9)s (2.127)

as follows from [Gri92]. Let us note that H2(Q) C C(Q).
Further, let 11519 be the piecewise linear L?()-projection of the function 1) on Sp; (cf. (1.91)). Obviously, using (1.125),
and (2.96) with p = 2, we have

[ — vl , < CoRa(th — Tn1th) < VBCACAIY|r2(y. (2.128)

Finally, taking into account that the form Ay is the ¢ multiple of the form Aj, from Chapter 1 and using estimate (1.122),
we have

|An (u,v)| < 2¢||ulliollvl]ie  Yu,v € H*(Q,Tr). (2.129)

Now we shall use the dual problem (2.125) to obtain L?(2)-optimal error estimates for x = u—Pjpu and dyx = (u— Pppu);.

Lemma 2.18. There ezists a constant Cpy, > 0 independent of € such that

IX() L2 < CrLh|ut)|me )., te(0,7), (2.130)
||atx(t)||L2(Q) < Cp7Lh“\8tu(t)|Hu(Q), te (O,T)7 (2.131)
for all h € (0, h).
Proof. We have
V2
Ixllr2@) =  sup 10621 (2.132)

0#£2€L2(Q) HZHLQ(Q).

Taking into account that the form A, is the e multiple of the form A; from Chapter 1, we see that by Lemma 1.48, for z € L?()
and 1 satisfying (2.125), we have

(x,2) = %Ah(dax)- (2.133)
Further, the symmetry of A, and (2.115) give
Ap(Ipa), x) = An (6 Op1y) = Ap(u — Prpu, p1p) =0, (2.134)
and therefore,
(x;2) = é Ap (¢ = T, x).- (2.135)
Now, using (2.129), we have
062)] = £ [4n(® ~ T, 0l < 20 = Tl Il o (2130)
Moreover, by (2.128) and (2.127), we obtain
[ — vy, < VBCAChIY 2 (a) < V3CAC,Cphl|2| L2 (0 (2.137)
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Triangle inequality, (1.125), (1.126), (2.96) and (2.116) imply the estimate

IX(®ll1,5 = llu = Prpull, , < [lu=Mppull; , + [Mapu — Prpull ,
< CyRa(u — ppu) + Co||Tpu — Pyl
< CoRa(u — Typu) + Co|[Thpu — ull| + Colllu — Pryull
< CyRa(u — Mpptt) 4+ CoCy Ra(u — Mipu) + Co x|l

< Co (1 + Co)VBCAI u(t) u(e) + CoCpo h ()| 11x

= Coh* Mu(t)|gruy, te€(0,T),
where Cs = Cy (1 + C,)v/3C4 + CyCp,. Summarizing (2.136), (2.137) and (2.138), we find that

(x(£); 2) <2V3CAC,Cph| 2| L2 () Coh*~ |u(t)| an(a)
=Cpr W |u(t)|muo)llzllL2@), t€(0,T),

where Cp1, = 2v/3C4C,CpCs. Hence,
|(x(#), 2)|

Ix(Dllz2) =  sup == < Cpr W' u(t)|gu), t€(0,T),
ozzer2) 1zll2 )

which completes the proof of (2.130).
Finally, let us prove estimate (2.131). Differentiating (2.115) with respect to ¢ yields

Ap(Oex;on) =0 Vopp € Spyp.
‘We have

O X, 2
HatX||L2(Q) = sup w
0£zer2(2) 12llL2(0)

Similarly as in (2.133), we get
(00 2) = = An(,00).
The symmetry of Ay and (2.139) imply that
Ap(Ilp19, 0rx) = An(Oex, IIp1yp) = Ap (O¢(u — Prpu), Ip19p) = 0.
These relations, (2.141) and (2.129) yield
0 2)| = 1AW ~ T, 00| < 20 — Tl oo
The term [|¢) — Ip19)]|; , is estimated by (2.137) and similarly as in (2.138), we obtain

10:x(®)]l1 5 < Coh ™ |Opu(t) ey, t € (0,7).

Finally, from (2.140), (2.142), (2.137) and (2.143), we arrive at estimate (2.131).
0

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

O

Let us note that assuming the symmetry of the form Ay, is crucial in the presented proof. It enables us to exchange arguments
in (2.134). This is not possible in the NIPG and ITPG methods, where the analysis of optimal L°°(L?)-error estimates still

represents an open problem.

Lemma 2.19. Let us assume that u is the solution of the continuous problem (2.110) satisfying condition (2.75), uy, is the
solution of the discrete problem (2.25), Ppyu is defined by (2.115), and ( = Ppyu — up, € Shp. Then there exists a constant

Cy > 0, independent of h € (0,h), such that

b5 (1w, ¢) — ba (un, O < ColllCIl (¥l g0y + (1<l L2(0)) -
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Proof. We proceed similarly as in the proof of Lemma 2.6. The triangle inequality gives

b (u, ¢) — br(un, Q)| < [bn(u, C) — ba(Prpu, C)| + [br(Prpu, ¢) — bn(un, ()| (2.145)

Applying (2.30) with @ := Ppyu and v := ¢ € Sy, we get

1/2
[bn (u, €) = br (Prpu, Q) <Cual[<]] <x||i2<m+ > hxlxll’z2(ax>> - (2.146)
KeTh

(Let us recall that x = u — Pppu). The multiplicative trace inequality (1.78) and the Cauchy inequality give

> huclixleor) < Cnr Y (Racllm oIz + Ix13a i)
KeTh KeTh

1/2 1/2
<Cu h(Z |X%{1(K)> (Z ||X||2L2(K)> + Z 172 )
KeTn KeT KET,

< O (Blxl i e X220 + X3y

The above relations, the inequality |x|q1(o,7,) < [[x|| and estimates (2.116) and (2.130) imply that

> hlx®)ll720x) < Cum (CreCrr BRF1 B+ Cp L) [u(t) Fu o) (2.147)
KeTn

= C7h*|u(t)|Fu >t € (0,7),

where C7 = Cy(CpoCpr + Cp,). Furthermore, (2.146), (2.130) and (2.147) give

1/2
b1 (11, €) = b (P, Q)] < Con (C g+ Cr)' > W fu(8) 10 s- (2.148)
Furthermore, estimate (2.31) with @, := Ppyu € Sy, and vy, := ¢ € Sy, gives

[bn (Prpu, €) = b (un, Q) < CallCl lun — Prpullr2(0) = CoallCIHCN 22 (0)- (2.149)

Finally, inserting estimates (2.148) and (2.149) into (2.145), we obtain inequality (2.144) with C, = max (C’bg,Cbl (CE’,L +
). = m
Now we can proceed to the main result, which is the optimal error estimate in the norm of the space L>(0,T; L%(2)) of the

DG method (2.25) applied on nonconforming meshes.

Theorem 2.20. Let Q C R? d =2,3, be a bounded convex polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz
boundary OS). Let Assumptions 2.5 in Section 2.3 be satisfied. Let u be the exact solution of problem (2.1), where 0Qp = 9 and
0N = 0, satisfying the reqularity condition (2.94) and let uy, be the approzimate solution obtained by scheme (2.25) with the
SIPG wversion of the diffusion terms and the constant Cyy satisfying (1.132). Then the error ey, = up — u satisfies the estimate

HehHLoo(O’T;LQ(Q)) < Cgh*, he (O,B), (2.150)
with a constant Cg > 0 independent of h.

Proof. Let Pp,u be defined by (2.115) and let x and ¢ be as in Lemmas 2.17, 2.18 and 2.19, i.e., x = u — Pppu, ¢ = Ppyu — uy,.
Then e, = up, —u = —x — . Let us subtract (2.25b) from (2.28), substitute ¢ € Sy, for vy, and use the relations

(%52 60) = 5 7 16Oy, An(u(t) = Payu(0), <) =0,

Then we get

| &

ISO1Z2 (@) + An(S(1), (1) (2.151)
= (b (un(t), C(2)) = ba(u(t), C(1))) = (Dex(t), C(1))-

N =
o

t
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The first term on the right-hand side can be estimated by Lemma 2.19 and Young’s inequality. In estimating the second term
on the right-hand side we use the Cauchy and Young’s inequalities and Lemma 2.18. Finally, the coercivity property (1.140)

(where Cc = 1/2) of LAj, = aj + JJ gives the estimate on the left-hand side of (2.151). On the whole, after some manipulation,
we get

d
’n IC@)IZ2 0y + €lllS @I (2.152)

< 2[bn(un(t), C(£)) — b (u(t), C(8)] + 2[(Dex(t), ¢(#))]
< 26 [[CII (7 el a2y + €22 () + 210ex (@) 220 1€ (8) | 220

2 201;2 20,12 2Cb2 2 2 124 2 2
< ellCOI” + =™ ulign @) + = lICIZ2 @) + Cp LA™ |O¢ulizu o) + IOz o)

3
1 1
< lloO” + Con® (HHuln oy + 100ubmiay ) + Co (14 2 ) Ko

where Cg = max(2C7,C3 1, 1). This implies that

d 1 1
n IC@OI7 () < Coh®* (Euﬁqu(n) + |atu|%lu(9)) + Co (1 + 5) €117 2(q)- (2.153)
Using (2.25¢), (1.97), (2.130), we have

ICO)I72 () = Papu(0) = un(0)[|72(qy = Papu(0) = Tapu(0)]|72(q) (2.154)
< 2| Prpu(0) — w(0)[[ 720y + 2/|u(0) = Tapu(0)]|72(q)
<2(C% + Co )W [u 3 (q) = Croh® 16 [} 0y

where C1p = 2(C3 + C31).
Integrating of (2.153) from 0 to ¢ € [0,7] and (2.154) yield

1 t t
||<(t)H2L2(Q) < Coh? | = |U(79)|§1u(9) dd + \&tu(ﬁ)ﬁn(m dv (2.155)
€ Jo 0
1 t
+ Cy (1 + E) /0 ICO)|72 (0 AP + Cro B[00 -
1 t
S Cg (1+ E) / ||<(19)H%2(Q) d19+011h2uN(6,U),

0

where C1; = max(Cy, Cqp) and

1 [t t
N(e,u) = g/o ‘uw)ﬁ{u(g) dd +/0 |6tu(19)|12qu(9) dd + |u0|%1u(ﬂ)'
Now we apply Gronwall’s Lemma 0.9, where we put

y(t) = 1<) 1720 q(t) =0,
r(t) = Co (1+1/e), 2(t) = C11h* N (g, u).

Then, after some manipulation, we obtain the estimate
1
HC(t)H%Q(Q) S Clthlt N(E,U) exXp (09 (1 + 5) t) . (2156)

Since e, = —x — (, to complete the proof, it is sufficient to combine (2.156) with the estimate (2.130) of ||x(¢)||z2(q) in
Lemma 2.18. O O

Exercise 2.21. Prove estimates (2.155) and (2.156) in detail.
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2.6 Uniform error estimates with respect to the diffusion coefficient

In Sections 2.1-2.5, error estimates for the space DG semidiscretization were derived in the case of nonlinear convection-diffusion
problems. From the presented analysis we can see that the constants in these estimates blow up exponentially if the diffusion
coefficient € — 0+. This means that these estimates are not applicable, if € > 0 is very small. (See also Remark 2.16.) There is
question as to whether it is possible to obtain error estimates that are uniform with respect to the diffusion coefficient ¢ — 0+
of convection-diffusion problems.

In this section we are concerned with the error analysis of the DGM of lines applied to a linear convection-diffusion equation,
which also contains a reaction term, and its coefficients satisfy some special assumptions used in works analyzing numerical
methods for linear convection-diffusion problems (cf. [RST08], Chapter III, or [HSS02]). As a result, we obtain error estimates,
uniform with respect to the diffusion coefficient € — 0+, and valid even for € = 0.

2.6.1 Continuous problem
Let © € R? (d = 2 or 3) be a bounded polygonal (for

d:
and T > 0. We set Qpr = Q x (0,7). Let v : Qp = Q x
00 =00~ UINT, and for all t € (0,7),

2) or polyhedral (for d = 3) domain with Lipschitz boundary 0
[0,7] — R be a given transport flow velocity. We assume that

v(z,t)-n(z) <0 on 9N, (2.157)
v(z,t) - n(xr) >0 on OQT,

where n(z) denotes the outer unit normal to the boundary of Q. We assume that the parts 9Q~ and 9QF are independent
of time. With respect to our former notation, we can write 9Qp = 90~ and 9Qx = 9NT. The part 9Q~ of the boundary
0N represents the inlet through which the fluid enters the domain Q. The part of 9Q", where v - n > 0, represents the outlet
through which the fluid leaves the domain 2, and the part on which v - n = 0 represents impermeable walls.

We consider the following linear initial-boundary value convection-diffusion-reaction problem: Find u : @7 — R such that

ou

5 +v-Vu—cAu+cu=g in Qr, (2.158a)

u=up on N x (0,7), (2.158b)
ou

€5, = 9N on 00" x (0,7), (2.158c¢)

u(z,0) = u’(z), =€ (2.158d)

In the case e = 0, we put gy = 0 and ignore the Neumann condition (2.158¢).

Equation (2.158a) describes the transport and diffusion in a fluid of a quantity u as, for example, temperature or concentration
of some material. The constant ¢ > 0 is the diffusion coeflicient, ¢ represents a reaction coeflicient, and g defines the source of
the quantity u. Such equations appear, for example, in fluid dynamics or heat and mass transfer.

We assume that the data satisfy the following conditions:

g€ C(0,T}; 1(92), (2.1599)
ug € L*(Q), (2.159b)
up is the trace of some u* € C([0,T]; H*(Q)) N L>®(Qr) on 9Q~ x (0,T), (2.159c¢)
v € C([0,T); WH>(Q)), |v| < Cy in Q x [0,T], |Vv| < Cy ae. in Qr, (2.1594)
ce C([0,T]; L (), |c(z,t)] < C. a.ein Qr, (2.159¢)
1
c— §V -v >y > 0in Qr with a constant o, (2.159f)
gy € C([0,T]; L*(991)), (2.159g)
e >0. (2.159h)

Assumption (2.159f) is not restrictive, because using the transformation u = e*w,a = const substituted into (2.158) leads to

the equation for w in the form
0
8715 +v - Vw —ceAw + (c + a)w = ge~ .
Condition (2.159f) now reads ¢ + o — %V -v > > 0 and is satisfied if we choose a > 0 large enough.
The weak formulation is derived in a standard way. Equation (2.158) is multiplied by any ¢ € V = {p € H'(Q); p|sq- = 0},
Green’s theorem is applied and condition (2.158c¢) is used.
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Definition 2.22. We say that a function u is the weak solution to (2.158) if it satisfies the conditions
u—u* € L*0,T;V), ue L®Qr), (2.160a)

d
—/ ugodx—l—e/ Vu - Vedx —|—/ (v-n)updS — / uV - (pv)dz (2.160Db)
dt Jo Q o0+ Q

+/cu<pdac:/gg0dx+/ gnpdS
Q Q o+

for all o €V in the sense of distributions on (0,T),
u(0) = u" in Q. (2.160c)
We shall assume that the weak solution u exists and is sufficiently regular, namely,

% € L*(0,T; H*(Q)), (2.161)
where s > 2 is an integer. Then also u € C([0,T); H*(2)) and it is possible to show that this solution w satisfies equation
(2.158a) pointwise (almost everywhere). (If ¢ > 0, then with the aid of techniques from [Lio96], [Rou05] and [Rek82], it is

possible to prove that there exists a unique weak solution. Moreover, it satisfies the condition du/0t € L?(Qr).)

2.6.2 Discretization of the problem

Let T, be a standard conforming triangulation of the closure of the domain € into a finite number of closed triangles (d = 2)
or tetrahedra (d = 3). Hence, the mesh 7}, satisfies assumption (MA4) in Section 1.3.2. This means that we do not consider
hanging nodes (or hanging edges) in this case. Otherwise we use the same notation as in Section 1.

We assume that the conforming triangulations satisfy the shape-regularity assumption (1.19). For K € T, we set

0K~ (t) ={z € 0K; v(z,t) - n(x) < 0}, (2.162)
OK™(t) ={z € 0K; v(x,t) - n(x) > 0}, (2.163)

where n denotes the outer unit normal to K. Hence, 0K ~(t) and K ' (t) denote the inlet and outlet parts of the boundary
of K, respectively. In what follows we shall not emphasize the dependence of 9K+ and K~ on time by notation.

In order to derive error estimates that are uniform with respect to e, we discretize the convective terms using the idea of the
upwinding (see (2.16)). This choice allows us to avoid using Gronwall’s Lemma, which causes the non-uniformity of the error
estimates in Sections 2.3 and 2.5 (see Remark 2.30). Multiplying the convective term v - Vu by any ¢ € H?(Q,T;,), integrating
over element K and applying Green’s theorem, we get

/K(U-Vu)gpdx:—/KuV-(<pv)dx+/8K(v-n)ugodS (2.164)
:—/KuV-(<p'v)dx+/(9K7(v~n)u<pd5+/aK+('u-n)u<pdS.

On the inflow part of the boundary of K we use information from outside of the element K. Therefore, we write there u™
instead of u. If 2 € 907, then we set u™ (z) := up(x). The integrals over 9K T, where the information “flows out” of the
element, remain unchanged. We take into account that [u] =0 on I' € F and u|yq- satisfies the Dirichlet condition (2.158b).
We further rearrange the terms in (2.164) and find that

/ (v-Vu)pdx (2.165)
K
:7/ uV~(<pv)dx+/ (v~n)u*g0dS+/ (v-n)updS
K oK~ K+
:—/ uV~(<pv)dx+/ (v-n)updS — (v-n)updS
K oK OK+UIK -
=0

+ / (v-n)u~pdS —|—/ (v-n)updS
0K~ OK+

:/K<v-vu)<pdx+/ (v-m)(u" —u)pdS

0K~

:/ (v Vu)pdS — (v-m)[ulpdS — (1) (1 — up)pdsS,
K OK—\0Q 9K~ Mo

where we set [u] =u —u~ on 0K~ \ 0.
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Remark 2.23. Let us note that identity (2.165) can be derived from the relation

/(U.Vu)gpdx:—/ uV - (pv)dz + Z /HuF ,uF nr)gadS7
K

rCoK
where H is the numerical flux given (in analogy to (2.16)) by

v-nu, ifv-n>0

v-nu, ifv-n<0 (2.166)

H(ul,u2,n){

and H(uy,uz,n) =v-nup on 0K~ N oK.
Exercise 2.24. Verify Remark 2.23.

Now we proceed to the derivation of the discrete problem. We start from equation (2.158a) under assumption (2.161),
multiply it by any ¢ € H?(Q,T;,), integrate over each element K, apply Green’s theorem to the diffusion and convective terms
and sum over all elements K € Tp,. Then we use the identity (2.165) for convective terms, add some terms to both sides of the
resulting identity or vanishing terms (similarly as in Section 1.4 in the discretization of the diffusion term) and use the boundary
conditions (we recall that 0Qp = 00~ = Uge7;, 0K~ NON). After some manipulation we find that the exact solution u satisfies
the following identity for ¢ € H2(2, Tj):

(&abit) ’ 9") + An(u(t), ) + ba(u(t), @) + en(u(t), ) = lu(#)(1) (2.167)
for a.e. te€(0,7),

where the forms in (2.167) are defined in the following way:

(u, ) =/wpdw, (2.168)
Q
Ap(u, ) = ean(u, 9) + eJi (u, ), (2.169)
an(u, @) Z / Vu-Veodz — Z / (Vu) -np] +O(Vp) -nfu]) dS
KeTh rerf
- Z/ ((Vu-n)p + O (Ve -n)u) dS, (2.170)
Kot JoK—nog
(u, ¥) Z / @] dS + Z / oupds, (2.171)
reri KeT, 7 OK™NoQ
(u, ) Z / (v-Vu)pdr — Z / NulpdS (2.172)
KeTh KeT, VoK™ \69
- Z / (v-n)updsS,
rer, JoK—noo
cn(u, p) :/ cupde, (2.173)
Q
14 / dx + / dS +¢ / ou ds
w(e)t) = e K;— K+maQ 0 K;— K~ NaQ pltle
> / up(®) (Ve n)ds— 3 / (v - m)up (L) dS. (2.174)
Kt Jox-noo Kt Jor-noo

The weight o|r is defined by (1.104), where hr is given by (1.24) or (1.25) or (1.26) and satisfies (1.20). The constant Cy > 0
from (1.104) is arbitrary for the NIPG version, and it satisfies condition (1.132) or (1.139) for the SIPG or IIPG version,
respectively.

In the form representing the discretization of the diffusion term we use the nonsymmetric (NIPG) formulation for © = —1,and
the incomplete (ITPG) formulation for ©® = 0 or symmetric formulation (SIPG) for © = 1.

The approximate solution will be sought for each ¢ € (0,7) in the finite dimensional space

— {p e L*(Q); ¢l € P,(K) VK € T}, (2.175)

where p > 1 is an integer and P,(K) is the space of polynomials on K of degree at most p.
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Definition 2.25. The DG approximate solution of problem (2.158) is defined as a function uy such that

up, € CH([0,T); Shp), (2.176a)
(2% 00) + (00, ) + b )00) + cnCun 0 ) = a0

Yoy € Shp YVt € (O,T), (2.176]:))
(un(0),n) = (u®,0n)  Von € Shy. (2.176¢)

If e = 0, we can also choose p = 0. In this case we get the finite volume method using piecewise constant approximations.
Thus, the finite volume method is a special case of the DGM.

2.6.3 Error estimates

Let us consider a system {73, },¢ (0,7)> h > 0, of conforming triangulations of € satisfying the shape-regularity assumption (1.19).
By IIj, we again denote the Sj,,-interpolation defined by (1.90) with approximation properties formulated in Lemma 1.24. Thus,
if y =min(p+1,s), s>2and v € H*(K), then (1.93)—(1.95) hold.

If we denote

€ =up — ppu, 1 = ppu — u, (2.177)

where u is the exact solution satisfying the regularity conditions (2.161) and uy is the approximate solution, then the error
en, =up —u=~&+mn. By (1.93)—(1.95) and (2.100), for all K € T, and h € (0, h) we have

Inllz2(x) < Cah’ulge k), ( )

e iy < Cal® = ul o sy, ( )

nlm2(x) < Cah® 2 Julgu k), (2.180)

Ml 22 @) < Cah¥|ulgn ), ( )

10l L2y < Cah® |0pul iy » (2.182)

almost everywhere in (0,7"), where dyn = 9n/0t and Oyu = Ou/Ot. If p > 0 and s > 1, then (2.178), (2.179), (2.181) and (2.182)
hold as well, as follows from (1.92).

In the error analysis we use the multiplicative trace inequality (1.78), the inverse inequality (1.86) and the modified variant
of Gronwall’s lemma 0.10. For simplicity of notation we introduce the following norm over a subset w of either 02 or dK:

Iellv.w = Vv nlel 2w, (2.183)

where m is the corresponding outer unit normal.
Now we shall prove the following property of the form b, given by (2.172).

Lemma 2.26. There exist positive constants 61;/ and Cy independent of u, h, € such that

1

b Ol < 7 - (el oxrn00 + IENE oxe-v00) (2.184)

KeTn
+Co Y Inlle2 o€l 2 ) + Ra(n),
K67-h
where
_, .

Ra() =Gy Y (Illzaco nlsms oy + B Il ey ) (2.185)
KeTy,

Cy =Cy(1+ CACy), C, =CoCu (2.186)

and C,, is the constant in assumption (2.159d).
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Proof. Using (2.172) and Green’s theorem, we find that

bn(n,€) = (v-Vn)§da (2.187)
n(n ng:n (/K 7
- wemenas - <v-n>£<n—n>ds>
OK ~NoQ OK—\0Q
= Z </8K(v~n)§77dS/K77(v~V§)da:/Kn§V~'vdx

KeTh
- / (v n)endS — (v ) — ") ds> ,
OK—NOQ K —\9Q

where the superscript ~ denotes the values on 0K from outside the element K. Hence,

br (1, )| < Z/ Vo dz| + | Y / néEV - vde (2.188)
KeTy, KeTy
. ds — . ds
i ([ wmenas— [ weme

—/ <v-n>£<n—n->d5> .
OK—\00

The second term on the right-hand side of (2.188) is estimated easily with the aid of the Cauchy inequality and assumption
(2.159d):

> [ 0V vdn| <C0 3 Iz €l (2.189)
KeTh, KeTh
Since
Z/ (v-n)éndS = — Z/ (v-n)¢n~ds (2.190)
KeT;, Y OKT\oQ KeT, JOK—\oQ

and v-n > 0 on KT, with the aid of Young’s inequality, the set decomposition
OK =0KT U (0K~ NoQ) U (0K~ \ 00)

and notation (2.183), the third term on the right-hand side of (2.188) can be rewritten and then estimated in the following way:

S (/am(v-n)fndSﬂL/ﬁK\m{(v-n)fn—(v-n)f(n—n‘)} dS)

KeTy

K;Th (/8K+masz(v -n)éndS + /0K+\ag(v -n)éndS + /(91(—\89(” -n)n & dS) ‘
> ( | womemas+ [ PRCETNC £>d5>

KeTh
/ (v-n)&? dS’+/ v - nl[¢]? dS) (2.191)
OK+NIQ AK~\0Q

/ (v-n)n? dS+/ lv-n|(n~)*dS
rer, \Jor+noa K —\0Q

(e o1+ o + IENE 01— \on)
(

1912 o s + 117 13,0110 -
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Using the multiplicative trace inequality, the boundedness of v and estimates (2.178) and (2.179), we get

Z (Hﬁ”i,axmag + ”n_”i,aK*\{)Q) (2.192)
KeTy,

<Co Y Inlifecony < CoCar Y (Inllzcaey sy + A Il ) -
KeTn KeTs

By virtue of the definition (2.177) of 1 and (1.89)—(1.90), the first term on the right-hand side of (2.188) vanishes if the
vector v is piecewise linear, because v - V&|x € P,(K) in this case. If this is not the case, we have to proceed in a more
sophisticated way. For every ¢ € [0,7) we introduce a function II,;v(t) which is a piecewise linear L?(£2)-projection of v(t) on
the space Sp,. Under assumption (2.159d), by (1.96),

||’U — th’l)”Loo(K) < CAhK|’U|W1,oc(K), KeTy, he (0, }_l) (2193)

The first term in (2.188) is then estimated with the aid of (1.89), (1.86), (2.193), the Cauchy inequality and assumption (2.159d)
in the following way:

Z / n(v-VE¢)dz (2.194)
KeT, * K
< Z /n(thv-Vf)dx + Z /n((v—thv)-Vﬁ)dx
KeT;, WK KeT;, K
= 3 | [ - Tw)- VO de| £ 3 o = Waroll o Il el
Ket, WK KeTs
< Z Cahg |vlwre () [nllp2c) Crhg €l L2
KE,]-}L
< CoCaCr Y nllzzo) €l L2y

KeTy

Using (2.189), (2.191) and (2.194) in (2.188), we obtain (2.184) with constants defined in (2.186). This finishes the proof of
Lemma 2.26. O O

Further, by (2.80) and Young’s inequality,

~ 9 ~ 9
[An(n, )| < eCaRaMENl < SIIEN° +CERa(m)? = ZIEIN® + R (), (2.195)
where
Ram) =C3 Y~ (Il + W nlire oy + Al ) - (2:196)
KeTh

Finally, the Cauchy inequality gives

len(m, )] < Cellnllz )l 2 @), (2.197)
1(0en, )1 < [10enll 120 1€l £2(02)- (2.198)

Now we can formulate the abstract error estimate.

Theorem 2.27. Let us assume that {Tn}e(o,n) 18 @ system of conforming shape-regular triangulations (cf. (1.19)) of the
domain Q0 and let assumptions (2.159) be satisfied. Let us assume that the constant Cyy > 0 satisfies the conditions in Corollary
1.41 for NIPG, SIPG and IIPG versions of the diffusion form. Let the exact solution u of problem (2.158) be regular in the
sense of (2.161) and let uy, be the approximate solution obtained by the method of lines (2.176). Then the error e;, = up —u
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satisfies the estimate

€ t t
(hent®lieen +5 [ Men@lIPa0+ 230 [ en(@lF ey a0 (2:199)

t
1 1/2
3 [ 2 (Ilen® Iy ax000 + Nen® I on-opon) 49)
0 KeTh

1/2

< @( /O t@Rl(nw)) + Rz(nw))dﬂ)

o ()

t
+ 2\/5/0 (||77(19)HL2(Q>(CC +C) + ‘ L2<Q>) v
1/2

t
€
V2 (100 + [ GO + 200000 s )+ Reln() a0)
te0,T], he (O,B),
where Ry and Rs are given by (2.196) and (2.185), respectively.

Proof. The proof will be carried out in several steps.
We subtract equation (2.167) from (2.176b) and for arbitrary but fixed ¢t € [0,T], we put ¢ := £(t) to get

= (atna 5) - Ah(na f) - bh<777 f) - ch(na 5)

Obviously,
1d, .9
(0:€,6) = §EIIEIIL2(Q), (2.201)
and, in view of Corollary 1.41,
€ 2
An(&,€) = SlliEll (2.202)

Further, let us rearrange the terms in the form b;,. We have

(6,6 = Y < /K (v- V)¢ do - /8 L e M\m(v-n)[ﬂde)

KeTy,

_y <_;/K<v.v>52dx+;AK(u-n)f2dS— (v-n)*ds

KT, DK~ NIQ

7/ <v~n>s<ss>d5> |
OK—\09Q

Using the decomposition 0K = 0K~ UJK™T, we get

(&€ = Y ;(—/}(§2V~vdx—/aKmag(v.n)EQdS

KeTh

—/ (v-n)(€ — 266 dS
OK—\oQ

-n)e2ds -n)E2ds | .
Jr/fmmag(v m +/mr<+\an<v m )

Now, by virtue of the relation

2 /6K+\BQ(U mERdS=- ) /a (v m)(€7)" 5, (2.203)

KeTy KeTy, K=\0Q
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definition (2.162) and (2.183), we find that

CEREDD (‘ /Kg Vovdes /aKfmaQ(” et ds (2.204)

KeTy

[ wem@ -+ eas+ [
9K —\0Q

OK+tNoQ

_.1 _ 2 . . 2
> ( /Kg v vdx+/{9K7HGQ|(v n)[¢? ds

KeTn

(v-n)E? dS)

(€2 — 2ce— —\2
e e e as + |

OK+NoQ

[CROIs dS)

1 1
=3 Z (HgHi,BK—ﬁaQ"’_H[g]”i,aK—\BQ"_”5”%,81(‘*’069) —§/Q§2V'”d$-

KeT
Finally,
en(:€) :/ & d. (2.205)
Q
On the basis of (2.200) - (2.202), (2.204) and (2.205) we obtain the inequality
1d 2 9 2 1 2
5 il + SN+ [ (= 5V -0t da (2206)
1
+3 2 (el oxcnon + NENE oxc-r00)
KeTh

<10, O + [An(n, O] + [bn (0, )| + len(n, €]
Now, assumptions (2.159¢), (2.159f) and inequalities (2.184), (2.195), (2.197) and (2.198) imply that

d 3 2 1
EHE”%%Q) + §|||f\|| + 2%0l1€l|7 20 + By Z (Hf”%,a}maﬂ + H[&HI%,@K*\@Q)
KeTh

< 20€lz2) (Ilzo)(Ce + To) + 190mll (g ) + 22 R (1) + 2Ra (). (2.207)

Integrating (2.207) over (0,¢) and using the relation £(0) = 0, we get

t
3
€172 () +/0 §|”€(79)|”2d19+270||§||%2(Qt) (2.208)

t

1
43 X (160wy0m000 + IEONE @, o5 o on) 49

0 KeTy,

t
<2 [ e@llaen () iz (Co+ o)+ 1m0l 0) 00

t
+2 [ ER0) + Ran(0))d0.
0
As the last step we make use of the modified Gronwall’s Lemma 0.10 with
x(t) = 1€E@) 22, (2.209)

t
9
R(t) = 5 / llE@II 9 + 230172 a0

t

| 3 (1@IBaymnom + NE@IE ) orc-onon) 4.
0 KeThn
t

(eR1(n(Y)) + Ra2(n(v))) dd,

B(t) = |In(t)ll 20 (Ce + Cb) + 10m(t) || 12(q) -

N =

_|_

A(t) =2

S—
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For simplicity, we denote the left-hand side of inequality (2.208) as L(&,t). Then for t € [0, T] we get

t 1/2
L(§,t) < (2/0 (eR1(n(t)) +Rz(77(t)))d79) (2.210)

t
+ [ (0l €+ Co) + 10020 00
To obtain the estimate of e, = up, — u = £ + 1, we note that
lenl22cay < 2 (€132 + InllEe )

llexll® < 2 (ll€N® +Hln\ll>

lenlls axnon < 2 (||f||u axnoa + 11ll2 axnsq) -

Ilen]ll2 OK\00 = v,@K*\@Q + ”[77]”1;,8}(*\89) .

We can find that

VI{en,t) SVEVLED + L) < V2 (VIED + VID) . (2.211)

Similarly as in the proof of (2.192), under the notation (2.185) and (2.186), we find that

>~ (Inl2 orcnon + 113 ox-\00) < 2Ra(n). (2.212)
KeTy
Now, from (2.210), (2.211) and (2.212) it follows that
t 1/2
Elent) < 2( [ ERiln0) + Ran(0))) a0) (2.213)
0
t JR—
V2 [ (InOllaen (Ce+ T + oo, ) a0

t 1/2
+v2 (IIn(t)IIQLz(Qﬁ / (S +230lInl132 ) + Ra(n(@))) dﬂ) ,

which is the desired result (2.199). O O
Now, we formulate the main result of this section, representing the error estimate in terms of the mesh-size h.

Theorem 2.28. Let us assume that {Th}ye(o,n) is a system of conforming shape-regular triangulations (cf. (1.19)) of the domain
Q and let assumption (2.159) be satisfied. Let us assume that the constant Cy > 0 satisfies the conditions from Corollary 1.41
for NIPG, SIPG and IIPG versions of the diffusion form. Let the exact solution u of problem (2.158) be regular in the sense of

(2.161) and let uy, be the approximate solution obtained by the method of lines (2.176). Then the error e, = up, — u satisfies the
estimate

1/2

13 2 9
ax [en(®llae + | 5 [ Nlea@I 0+ 2nollenE=can (2.214)

0
1/2

53 / len(®)20 oxnon + 1ex Ol ox- @non)

KETh 0

< Ch* (Ve + Vh),
where C' > 0 is a constant independent of € and h.

Proof. Estimate (2.214) will be derived from the abstract error estimate (2.199) and estimates (2.178) —(2.182) of the term 7.
By (2.196), (2.185), (2.178) - (2.180), the inequality hx < h and the relation

Z ‘“|Hu(1<) |U|Hu(9)a (2.215)
KeTh
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we have

Ri(n) < 3CECR* " ult gy, (2.216)
Ry(n) < 2C, CHR* ul3 ) (2.217)
From (2.104), we have
4Cw C _
Il < €3 (1+ 2E 00 ) 2 Dlufy . (2.218)

Now, estimates (2.178), (2.182), (2.199), (2.216) - (2.218) and the inequality v/a + vb + /¢ < V3(a 4+ b + ¢)'/? valid for
a,b,c > 0, imply that

T 1/2
g 2 2
s len(@llem + 5 [ Nen(II a0+ 2vollenliary (2.219)
0
T 1/2
1 )12 ]I dt
+ 5 Z len(l5@),0rno0 + llen(Olsw).0x- @00
KeTnp
1/2

T
< ﬁ((:ascgcih““1>+2Cb’Cih2“1) /0 Iu(ﬁ)l%(ndﬁ>

T T
+2v/6 (C’A(CC +Ty)h* / ()] g1 (0 A9 + C b / 10:(9) 10 0 dﬁ)
0 0
+V6 (Cih%maxtem [a(t) s gy

4Cw C _ T 1/2
+C2 (270h2“ + %(1 + %)h%ﬁl) +26’b'h2“*1> /0 [ (9) 200 0 dz9> }

The above inequality and the inequality 2 < h already imply estimate (2.214) with a constant C depending on the constants
Cp, C’A,éb/, C.,Chy, h,v0,Cw,Cu,Cr and the seminorms

ulr2 (0,510 (0))s [ulro,msme))s [uleo, e @)y 108w 1o myme o)) - O
O
Exercise 2.29. (i) Prove estimate (2.212) in detail.
(ii) Verify relations (2.211).
(iii) Express the constant C from the error estimate (2.214) in terms of the constants CNZ'B, Cy,..., and the norms of u and

8tu.
(iv) Prove relations (2.190) and (2.203) in detail.

Remark 2.30. Let us omit the integrals over 0K~ N OQ and 0K~ \ 0Q in the form by, and the corresponding terms on the
right-hand side in the definition of the approzimate solution uy, (which means that we cancel upwinding). Proceeding in the same
way as before, we obtain the estimate of the type

d 1
Gl +ellel 42 [ - 3V vedos 3 [ oometas
Q KeT;, OK

< Ceh?H =1 4 Ch?# 4 ||€]13 (- (2.220)

We can see that it is difficult to handle the terms fF (v-n)E2dS on the left-hand side, as v-n may be both positive and negative.
We can make some rearrangements, but then it is necessary to use the standard Gronwall’s Lemma 0.9 and we obtain a term
like exp(cT'/e) on the right-hand side of the final estimate, which is not desirable, especially for small €. The use of upwinding
is therefore important for obtaining the error estimate uniform with respect to the diffusion coefficient €. Similar result is valid
even on an infinite time interval [0, +00) as was shown in [FS04].

Exercise 2.31. Prove estimate (2.220) and the error estimate following from (2.220).
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2.7 Numerical examples

In Chapter 1 we presented numerical experiments which demonstrate the high order of convergence of the discontinuous Galerkin
method (DGM). However, similar results can be obtained for the standard conforming finite element method (FEM) (e.g.,
[CiaT9]). Moreover, in comparison with conforming FEM, DGM requires more degrees of freedom for obtaining the same level
of computational error. On the other hand, the numerical solutions obtained by the conforming FEM and DGM are completely
different in the case of convection-diffusion problems, particularly for dominating convection.

Let us consider a simple stationary linear convection-diffusion boundary value problem to find such a function u that

U Au=1 i Q=(0,1)x (0,1), (2.221)
6:61

u=0 on 01,

where € > 0 is a diffusion coefficient. The exact solution possesses an exponential boundary layer along z; = 1 and two parabolic
boundary layers along z2 = 0 and z2 =1 (cf. [RST96]). In the interior grid points the solution u(x1,x2) ~ ;.

We solved this problem with the aid of the conforming FEM and the IIPG variant of DGM on a uniform triangular grid
with spacing h = 1/16 with the aid of piecewise linear approximation. Figures 2.1 and 2.2 show the approximate solutions for
e=10"1, 1072, 1073, 1074, 10~° and 10~° obtained by FEM and DGM, respectively.

We can see that the conforming finite element solutions suffer from spurious oscillations whose amplitude increases with
decreasing diffusion coefficient. On the other hand, for ¢ = 10!, 1072 and 103 the discontinuous Galerkin solution contains
spurious overshoots and undershoots only in the vicinity of the boundary layers, but inside the domain there are no spurious
oscillations. These overshoots and undershoots completely disappear for ¢ < 1. It is caused by the fact that the Dirichlet
boundary condition is imposed in a weak sense with the aid of the boundary penalty. From this point of view, the DGM does
not require such sophisticated stabilization techniques as the conforming FEM (see [JKO07] for an overview).
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Figure 2.1: Linear convection-diffusion equation, P; conforming finite element method, horizontal cut at x5 = 0.5 (left), vertical
cut at 1 = 0.5 (center), 3D view (right), for e = 10!, 1072, 1073, 10~%, 10~° and 107°.
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Figure 2.2: Linear convection-diffusion equation, P; discontinuous Galerkin method, horizontal cut at xo = 0.5 (left), vertical
cut at 1 = 0.5 (center), 3D view (right), for e = 10!, 1072, 1073, 10~%, 10~° and 107°.
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Chapter 3

Time discretization by the multi-step
methods

3.1 Backward difference formula for the time discretization

In Section ??, we presented the full space-time discretization of the nonstationary initial-boundary value problem (?7?) by the
semi-implicit backward Euler time scheme (?7?). This scheme has a high-order of convergence (depending on the degree of
polynomial approximation) with respect to the mesh-size h, but only the first order of convergence with respect to the time step
T.

In many applications, computations with a scheme having the first-order of convergence with respect to 7 are very inefficient.
In this section we introduce a method for solving the nonstationary initial-boundary value problem (2.1) which is based on a
combination of the discontinuous Galerkin method for the space semidiscretization and the k-step backward difference formula
(BDF) for the time discretization. We call this technique as BDF-DGM. The BDF methods are widely used for solving stiff
ODEs, see [HNWO00], [?].

Similarly as in Section 7?7, the diffusion, penalty and stabilization terms are treated implicitly, whereas the nonlinear
convective terms are treated by a higher-order explicit extrapolation method. This leads to the necessity to solve only a linear
algebraic problem at each time step. We analyze this scheme and derive error estimates in the discrete L>(0,T; L?(2))-norm
and in the L2(0,7; H'(Q2,T3))-norm with respect to the mesh-size h and time step 7 for k = 2, 3. Mostly, we follow the
strategy from [?]. In this section we analyze only the SIPG technique which allows us to obtain h-optimal error estimates in
the L?(Q)-norm. Concerning NIPG and IIPG approaches, see Remark 3.9.

We consider again the initial-boundary value problem (2.1) to find u : @7 — R such that

d

ou Ofs(u) i

E—s—; oz, =eAu+g inQr, (3.1a)
u|o0px(0,1) = UD, (3.1b)
en - Vu |8QN><(O,T) = gn, (3.1c)
u(z,0) =u’(z), =€ (3.1d)

We assume that the data satisfy conditions (2.2), i.e.,

f=(f1,..., fa), fs € CY(R), f. are bounded, f,(0)=0, s=1,...,d,
up = trace of some u* € C([0,T]); H*(Q)) N L*>®(Qr) on 9 + D x (0,T),
e>0, geC([0,T;L*(), gy € C([0,T);L*(80n)), u® € L*(Q).

We suppose that there exists a weak solution u of (3.1) which is sufficiently regular, namely,
u € WH(0,T; H¥(Q)) N W (0, T; H (Q)) n WF12°(0, T; L*(Q)), (3.2)

where s > 2 is an integer. Such a solution satisfies problem (3.1) pointwise. Under (3.2), we have u € C([0,T]; H*(Q)), u’ €
C([0,T); L?(Q2)), where u’ means the derivative of du(t)/dt. (For the definitions of the above function spaces, see Section 0.1.5.)
The symbol (-, -) denotes the scalar product in the space L?(2).
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k al7zik7k ’O /BZ’ - 7k
1 1 -1 1
3 1
2 8 2 1 2 -1
11 3 1
3, w3 3 11 3 3

Table 3.1: Values of the coefficients a;, ¢ =0,...,k, and 5;, i=1,...,k, for k=1,2,3.

3.1.1 Discretization of the problem

We use the same notation and assumptions as in Sections 1.4 and 2.2. This means that we suppose that the domain €2 is polygonal
if d = 2, or polyhedral if d = 3, with Lipschitz boundary. By 7, we denote a partition of the domain 2 and use the diffusion,
penalty, right-hand side and convection forms Ay, an, €y, J7, by, defined in Section 2.2 by relations (2.9) - (2.13) and (2.23). Let
p > 1 be an integer and let Sy, be the space of discontinuous piecewise polynomial functions (1.34). Moreover, we assume that
Assumptions 2.5 in Section 2.3 are satisfied. Let us recall that the functions fs, s = 1,...,d, are Lipschitz-continuous with
constant Ly = 2Ly, where the constant Ly is introduced in (2.18).

Furthermore, as was already shown (cf. (2.28)), the exact solution u with property (3.2) satisfies the consistency identity

(?Z(t)mh) + Ap(u(t), vp) 4 by (u(t), vi) = n(vs) (t) Yo, € Spy ¥t € (0,T). (3.3)

Now, because of time discretization, we shall consider a uniform partition of the time interval [0,7] formed by the time
instants ¢t; = j7, j =0,1,...,r, with a time step 7 = T/r, where r > k is an integer. The value u(t;) of the exact solution will
be approximated by an element u?l € Shp, 7=0,...,7.

Let k > 1 be an integer. The time derivative in (3.3) will be approximated by a high-order k-step backward difference formula

0 1 ; i
8—1:(tj+k) - (aku +apqul +aou§b> = Za it (3.4)
where ujJr ~u(tjq and a;, ¢ =0,...,k, are the so-called BDF coefficients given by
"1 (kY 1
akzzg, ai:(—l)k1<i>k_i, i=0,...,k—1 (3.5)
i=1

In order to obtain an accurate, stable, efficient and simple scheme, the forms A; and ¢, will be treated implicitly, whereas the
nonlinear terms represented by the form by, will be treated explicitly. In order to keep the high order of the scheme with respect
to the time step, in b, we employ a high-order explicit extrapolation

k
u(tin) = (B B B ) = 3 B T (36)
i=1
where 8;, i = 1,...,k, are the coefficients given by

B =1 (

Table 3.1 shows the values of a;;, i =0,...,k,and §8;, i =1,...,k, for k =1,2,3.
Now we are ready to introduce the full space-time BDF-DG discretization of problem (3.1).

k
) = —ap_ii, i=1,...,k (3.7)
7

Definition 3.1. Let k > 1 be an integer and let uj, . .. ,u§71 € Shp be given. We define the approximate solution of problem
(3.1) obtained by the semi-implicit k-step BDF-DG method as functions uéj'k, tivk € [0,T), satisfying the conditions

l"rk? c Shp, (383,)

1({& .

T (Z oy ”h> + Ap(uptt on) + b (B (un), 0n) = € (on) (k) (3.8b)
1=0

VU}LES}LP, 1=0,1,2,...,7r—k,
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where E™ denotes the high-order explicit extrapolation operator at the time level t,, given by
k .
E™(un) =Y By, (3.9)
i=1

and a;, i =0,...,k, and B;, i =1,...,k, are given by (5.5) and (3.7), respectively. The function ul, is called the approximate
solution at time t;, { =0,...,r.

Remark 3.2. (i) We see that the high-order explicit extrapolation E'**(uy,) depends on ul, ... ,ué;rk*l and is independent of
s
i) Since scheme (3.8) represents a k-step formula, we have to define the approzimate solution ul, ul, ... ,u*~1 at times to = 0,
hy Up h
t1,... tp—1. The initial value u$) is defined as the L*(Q) projection of the initial data u® on the space Sp,. This means that

u) € Spp and
(u) —u® v) =0 Yo € Shy.

The values u,ll, .. .,ullfl have to be determined, e.g., by a one-step method as, for example, a k*"-order Runge-Kutta scheme,
see Section 7.

(iii) The discrete problem (3.8) is equivalent to a system of linear algebraic equations for each ti1y € [0,T]. The existence
and uniqueness of the solution of this linear algebraic problem is proved in Section 3.1.2.

(iv) The explicit extrapolation can also be applied to u € C([0,T]; L*(Q)) by

k
B Fu) =" gL, i € [0, 7). (3.10)
=1

3.1.2 Theoretical analysis

In what follows we shall be concerned with the analysis of method (3.8) for the SIPG variant of the DGM. Hence, we set © = 1
in the definitions (2.10) and (2.13) of the forms A, and £;,. Moreover, we confine our considerations to the case when 0Qy = 0.
This means that we analyze problem (?7?) from Section ??. Other possibilities will be mentioned in Remark 3.9.

Similarly, as in the analysis of schemes for the numerical solution of ordinary differential equations, we introduce the concept
of stability of the BDF method.

Definition 3.3. The BDF method (3.8) is stable (by Dahlquist), if all roots of the polynomial p(§) = Z?:o a;& lie in the unit
closed circle {z € C;|z| < 1} and the roots satisfying the condition |{| = 1 are simple (the symbol C denotes the set of complex
numbers).

Theorem 3.4. Let Assumptions 2.5 from Section 2.3 be satisfied and let Oy = 0. Let u be the exact solution of problem (3.1)
satisfying (3.2). Lett; =It, 1 =0,1,...,r, 7 = T/r, be a time partition of [0,T], letul, I =0,...,r, be the approximate solution
defined by the k-step BDF-DG scheme (3.8) with k = 2 and let 7 < 1. Then there exists a constant Cy = O (exp(3GT(1 + 2K /¢)))
independent of h and T such that

1
el pere) < G ((W 1/ + Y ein%m)), (3.11)

j=0
where K is defined by (??) and G by (?7).
Now, we formulate the L>°(L?)-error estimate of the three step method.

Theorem 3.5. Let Assumptions 2.5 in Section 2.3 be satisfied and let 0Qn = (0. Let u be the exact solution of problem (3.1)
satisfying (3.2). Let t; =Ir, 1 = 0,1,...,7, 7 = T/r, be a partition of the time interval [0,T], let ul, 1 = 0,...,r be defined
by the k-step BDF-DG scheme (3.8) with k =3 and let 7 < 1. Then there exists a constant Cs5 = O (exp(GT (30 + 117K /4¢)))
such that

2
lell7 7.z (z2) < Cs ((hz" +70) (L+1/e) + D lehlfe) + 75|||42||2> ; (3.12)
=0

where K is defined by (??) and (* = u} — Ppyu? is given by (?7).
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Theorem 3.6. Let Assumptions 2.5 in Section 2.3 be satisfied and let 0Qx = (0. Let u be the exact solution of problem (3.1)
satisfying (3.2). Lett; =17, 1=0,1,...,r, 7 =T/r, be a partition of 0,T] and let ulh, l=0,...,r, be the approzimate solution
defined by the k-step BDF-DG scheme (3.8) with k = 2,3. Then there exists a constant C' such that

fQL,T,Lz(Hl) (3.13)
Jo—
< C(eh®0D 4 (14 17202 + 1) + (1+1/2) > (llehllze) + 7elle i) )

lle]

[y

<

Remark 3.7. We observe that estimates (3.11), (3.12) and (3.13) are optimal with respect to h as well as T in the discrete
L>(0,T; L3(Q))-norm and L*(0,T; H*(Q, Tx))-norm.

It can be seen that these estimates are not of practical use for e — 0+, because they blow up exponentially with respect to 1/e.
This is caused by the treatment of nonlinear terms in the error analysis. The nonlinearity of the convective terms represents a
serious obstacle for obtaining a uniform error estimate with respect to € — 0+.

Remark 3.8. The proven unconditional stability may seem to be in contradiction with the Dahlquist barrier (see [?, Theorem
1.4]) which implies that the 3-step BDF method cannot be unconditionally A-stable. However, in our case, the k-step BDF
scheme with k = 2,3 was not applied to a general system of ODEs, but to system (3.1) arising from the space semi-discretization
of (3.1) under the assumptions of the symmetry of the form Ay and some favourable properties of the form by, which cause that
all eigenvalues of the Jacobi matrix of the corresponding ODE system lie in the stability region of the k-step BDF method with
k=2,3 for any 7 <1 and h € (0,h).

Remark 3.9. The presented numerical analysis can be partly extended also to NIPG and IIPG wvariants of the DG method.
However, the determination of error estimates for the 3-step BDF-DG method employs equality (??), which is not valid for
NIPG and IIPG variants due to their non-symmetry. It is not clear to us whether it is possible to avoid this obstacle.

On the other hand, for the 2-step BDF-DG method, a weaker result than (3.11) can be derived for NIPG and IIPG variants,
for example,

1
lell? 7z zey < C | (BP0 474 (14 1/e) + D lle 7o) | - (3.14)
§=0

where C is independent of h and 7. Estimate (3.14) can also be proved in the case of mized Dirichlet—~Neumann boundary
conditions, i.e., for nonempty 0y .

3.1.3 Numerical examples

In this section we demonstrate the theoretical error estimates (3.11), (3.12) and (3.13) derived in the previous section. We try to
investigate the dependence of the computational error on h and 7 independently. Based on (3.11), (3.12) and (3.13) we expect
that the computational error ey, » in the L?(Q2)-norm as well as the H'(£2, 7;,)-seminorm depends on h and 7 according to the
formula

enr ~ cph?T etk (3.15)

where ¢;, and ¢, are constants independent of h and .
In our numerical experiments we solve equation (3.1a) in = (0,1)2, 9Q = dQp, fi(u) = u?/2, i = 1,2, equipped with the
boundary condition (3.1b) and the initial condition (3.1d).

Convergence with respect to 7

In this case we put € = 0.01, 7' =1 and the functions up, ug and g are chosen in such a way that the exact solution has the
form u(xy, xa,t) = 16 (% — 1)/(e!® — 1) 21 (1 — z1)z2(1 — 22).

The computations were carried out on a fine triangular mesh having 4219 elements with a piecewise cubic approximation
in space and using 6 different time steps: 1/20, 1/40, 1/80, 1/160, 1/320, 1/640. For such data setting we expect that
cphPt!l < ¢, 7% and, therefore the space discretization errors are negligible. Fig. 3.1 shows the computational errors at t = T'
and the corresponding experimental order of convergence with respect to 7 in the L?(2)-norm and the H'(, 7T;,)-seminorm for
the k-step BDF scheme (3.8) with k = 1, k = 2 and k = 3. The expected order of convergence O(7*) is observed in each case.
A smaller decrease of the order of convergence in the H'(, 7;,)-seminorm for k = 3 and 7 = 1/640 is caused by the influence
of the spatial discretization since in this case the statement ¢, h?t! < ¢, 7% is no longer valid.
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Figure 3.1: Computational errors and orders of convergence with respect to the time step 7 in the L?(Q)-norm (left) and the
HY(Q,Tp,)-seminorm (right) for scheme (3.8) with k& = 1 (full line), k = 2 (dashed line) and k = 3 (dotted line).
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Figure 3.2: Computational errors and orders of convergence with respect to the mesh-size h in the L?(Q)-norm (left) and the
H(Q, Tp)-seminorm (right) for scheme (3.8) with P; (full line), P> (dashed line) and P3 (dotted line) approximations.

Convergence with respect to h

In this case we put € = 0.1, T = 10 and the functions up, ug and g are chosen in such a way that the exact solution has the
form u(xy, v, t) = (1 — e 1) (22 + 23)z122(1 — 21)(1 — 23). As we see, we have u = p + 1.

The computations were carried out with the 3-step BDF scheme (3.8) on 7 triangular meshes having 128, 288, 512, 1152,
2048, 4608 and 8192 elements, using the time step 7 = 0.01. For such data setting we expect that ¢, h?*! > ¢, 7% and the time
discretization errors can be neglected. Fig. 3.2 shows the computational errors at ¢ = T and the corresponding experimental
order of convergence with respect to h in the L2?(Q)-norm and the H!(,7})-seminorm for piecewise linear Py, quadratic Py
and cubic P approximations. We observe the order of convergence O(hP*1) for p = 1,2,3 in the L?(Q2)-norm and O(h?) in the
H1(Q, Tp,)-seminorm, which perfectly corresponds to the theoretical results (3.13).
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Chapter 4

Time discretization by time discontinuous
Galerkin method

In Chapter 7?7, we introduced and analyzed methods based on the combination of the DGM space discretization with the
backward difference formula in time. Although this approach gives satisfactory results in a number of applications (see Chapter
7), its drawback is a complicated adaptation of the space computational mesh and the time step. From this point of view, more
suitable approach is the space-time discontinuous Galerkin method (ST-DGM), where the DGM is applied separately in space
and in time.

The ST-DGM can use different triangulations on different time levels arising due to a mesh adaptation and, thus, it perfectly
suits the numerical solution of nonstationary problems. Moreover, the ST-DGM can (locally) employ different polynomial
degrees p and ¢ in space and time discretization, respectively.

Section 4.1 will be concerned with basic ideas and techniques of the ST-DGM applied to a linear model heat equation. In
Section 4.2, we extend the analysis to a more general convection-diffusion problem with nonlinear convection and nonlinear
diffusion. Sections ?? and ?? will be devoted to some special ST-DG techniques.

4.1 Space-time DGM for a heat equation

In this section, we present and analyze the space-time discontinuous Galerkin method applied to a simple model problem
represented by the linear heat equation. We explain the main aspects of the ST-DG discretization for this problem and derive
the error estimates in the L°°(0,T; L?(Q2))-norm and the DG-norm formed by the L2(0,7; H'(Q2, T;))-norm and penalty terms.

Let Q € R% d = 2 or 3, be a bounded polygonal or polyhedral domain, 7' > 0 and Qr :=  x (0,7). We consider the
problem to find u : Q7 — R such that

0 .
6—? =cAu+g in Qr, (4.1a
(

)
u|aQDx(o,T) = Uup, )
Vu - n|oayx(01) = 9N, (4.1c)
u(z,0) =u’(x), ze€Q, )

(
Similarly as in Section 2.2 we assume that the boundary 9€ is formed by two disjoint parts 9Qp and 9Qy with meas;_1(0Qp) >
0, and that the data satisfy the usual conditions (cf. (2.2)): up = trace of some u* € C([0,T]; H(2)) on 9Qp x (0,T),
e>0, ge C([0,T); L*(Q)), gn € C([0,T]; L*>(00y)) and u® € L3().
4.1.1 Discretization of the problem
Space-time partition and function spaces

In order to derive the space-time discontinuous Galerkin discretization, we introduce some notation.
Let » > 1 be an integer. In the time interval [0,T] we construct a partition 0 =ty < --- < t, =T and denote

I, = (tm—la tm); 1, = [tm—la tm]7 Tm =tm —tm—1, T= mgax TTm-

Then

0,7 =0 _1Im, L,NL,=0 form#n, mn=1,...,r

92



Th,3 t3="T
I3
Th2 K €Thpe b2
I
Thi ty
K ¢ 771,,1
Iy
7;1,,0 t() =0
K e 7—h70 Q

Figure 4.1: Space-time discretization for space dimension d = 1.

If ¢ is a function defined in | J] _, I,», we introduce the notation

ot = p(tmt) = lim_o®), {¢}tm =0k —om, (4.2)

t—tm,mE

provided the one-sided limits lim ¢(t) exist.
t—tmt

For each time instant ¢,,, m = 0,...,r, and interval I,,,, m = 1,...,r, we consider a partition 7y, ,, (called triangulation)
of the closure 2 of the domain © into a finite number of closed simplexes (triangles for d = 2 and tetrahedra for d = 3) with
mutually disjoint interiors. The partitions 7j ,, may be in general different for different m. Figure 4.1 shows an illustrative
example of the space-time partition for d = 1.

In what follows, we shall use a similar notation as in Section 1.1, only a subscript ,, has to be added to the notation because
of different grids Tp.m. By Fi,m we denote the system of all faces of all elements K € 7Ty, ,,. Further, we denote the set of all
inner faces by ‘FF{,m and the set of all boundary faces by ]-'fm. Each I' € Fj, ,, will be associated with a unit normal vector

nr, which has the same orientation as the outer normal to 9f2 for T" € ]:,ﬁm. InT e f,ﬁm we distinguish the subsets the of all

“Dirichlet” boundary faces F = {I' € F;,; I' C 9Qp} and of all “Neumann” boundary faces F}¥ = {T' € Fp,, I' C 9Qn}. We
set

hg = diam(K) for K € Tpm, hm = maxger,, hx, h= max B,

By px we denote the radius of the largest ball inscribed into K.
For any integer k > 1, over a triangulation 7}, ,,, we define the broken Sobolev space

H*Q, Thm) = {v e L*(Q);v|x € HY(K) VK € Thm}, (4.3)

with seminorm

1/2
|”|Hk<ﬂ,n,m>=< > Ivl?qk(K)> : (4.4)

KGTh,m

In the same way as in Chapter 1, we use the symbols (v). and [v]r for the mean value and the jump of v € H*(2, Ty, ;) on
the face I' € Fj, n, see (1.32).
Let p, ¢ > 1 be integers. For each m = 1,...,r we define the finite-dimensional space

St ={0 € L*(Q);¢lk € Py(K) VK € Thm} - (4.5)

Over each mesh T}, ,, we shall use the L?-projections analogous to 7, and IIp, defined in (1.89) and (1.90). For simplicity we
denote these projections by IIj, ,,,. Hence, if K € Tpm, m=1,...,r, and v € L*(K), then

(pmv)x € Pp(K), (nmv —v,0)12(k) =0 Vo € Pp(K), (4.6)
and, if v € L?(2), then

I mv € Sim, (I mv—v,0) =0 Vpe SZM. (4.7)
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As in previous sections, (-,-)r2(x) and (-,-) denote the L?(K)-scalar product and the L?(Q)-scalar product, respectively, and
P,(K) denotes the space of all polynomials on K of degree < p. Properties of these projections follow from Lemmas 1.22 and
1.24 and they are summarized in (??) — (?77?).

The approximate solution will be sought in the space of functions piecewise polynomial in space and time:

q

vt ={e € LQr)s w(@, D), = Dt pmila) (4.8)
=0
with ¢, ; ES,’;’m, 1=0,...,q, m:l,...,r}.

4.1.2 Space-time DG discretization

We derive the full space-time discontinuous Galerkin discretization in the similar way as the space discretization introduced in
detail in Chapter 1. We consider a regular exact solution satisfying the conditions

u € L2(0,T; H*(Q)), % € L*(0,T; H'(Q)). (4.9)

Then u € C([0,T); H1(€)). Such solution satisfies (4.1) pointwise. Moreover, let m € {1,...,r} be arbitrary but fixed. We
multiply (4.1a) by ¢ € 55337 integrate over K x I,,, and sum over all elements K € Tj, ,,. Then

/Im(u’,<p)dt+a/1 ( 3 /Kvu.wd% 3

m O KEThm KETh,m 9K

= /1 (9,9)dt,

m

Vu - ny ds) dt (4.10)

where we use the notation v’ = du/0t.
First, we deal with the time derivative term. With the aid of the integration by parts, we have

/ () dt = / (u, @) dt + (ui 07) — (W1, 07 1)- (4.11)
I I

m

Since the exact solution w is continuous with respect to ¢, we have ;| =wu, _; (cf. (4.2)) and, thus,

(“;—17%2—1) = (U:n—p%;—ﬂ- (4.12)

The substitution of (4.12) into (4.11) and the integration by parts (in the reverse manner) yield

/ () dt = - / (u, ') dt + (ur3) — (w1, 1) (4.13)
I, I

m

:/I (', o) dt + (uh, 1 00 1) = (upy 100 1)

:/ (') dt + ({utm—1,9,7_1) -

I

Remark 4.1. Identity (4.13) makes sense also for a function w, which is piecewise polynomial with respect to t on Ip,, m =
1,...,r. Then the equality (4.12) can be interpreted in such a way that the value of the function u at t,,—1 from the right (on
the new time interval) is approzimated by the L?(Q)-projection of the value of u at t,,_ from the left (on the previous time
interval). Therefore, we can speak about the “upwinding” with respect to time — compare with the “space upwinding” in (2.16).

The discretization of the diffusion term and the right-hand side in (4.10) is the same as in Chapter 1. Hence, in virtue of
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(1.41) — (1.42) and (1.50) — (1.53), we define the diffusion, penalty and right-hand side forms as

ap,m(w, p) Z /Vw Vedr — Z / (Vw) - n[p] + O(Vp) -nfw]) dS

KeTh,m Fe]—‘,{ .
Z / (Vw-ne+0Ve- -nw)dsS, (4.14)
rerp .
C
Fmtw)= 3 2 [wlelas+ ¥ 9 [wpads (4.15)
rer! . rJr Fe}‘D
Apm(w, @) =eapm(w, p) + EJg,m(w, ®), (4.16)
Chm () :/wdx+/ gnpdS (4.17)
N
—e® Z /Vgp nupdS + ¢ Z /uDgadS
FEJ:D FE]:D

where Cyy > 0 is a suitable constant and hr characterizes the face I' (c¢f. Lemma 1.5). Moreover, in (4.14) and (4.17), we take
© = -1, ® =0 and © = 1 and obtain the nonsymmetric (NIPG), incomplete (ITPG) and symmetric (SIPG) variants of the
approximation of the diffusion terms, respectively. Obviously, forms (4.14) — (4.17) make sense for v, w, ¢ € H*(Q, Th.m)-

In virtue of (4.10), (4.13) and (4.14) — (4.17), the exact regular solution u satisfies the identity

/ (W, 9) + Anm(u, ) dt + ({u}m—1,9_1) =/ lhm()dt Vo€ SPd,

Im

m

with u(0—) = u°. (4.18)
Based on (4.18), we introduce the approximate solution.
Definition 4.2. We say that a function U is a ST-DG approzimate solution of problem (4.1), if U € Sﬁ:z and
| @9+t at+ (Uharginn) = [ tnlo)a (1.19)
h chEShT, m=1,...,r, with ?]0_ = H;%ouo,
where U' = 0U/0t. We call (4.19) the space-time discontinuous Galerkin discrete problem.

Remark 4.3. The expression ({U}m 1,(,0; 1) n (4 19) patches together the approximate solution on neighbouring intervals
I—1 and I,. At time t = tg = 0 we have {U}y = — 11 muo It is also possible to consider ¢ = 0. In this case, scheme
(4.19) represents a variant of the backward Fuler method analyzed in Section ?7. Therefore, we shall assume that ¢ > 1.

Remark 4.4. With respect to the notation in previous chapters, we should denote the approximate solution by up-, which would
express that the approximate solution depends of the space and time discretization parameters h and 7. However, for the sake
of simplicity we use the symbol U.

Theorem 4.5. There exists a unique approximate solution of (4.19).

Proof. Let m € {1,...,r} be fixed and let U,._; be given either by the initial condition or from the previous interval I,,,_.
Identity (4.19) can be written in the form

R(U7 50) = /I Eh,m( )dt + (Um 1790m 1) (NS Sh T,m’ (420)
where
R(U, ) = /I (U',0) + Anm (U, ) dt + (U1 0% 1) (4.21)
and
q .
SZ:Z,m ::{cp € L2(Q x I,,); o(x,t) = Zt’ wi(z) with ¢, ,; € Sh my 0 =10,... ,q}. (4.22)
i=0
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Obviously, the form R is a bilinear form on the finite dimension space S}'? —and the right-hand side of (4.20) is a linear

functional depending on ¢ € S}’? . Then, in virtue of Corollary 0.7, it is sufficient to prove the coercivity of the form R on
Sk with respect to a suitable norm. Hence, using (2.85), the coercivity of Ay, ,, following from (1.140) and integration over
I,,,, we obtain

R, ¢) =/ (¢, 0) + Anm(p,0)) dt + () _1, 00 _1) (4.23)

m

1d
— [ (GE Wl + A ) dt et aliny
1/, 2 Lo r
:§ (H‘PmHLZ(Q) - H@m—lHLQ(Q)) +/] Ah7m(<,0,<,0) dt + H<p7”—1HL2(Q)

1
(e ot o ey e P
I,

It is possible to show that |-, is a norm on the space S;'?  and, thus, the form R is coercive. Then Corollary 0.7 implies the

existence and uniqueness of the approximate solution. O O

Exercise 4.6. Show that ||-||, defined in (4.23) is a norm on the space S%1

h,7,m"
Our main goal will be the investigation of qualitative properties of the ST-DG scheme (4.19). In particular, we shall be

concerned with the analysis of error estimates.

Theorem 4.7. Let u be the exact solution of problem (4.1) satisfying the reqularity condition (??) and let U € Sgﬁ be its
approximation given by (4.19). Let inequality

Tm > Csh?, (4.24)
hold for allm =1,...,r and let the shape regularity assumption (??) and the equivalence condition (??) be satisfied. Then there
exists a constant C17 > 0 independent of h, T and u such that

_ £ & 9
el +5 3 [ lell o (4.25)
=171

<Cire (h2(#71)|u‘%‘([0,T];HH(Q)) JFTZ(HW)|U||%W+1(0,T;H1(Q))> ’
he(0,h), m=1,...,r
Here v =0, if (7?7) holds and the function up from the boundary condition (4.1b) has a general behaviour. If up is defined by
(??), then v = 1 and condition (??) is not required. The symbol |- || is defined by (?7).
Theorem 4.8. Let u be the exact solution of problem (4.1) satisfying the reqularity condition
w e WL (0,7 2(Q)) 1 C([0, T); H(9), (4.26)

where s > 2 is an integer and p = min(p + 1,s). Let U € S"1 be its approzimation given by (4.19). Let (4.24) hold for all
m=1,...,r and let the shape regularity assumption (??) and the equivalence condition (?77?) be satisfied. Then there exists a
constant C1g > 0 independent of h, T and u such that

sup [Ju(t) = U(t)[72q) (4.27)

tel,,
=Cis (hm_l)|“|20([0,T};Hu<n>> + TﬁfqmWﬁvwhw(o,nﬂ(m)) )

he(0,h), m=1,...,r

4.2 Space-time DGM for nonlinear convection-diffusion problems

In this section we shall extend the space-time discontinuous Galerkin method (ST-DGM), explained in the previous section on a
simple initial-boundary value problem for the heat equation, to the solution of a more general problem for a convection-diffusion
equation with nonlinear convection and nonlinear diffusion. We shall derive the error estimates in the L?(0,7T; L?(2))-norm
and the DG-norm formed by the L?(0,T; H*(2))-norm and penalty terms.
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Let Q C R? (d = 2 or 3) be a bounded polygonal or polyhedral domain with Lipschitz boundary and 7' > 0. We consider
the following initial-boundary value problem: Find v : Q7 = 2 x (0,7) — R such that

d

du Ofs(u) .
5 + 6; oz, V- (B(u)Vu) =g in Qr, (4.28a)
u’aﬂx(O,T) =up, (4.28Db)
u(z,0) = u’(z), z €. (4.28c¢)
We assume that g, up,u, fs are given functions and f; € C*(R),|f.| < C, s=1,...,d. Moreover, let
B:R = [Bo, B1], 0<fo<pr<oa, (4.29a)
‘5(’&1) — 5(’&2)‘ < L5|U1 — U2| Vul,ug e R. (429]3)

Remark 4.9. In this section we consider problem (4.28) with a Dirichlet boundary condition only. This means that 0Qp = 0,
Ny =0, FP = FP and FN = 0. The analysis of the problem with mized Dirichlet-Neumann boundary conditions is more
complicated due to the properties of the convection form by, derived in Section 2.3.2 and represents an open challenging subject.

In the derivation and analysis of the discrete problem we assume that the exact solution is regular in the following sense:

u € L*(0,T; H*(Q)), % € L*(0,T; H(Q)), (4.30)

4.2.1 Discretization of the problem

We employ the same notation as in Section 4.1. Hence, we consider a partition 0 =ty < t; < -+ < t, = T of the time interval
[0,T7, time subintervals I, = (t;—1,tm), m =1,...,r, and triangulations T m,, m = 0,...,r, of the domain  associated with
the time instants t,,, m =0,...,r, and intervals I,,, m = 1,...,r. Further, we consider function spaces S}’Z,m defined by (4.5)
and S}"? defined by (4.8) and the projections II,,, and 7 - see (4.7) and (??), respectively.

For the derivation of the space-time discontinuous Galerkin discretization we assume that « € C1((0,T); H?(f2)) is an exact
solution of problem (4.28). We multiply (4.28a) by ¢ € 572, integrate over K x I,,, sum over all K € T ,, and perform
some manipulation. The time derivative term is discretized in the same manner as in (4.11) — (4.13). The discretization of the
convection term and the source term (4.10) is the same as in Chapter 2.

The discretization of the diffusion term is a little more complicated due to the nonlinearity of the function 5. Using the
technique from Section 1.4, the application of Green’s theorem to the diffusion term gives

- > /KV~(ﬂ(u)Vu)cpdm (4.32)

KeTh,m
= B(u)Vu - Vepdx — (B(u)Vu) - nfp]dS.
KezT;,m /K Fe%%n/r

In Section 1.4, we add to the right-hand side of (4.32) face integral terms, where the roles of the exact solution u and the test
function ¢ are mutually exchanged. However, in contrast to the case of a linear diffusion (see, e.g., (4.14)), to the right-hand
side we cannot add the expression

S (B(p)Ve) - nfu]dS + © B(¢)Ve - n(u—up)ds,

obtained by the mutual exchange of u and ¢, because it is not linear with respect to the test function . Therefore, in the
argument of 8 we keep the exact solution u, i.e., we use the expression

CIY /F<5(u)w> ‘nudS+0 > /Fﬁ(u)w.n(u—uD)ds, (4.33)

rer! rerp

h,m hym

which vanishes for a regular function u satisfying the Dirichlet condition (4.28b).
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Finally, we arrive at the definition of the following forms. If v, w, ¢ € H?(Q, T;.mm) and Cy > 0 is a fixed constant, we define
the diffusion, penalty, convection and righ-hand side forms

apm(v,w, Q) = Z ﬁ( Ww-Vepdr (4.34)
KeTh,m
-y / nlg] + ©(8(v) V) - [u]) dS
rerl .,
— Z / v)Vw -ne+0Bw)Ve -n(w—up))dsS,
TeFp .
CW W
I m(w, @) = p]dS + wpdS, (4.35)
Fe]—',{ m / Fe}',’fm /
Apm(w, v, 9) =ap m(w,v, @) +BOJ,fm(v ©), (4.36)
3
KG'T)LL FEJ:I
+ 2 / wp wp?, )wdS- (4.37)
TeFp .
C
bhn (@) =(9.0) + B0 > —W/up pdS. (4.38)
rerp, o Jr

h,m

In (4.34), we take © = —1, © = 0 and © = 1 and obtain the nonsymmetric (NIPG), incomplete (IIPG) and symmetric (SIPG)
variants of the approximation of the diffusion terms, respectively. In (4.37), H is a numerical flux with the properties (2.18) —
(2.20) introduced in Section 2.2.

Similarly as in Section 4.1, the exact regular solution u of (4.28) satisfies the identity

/ ((’U,/, 90) + Ah,m(’uﬂ u, 90) + bh,m(u7 (P)) dt + ({u}mfh 90:;171) (439)
Im
/ lhm(p)dt Ve Spl,  with u(0—) = u(0) = u’.
Here v’ := Qu/0t and (-,-) denotes the L?()-scalar product.
Based on (4.39), we proceed to the definition of the approximate solution.

Definition 4.10. We say that a function U is an ST-DG approximate solution of problem (4.28), if U € S;'? and

/I (U.0) + Apm (U, U, @) + b (Us ) dt + ({U et 1) (4.40)

m

:/ Lo () dt V@ES,’ZZE, m=1,...,r, Uy = eu’.
I,

where U' = 0U/0t. We call (4.40) the space-time discontinuous Galerkin discrete problem.

Exercise 4.11. Formulate the ST-DG discrete problem in the case, when mized Dirichlet-Neumann boundary conditions are
used.

In the sequel, we shall analyze the ST-DGM, namely we derive an estimate of the error e = U — u, where u is the exact
solution of (4.28) and U is the approximate solution given by (4.40). We assume that the approximate solution U exists and is
unique.

4.2.2 Auxiliary results

In the analysis of the ST-DGM for the nonlinear problem we proceed in a similar way as in Section 4.1 for the heat equation.
We consider a system (??) of triangulations Ty, ., satisfying the conditions of the shape regularity (??7) and of the equivalence
(7?). Let m: C([0,T]; L*()) — Sp’% be the projection operator given by (??). The error of the method is expressed again in
the form

e=U—-u=¢&+n, (4.41)
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where
§=U—-muesSyl, n = mu—u (4.42)
Then, subtracting (4.39) from (4.40), and using (4.41), for each ¢ € S;*? we find that

/1 (€ 0) + Anm(U. T, 0) — At 0,0) At + ({6 ) (4.43)

=/ (D (1, ) = b (U, ) dt — / (', ) dt — ({n}m—1,0,,_1) -

Im Im

Hence, we need to estimate individual terms appearing in (4.43).
The convection form by, ,, has the following property.

Lemma 4.12. For each ky > 0 there exists a constant Cy, > 0 independent of U, u, h, 7,7 and m such that

‘bh,m(Uv 90) - bh,m (u7 90>| (444)

Bo 2
SE”'SOMWL +Cy | IElF o) + IlFey + D hikInling
Keﬂz,nz

Let us note that in the following considerations in some places the simplified form of Young’s inequality ab < %a2 +0b? is
used.
As for the coercivity of the forms Ay ,,, we can prove the following result.

Lemma 4.13. Let

Cw >0, for ® = —1 (NIPG), (4.45)
48\°
Cw > (51) Cus for © =1 (SIPG), (4.46)
0
26
Cw >2 67 Cyr for © =0 (ITPG), (4.47)
0

where Cprr = Cp(Cr +1)Cq. Then, form=1,...,r,

1 (U,U,8) = an (U, 70, 6) + B0 (6, €) > 2], (4.48)

Exercise 4.14. Prove that inequality (4.48) holds in the case © = 0 under condition (4.47).
Lemma 4.15. There exists a constant C' > 0 independent of U, &, p, h such that

(U, U, 9) = i (U, w1, 0) + Bo 5 (€, 0) < CUIEN, + ll2llZ) (4.49)

P o andm=1,...,r.

h,m

for any p € S

Lemma 4.16. For arbitrary ko, k. > 0 there exist constants C,, = Cy(ky), C. = Ce(ke) > 0 independent of U, &, v and h such
that for each ¢ € Sﬂm the following estimates hold:

8
[anm (U, m,0) = ann (u,mu,0)] < =M@l + Call€llZaq) + Run(n), (4.50)
I61 ~
[, (w70, 9) = (1,0, )] < 27, + CeBton (), (451)
where
Boa(n) = Ml + 10y + D2 (1nffrs ey + Bz ) (4.52)
KeTh,m
5 2 2
Roa) = Wl + 32 (Wclnfrae) ) - (4.53)
KeTh,m

Remark 4.17. In view of (4.52), estimate (4.44) can be written as

B
1. (U, 0) = b1 )] < 2l + G (€0 + Ron()) (4.54)
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4.2.3 Abstract error estimate
Estimate of ¢

In what follows, we shall use the conditions (?7?) of the shape regularity, (??) of the equivalence and assumptions from Lemma
4.13.
Let us substitute ¢ := ¢ in (4.43). From the definition (4.36) of the form A, ,, it follows that

/ ((51, 5) + ah7m(U’ U, g) - ah,m(Ua u, f) + BOJ}g,m<§7 5)) dt (455)

I,

+ ({f}mfla 5:171)
= / (_ah,m(Ua u, g) + ah,m(uv U, E) - ah,m(uv U, 5) + ah,m(ua u, g)) dt

m

+ /I (B (1€) — b (U, €) = BoJZ (1, €) — (i, €)) At — ({1} €5 1) -

m

By (?7?), we have

| (@0t (€600 (4.50

m

1 _ _
=5 (l&m 5200y = I&mmll ooy + 1€ mosllia)

Moreover, (??) with § := 1 gives

_ 1
/ (', p)dt + ({n}m—l 790;71) < ||77m71H2L2(Q) + Z”{w}m*lniz(ﬂ)a LS SZ;% (4.57)

m

The use of (?7?), (4.55), (4.56), (4.57), (4.54), Young’s inequality and Lemmas 4.13 and 4.16 imply that for arbitrary
0, ka, kp, ke > 0 we have

_ 1
€17y = lem—ill72) + 5 1€} m-1llE2(a)

2 2 9 ,
- ———— = - P
”0( R R ke 6) /Im|||«s|||mdt

SC(/I ||§||2L2(Q)dt+||77;,_1||2Lz(9)+/[ Rm(n)dt)

This and the choice k, = ky = k. = 16 and § = % imply that

- 1
€Iy = Imalacay + 51 morlEoey + 5 [ el )
<C </I ||§||%2(Q) dt + Hn;nﬂHiz(Q) +/I R (1) dt) , m=1,...,r

Estimate of fI ||5H%2(Q) dt

An important task is the estimation of the term [} - H§||2LQ(Q) dt. The case, when S(u) = const > 0, was analyzed in [?] using
the approach from [?] based on the application of the so-called Gauss-Radau quadrature and interpolation. However, in the
case of nonlinear diffusion, this technique is not applicable. It appears suitable to apply here the approach from [?] based on
the concept of discrete characteristic functions constructed to £ in Section ?7.

We shall proceed in several steps. Let us set

l
tm—l-‘rl/q = tm—l + g(tm - tm,—l) for [ = 0, ey q,

and use the notation &u—111/g = E(tm141/0)s Em—1 = &1, ém = .

Lemma 4.18. There exist constants Ly, M, > 0 dependent on g only such that

1 L
S m-retsallzamy = 7 [ el it (4.59)
=0 m
2 M,
e sl < 22 f el oyt (4:60)
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Further, we shall return to identity (4.43), where we set ¢ := . It can be written in the form

/I ((5/7 5) + ah,m(Ua U7 g) - ah,m(Ua u, 5) + 60‘]g,m(£v 5)) dt + ( . 17£ )

_ / (=t (U, 710, €) + o (1 700, E) — 0y (11, 70, €) + @ (120, €))
I,

+ /1 (= BoTZ (1,6 + b (1, €) — by (U, ) — (1, €)) lt

= ({1 &mmt) + (1o &mm1) Vo € SPL
Using the relations (??) with ¢ := ¢ and

1
/I €&+ (€ 6i) = 5 (Iallza + 1)) (4.61)

we get

1 _
(6 ey + 5o )
+ /1 (@ (U, U, ) — anm (U, 7, €) + BoJE o (£,€)) dt

m

S / (|ah,m(U; U, 5) — Gh,m (U, U, €)| + Iah,m(u7 U, 5) — Gh,m (U, u, §)|) dt
I

m

[ (Bl €] + I (06) = )
+ (1 &) | + | (Ennr6ma) |

Now, Lemmas 4.13, 4.16, inequalities (?7?), (4.54) and Young’s inequality imply that

1 ) 2 B
(G R RS
< / (ﬂ"ngufn  Cullelaey + Conln) + eI, + ccRmm)) dat

+/I (iOJhm(n 1) + 680 J5 m (&, §)+—|H£H| + Cyl|él172 () +CoRm(n ))

[ [}
+ TL(Q) + 51”5::1—1HL2(Q) T TL(Q) 51”%—1“12(9)'

After some manipulation, taking into account that R, (n) < Ry (n), we get

2 2 2 2 2
e oy + s oy + o (1= 2 = 2 = 2 - 20) / el

§2(C’a+0b)/ ||§||i2(sz)dt+ (2(C“+Cb+c +B§)/ B
I

m

i lieey em-illie
273, R

Finally, the choice k, = ky = k. = 16 and § = 1/16 yields

‘*‘451”5;—1"12(9)'

[ P A (162)

<c /1 €122 0t + C /I Ry ()t

H”r_n—luiz(ﬂ) ||’5;L—1||i2(9)
S

with constants Cy = 2(Cy + Cy), Cy = 2(Cy + Cy + C.) + 165.

+451H5:rrn—1H2L2‘(Q)7

Now we prove the following important result.
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Lemma 4.19. There exist constants C, C* > 0 such that

/|M§@ﬁ<0m<%nﬂ;m+wmﬂ;@+lJ%WMQ, (4.63)

m m

m=1,...,r
where Ry, (n) is defined in (4.52), provided

)

0< 1, <C* (4.64)
Now we finish the derivation of the abstract error estimate of the ST-DGM.

Theorem 4.20. Let (4.30), (4.31) and (4.64) hold. Then there exists a constant Cag > 0 such that the error e = U —u satisfies
the following estimates:

_ Bo
n%@@+§zzwmw (1.65)

SCAE(Z 5111220 +Z/ dt Jr2H77mHL2(Q) JF/BOZ/ |||77|H dt,
Jj=1

m=1,....,r, he€(0,h),

and

Ielar) < Car 3 o (Imallaey + [ Rt (4.60)

m=1 m

+mem®+2[&w@+wmwwfmmm
i=1 =171

where Ry, (n) is defined by (4.52).

Remark 4.21. A detailed analysis shows that the constant Cag from the abstract error estimate (4.65) behaves in dependence
on By as exp(C/Po), which means that this constant blows up for By — 0+ and the obtained error estimates cannot be applied
to the case of nonlinear singularly perturbed convection-diffusion problems with degenerated diffusion. Uniform error estimates
with respect to the diffusion tending to zero were obtained, e.g. in [?] for the space-time DG approzimations of linear convection-
diffusion-reaction problems. This will be treated in Section 77.

4.2.4 Main result

Here we present the final error estimate of the ST-DGM applied to the nonlinear convection-diffusion equation. We assume that
the exact solution satisfies the regularity conditions (4.31) and

ue H™(0,T; H' (Q)) N C([0,T); H*(Q)) (4.67)

with integers s > 2 and ¢ > 1. We set 1 = min(p + 1, s). Obviously, C([0,T]; H*(2)) C L?(0,T; H*(Q2)) and condition (4.30) is
also satisfied.
Moreover, we assume that

Tm > Csh?, m=1,...,r (4.68)

Let us note that it will be shown in Remark 4.24 that this assumption is not necessary, if the meshes are not time-dependent,
i.e., if all meshes Ty, ,, m =1,...,r, are identical.
We remind that the meshes are assumed to satisfy the shape regularity assumption (?7) and the equivalence condition (?7).
Now we can formulate the main results of the analysis of the error estimates for the ST-DGM.

Theorem 4.22. Let u be the exact solution of problem (4.28) satisfying the regularity conditions (4.31) and (4.67). Let the
system of triangulation satisfy the shape regularity assumption (??) and the equivalence condition (?77) and the time steps
Tm, M = 1,...,7 satisfy the conditions (4.64) and (4.68). Let U be the approzimate solution to problem (4.28) obtained by
scheme (4.40). Then there exists a constant C > 0 independent of h, T, m, v, u, U such that

- Bo
Hemllizmﬁgz ’ lell; dt (4.69)
=171

<C (hQ('uil) ‘UFC([O,T];H“(Q)) + TQ(qu’Y)|UHH‘1+1(O,T;H1(Q)))7 m=1,...,r h € (Oa B)v
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and
H€HL2 @r) = c (hmh |u|L2(0T He)) T T quAY)|U||Hq+1(o T;H1 Q))) h € (0, h). (4.70)

Here v =0, if (??) holds and the function up from the boundary condition (4.28b) has a general behaviour with respect to t. If
up is defined by (??), then v =1 and condition (??) is not required. (The symbol |- || is defined by (77?).)

Exercise 4.23. Prove estimate (4.70) in detail.

Remark 4.24. The case of identical meshes on all time levels. Similarly as in Section 7?7, assumption (4.24) can be avoided, if
all meshes Tpm, m = 1...,7, are identical. Then relations (??) and (??) are valid and it is possible to show that the expression
Py Hn]-ilH%Q(Q) does not appear in estimate (?7). We find that instead of (4.65) we get the abstract error estimate in the

form

- Bo
fenllor + 53 el ae (4.71)

=55 [ Rt 2 Q)Haoz [, I ar

m=1,...,r, he(0,h).

Then Theorem 4.20 holds without assumption (4.68).

Remark 4.25. The error estimate (4.70) in the L?-norm is of order O(h*~1') with respect to h, which is suboptimal in
comparison to the interpolation error estimate (??) and one would expect the error estimate in the L*-norm of order O(h*).
This is a well-known phenomenon in the finite element method as well as in the DGM. In several discontinuous Galerkin
techniques, similarly as in conforming finite elements (cf. [Cia79]), it is possible to prove the optimal error estimate in the
L?-norm in the case of the SIPG version with the aid of the Nitsche method, as for example in [Arn82], [?], [?] and [?]. See also
Sections 1.7.2 and 2.5. The case, when the space-time DGM is applied to the nonlinear convection-diffusion problem, remains

to be solved.
Remark 4.26. Similarly, as in Remark 4.21, it is possible to show that in the above error estimates, the constants C' depend on
Bo as exp(c/Bo), which means that these constants blow up for Bog — 0+. Error estimates uniform with respect to the diffusion

coefficient will be proven in Section T7 in the case of a linear convection-diffusion problem. The case with a nonlinear convection
and linear diffusion was analyzed recently in [?] in the case, when backward Euler time discretization was used.
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Chapter 5

Generalization of the DGM

The aim of this chapter is to present some advanced aspects and special techniques of the discontinuous Galerkin method.
First, we present the hp-discontinuous Galerkin method. Then the DGM over nonstandard nonsimplicial meshes will be treated.
Finally, the effect of numerical integration in the DGM will be analyzed in the case of a nonstationary convection-diffusion
problem with nonlinear convection.

5.1 hp-discontinuous Galerkin method

Since the DGM is based on discontinuous piecewise polynomial approximations, it is possible to use different polynomial
degrees on different elements in a simple way. Then we speak of the hp-discontinuous Galerkin method (hp-DGM). A suitable
adaptive mesh refinement combined with the choice of the polynomial approximation degrees, representing the hp-adaptation,
can significantly increase the efficiency of the computational process. It allows us to achieve the given error tolerance with the
aid of the low number of degrees of freedom. The origins of hp finite element methods date back to the pioneering work of
Ivo Babuska et al., see the survey paper [BS94a]. Based on several theoretical works as, e.g., monographs [Sch98, 30104] or
papers [BS94a, DRDO02, SDO4]7 it is possible to expect that the error decreases to zero at an exponential rate with respect to
the number of degrees of freedom.

We present here the analysis of error estimates for the hp-DGM in the case of a model of the Poisson boundary value problem.
We underline the similarity and differences with analysis of the h-version of the DGM presented in Chapter 1. Mostly the same
notation is used for several constants appearing also in Chapter 1, but some constants may have slightly different meaning.
However, we suppose that there is no danger of misunderstanding. On the contrary, it helps us to adapt the techniques from
Chapter 1 to this section.

The analysis of the hp-DGM can be directly extended to nonstationary convection-diffusion equations from Chapters 2 and
??. See, e.g., [Dol08a, Hoz09, Hol10].

5.1.1 Formulation of a model problem

Similarly, as in Section 1.1, let Q be a bounded polygonal or polyhedral domain in R, d = 2,3, with Lipschitz boundary 0.
We denote by 9Qp and 9Qy parts of the boundary 99 such that 9Q = dQp U IOy, 00p NNy = O and meas,_1(00p) > 0.
We consider the Poisson problem (1.1) to find a function u :  — R such that

—Au=f inQ, (5.1a)
u=up on dflp, (5.1b)
n-Vu=gy ondQy, (5.1c)

where f, up and gn are given functions. The weak solution of problem (5.1) is given by Definition 1.1.

5.1.2 Discretization

In this section we introduce the hp-DGM numerical solution of problem (5.1). We start from the generalization of the function
spaces defined in Chapter 1.

Function spaces

Let 75 (h > 0) be a triangulation of . In the same way as in Chapter 1, by the symbols F,, Fi, FP, FP and FP we denote
sets of faces of elements K € Tj,. To each K € T, we assign a positive integer sx — local Sobolev index and a positive integer
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px — local polynomial degree. Then we define the sets
s={sk,K € Twn}, p={pk,K € Tp}. (5.2)
Over the triangulation Ty, we define (instead of (1.29)) the broken Sobolev space corresponding to the vector s
H2(Q,Ty) ={v;v|g € H**(K) VK € Tp,} (5.3)
with the norm

1/2
vl ms,7,) = < > IUII?{SK<K)> (5.4)

KeTh
and the seminorm
1/2
vle.m) = < Z |’U|§{3K(K)> ) (5.5)
KeTy

where || - || gox (k) and | - |gex (k) denotes the norm and seminorm in the Sobolev space H**(K) = W*<?(K), respectively. If
sk =q > 1 for all K € Ty, then we use the notation H4(Q,7y,) = H*(2,T;,). Obviously,

HY(Q,Tn) € H*(Q,Th) € HH(Q,Tn), (5.6)
where § = max{sk, sk € s} and s = min{sk, sk € s}.
Furthermore, we define (instead of (1.34)) the space of discontinuous piecewise polynomial functions associated with the
vector p by
Shp = {v € L*(Q); v|k € By (K) VK € Tp}, (5.7)

where P, (K) denotes the space of all polynomials on K of degree < px. In the hp-error analysis we shall assume that there
exists a constant Cp > 1 such that

PK —¢p VK, K' €T such that K and K’ are neighbours. (5.8)
Pk’

Assumption (5.8) may seem rather restrictive. However, it appears that the application of the hp-methods to practical problems
is efficient and accurate, if the polynomial degrees of approximation on neighbouring elements do not differ too much.

hp-variant of the penalty parameter

In Section 1.6.1 we introduced the penalty parameter o : Upc Fo = R, which was proportional to diam(T')~! ~ hz_(l where

I C 0K, T € F{P. However, the following numerical analysis shows that for the hp-DGM, the penalty parameter ¢ has to
depend also on the degree of the polynomial approximation (see also [HRS05]). To this end, for each K € T, we define the
parameter

dK) ==, KeT. (5.9)

Now for each I € .FéD we introduce the hp-analogue to the quantity hr from Section 1.6.1, which is now denoted by d(T'). In
the theoretical analysis, we require that the quantity d(I'), I' € Fp, h € (0, h), satisfies the equivalence condition with d(K),
i.e., there exist constants Cr, Cq > 0 independent of h, K and I" such that

Crd(K)<dT) < Cqd(K), KeT, T'eF, IcIK. (5.10)

Let KéL) and KéR) be the neighbouring elements sharing the face I' € .7-',{ . There are several possibilities how to define the
parameter d(T) for all interior faces I' € Fi:

(i)
2 diam(T")

d(T') = (pKIEL))Q T (pKIER))Q

, TeF, (5.11)
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(it)

d(T) = max(d(K"), d(k(™M)), T eFl, (5.12)
(i)

d(T') = min(d(K"), d(kPy), T e FL (5.13)

dr) = d(K®"), (5.14)

where K§L) is the element adjacent to I'.

In the sequel we consider a system {7} he(o,i) Of triangulations of the domain (2 satisfying the shape-regularity assumption
(1.19), i.e.,
hi _
— < Cgr, KeTn he(0,h). (5.15)
PK

The following lemma characterizes the mesh assumptions and the choices of d(I"), which guarantees the equivalence condition
(5.10).

Lemma 5.1. Let {Th}pe (o) be a system of triangulations of the domain Q satisfying assumption (5.15). Moreover, let p be the
polynomial degree vector given by (5.2), satisfying assumption (5.8). Then condition (5.10) is satisfied in the following cases:

(a) The triangulations Tp,, h € (0,h), are conforming (i.e., assumption (MA4) from Section 1.3.2 is satisfied) and d(T) is
defined by (5.11) or (5.12) or (5.13).

(b) The triangulations Ty, h € (0,h), are, in general, nonconforming, assumption (A2) (i.e., (1.22) is satisfied and d(T) is
defined by (5.11).

(¢c) The triangulations T, h € (0,h), are, in general, nonconforming, assumption (A1) is satisfied (i.e., the system {Tn}theo.n)
is locally quasi-uniform) and d(T') is defined by (5.12) or (5.13).

Exercise 5.2. Prove the above lemma and determine the constants Cr and Cg.

Remark 5.3. If px = p € N for all K € Ty, then the constants Cr and Cq from (5.10) are identical with the constants from
(1.20).

Approximate solution

Now we are ready to introduce the hp-DGM approximate solution. Using the same process as in Chapter 1, we arrive at the
definition of the following forms. For u,v € H*(Q,Tp,), where sx > 2 for all K € T, we put

ap(u,v) = Z /KVu~Vvdx— Z /F(<Vu> -nv] + ©(Vv) - nfu]) dS, (5.16)

KeT, rerip

T (uv) = > / olu] [v] dS, (5.17)
rerp 't
lh(v) :/ guvdz —© Z /uD (Vv -n)dS + Z /UuDvdS+/ gnvdS, (5.18)
Q rerp T rerp /T N
where the penalty parameter o is given by
Cw D
= = .1

U‘F or d(F), Fth s (5 9)

with d(T'") introduced in (5.11) — (5.14), and a suitable constant Cy > 0. In contrast to the penalty parameter o defined
in Section 1.6.1, we have ol ~ p?h~!, where h and p correspond to the diameter of I' and the degree of the polynomial
approximation, respectively, in the vicinity of I'.

Similarly as in Section 1.4, for © = —1, © = 0 and © = 1 the form a; (together with the form J7) represents the
nonsymmetric variant (NIPG), incomplete variant (ITPG) and symmetric variant (SIPG), respectively, of the approximation of
the diffusion term. Moreover, we put

Ap(u,v) = ap(u,v) + J7 (u,v), wu,v € H%(Q,Th). (5.20)

Now we shall define an approximate solution of problem (5.1).
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Definition 5.4. A function uj, € Syp is called an hp-DG approximate solution of problem (5.1), if it satisfies the identity
Ah(u;“vh) = Eh(vh) Yoy € Shp. (521)

From the construction of the forms A;, and £}, one can see that the exact solution u € H?(2) of problem (5.1) satisfies the
identity

Ap(u,v) =l (v) Vv e H*(Q,Th), (5.22)

which represents the consistency of the method. Identities (5.21) and (5.22) imply the Galerkin orthogonality of the error
ep, = up, — u of the method:

Ap(en,vn) =0 Yo, € Shps (5.23)

which will be used in the analysis of error estimates. (Compare with (1.57).)

5.1.3 Theoretical analysis

This section is devoted to the error analysis of the hp-DGM introduced above. Namely, an error estimate in the analogue to the
DG-norm introduced by (1.103) will be derived. We follow the analysis of the abstract method from Section 1.2 and present
several “hp-variants” of results from Chapter 1. We use the same notation for constants, although they attain different values
in Chapter 1 and Section 5.1.3.

Auxiliary results

Similarly as in Section 1.5, the numerical analysis is based on three fundamental results: the multiplicative trace inequality, the
inverse inequality and the approximation properties.

The multiplicative trace inequality presented in Lemma 1.19 remains the same. This means that under the shape-regularity
assumption (5.15), there exists a constant Cp; > 0 independent of v, h and K such that

[0lZ205) < Cumr (||”HL2(K) vlm () + h}lHU”iz(K)) . (5.24)
K cTy, ve H(K), he(0,h).

The proof of Lemma 1.21 gives us the hp-version of the inverse inequality: Let the shape-regularity assumption (5.15) be
satisfied. Then there exists a constant C7 > 0 independent of v, h, px, and K such that

|'U|H1(K) < ij%{h;g”UHL%K), v E Py (K), K€Ty he (O,B). (5.25)

Finally, we introduce the hp-version of approximation properties of spaces Spp. We present the results from [BS87]. Since
the proof is very technical, we skip it and refer to the original work.

Lemma 5.5 (Approximation properties). There exists a constant C4 > 0 independent of v, h, K and px and a mapping
Tl H%(K) = Py (K), sk > 1, such that the inequality

KK —q
v = vlaae) <CaCeglivlans o (5.26)
K

holds for all v € H*<(K), K € T, and h € (0,h) with pur = min(pgx + 1,55), 0 < ¢ < sg,
Proof. See Lemma 4.5 in [BS87] for the case d = 2. If d = 3, the arguments are analogous. O O
Definition 5.6. Let s and p be the vectors introduced in (5.2). We define the mapping Iy, : H* (2, Tp,) — Shp by

(Mhpu) [k = (ul) VK € Tp, (5.27)
where © : H< (K) — P, (K) is the mapping introduced in Lemma 5.5.

Lemma 5.7. Let s and p be the vectors introduced in (5.2) and Ipp : H%(Q, Ty) — Shp the corresponding mapping defined by
(5.27). If v e H*(Q,Ty), then

2 _
|ITT v—vH2 < C? Z M””HQ (5.28)
hp Hi(Q,T) = YA 25 —2q IVl Eex (K> )
keT, Pk

where pr = min(pg + 1,sx), K € Tp, and 0 < ¢ < ming,.cs Sk and Cy is the constant from Lemma 5.5.
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Proof. Using definition (5.27) and the approximation properties (5.26), we obtain (5.28).

Moreover, using the previous results, we prove some technical inequalities analogous to Lemma 1.27.

Lemma 5.8. Let (5.10) be valid and let o be defined by (5.19). Then for each v € H*(Q,Ts) we have

> ar / Zd 1/8K|v|2dS,

FE]:ID KETh
> dr / 2dS < Cq Y d(K / [v]*dS.
reri KeTn oK
Hence,
QCW
Z or|[v ]||L2(r) Z d(K ||”||2L2(6K),
reFip KE€Ts
1
Z ;‘|< >||L2(F) Z d(K HU”Lz 9K)>
rerp L W ke,

where the penalty parameter o is given by (5.19).

Proof. (a) By definition (1.32), (1.33), inequality (1.110) and assumption (5.10), we have

> am) /dS

rerP

-y d(r)*l/ )‘ as+ 3 a( /

rer} reFp

<2 Z d(F)fl/ <v 'UI(‘R)’ > dsS + Z d(F)fl/ v
Fi r FP r
<207t Y (k)" /‘ ”‘ ds + 207" Z d(K )*1/]v§R>‘2ds
r

rerip

<207' Y d(K)‘l/aK\deS,

KeTy

)2
F’dS

2
ds

which proves (5.29). Moreover, using (5.19) we immediately obtain (5.31).

(5.29)

(5.30)

(5.31)

(5.32)

(b) In the proof of (5.30), we proceed in a similar way, using (1.32), (5.10) and (1.110). Inequality (5.32) is a direct

consequence of (5.30) and (5.19). O
Analogously to Lemma 1.32; we present its hp-variant.

Lemma 5.9. Let v € HY(Q, 7). Then

2CwCum P P
T (v,0) < 2N Z(,ﬁimniz(m}f(nvLzmvmm

KeTh
CwCnm 2p3
< Q0 5 (B ol + FE Mol + ol )
T kem V'K

Proof. If v € H'(Q,Ty), then the definition (5.17) of the form J¢, (5.31) and (5.9) imply that

o= 3 / op2ds = 3 orlll

rerp /T reFip
QCW _ 2C’I/V p2
<o > dE) ollF k) = N thHUH%z(aKy
T KeTy T KeTh K
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Now, using the multiplicative trace inequality (5.24), we get
2Cw Cy i p3
Ti(w0) < =53 (3 lllieio + 2o ol e )
T kem 'K K
which gives the first inequality in (5.33). Moreover, the application of Young’s inequality yields the second one. O O
Finally, we introduce the hp-variant of Lemma 1.34.

Lemma 5.10. Under assumptions (5.15) and (5.10), for any v € H2(Q,Ty,) the following estimate holds:

_ CaC h
Z /O’ 1(77,‘ <Vv>)2dS S GoM Z K ("U‘Hl(K ‘U|H2(K) +hK |U|H1 ))
rerr’l KeT, Pi
CaCuy (3 9 h3 .
< — vy + v . (5.34)
2Cy K%:rh, T
Moreover, for vy, € Spp we have
_ CaC
3 /Fcr Ln - (Vop))2dS < gWM (Cr + Dlonp o7 (5.35)

reriP

Proof. Using (5.32), the multiplicative trace inequality (5.24) and notation (5.9), we find that

Z /I‘O'_l(’l’l,' (Vv) dS < —_— Z d |V’U||L2 BK)

rerP KeT

CeCyp hi _
<=5 D ?(||V’U||L2(K)|W|H1(K>+hK1||WH%z(K)),
W ke,

C’GCM hK (
= E | V|2 + hy |v )
C s p ‘ |H (K)l |H (K) K | |H1(K)

which is the first inequality in (5.34). The second one is obtained by the application of Young’s inequality.
Further, for v, € Spp, estimate (5.34), the inverse inequality (5.25) and the inequality 1/p% < 1 give

§:/ (Von))? dS

rer/p
< CaCum
= "ow

h
> 2 (I9onllza0 [Vonlio) + R IVonla) ) -
KET Pic

CeCum hk _ _
< 2GS A (Coehi IV onlia a0 IVenllzaae) + b 190nl 3 )
w KeTn Pk

< CaCym
=" Cw

(Cr+1) Z VR 2 k)

_ CaCy
KeTh ¢

(Cr+ 1)|Uh|§11(ﬂ,7*h),

which implies (5.35). O O
Continuity of the bilinear forms
Now, we prove the continuity of the bilinear form Aj, defined by (5.20). In the space Sp, we again employ the DG-norm
2 o 1/2
llull = (ufis 7 + I (ww) (5.36)

Comparing (5.36) with (1.103), both relations are formally identical. However, the norm in (5.36) is p-dependent, because o
depends on the polynomial degrees px, K € Tp,.

Exercise 5.11. Prove that || - ||| is a norm in the spaces H*(Q2,Ty) and Shp.
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Furthermore, due to (1.122), we have

|An (u,v)| < 2l|ull1olv]l1e Yu,v € H*(Q,Th), (5.37)
where
ol o =loll*+ 30 [ o7 n- (To)as (5.39)
rerfp
:|v|%11(91771) + Jg(v, U) + Z / O'_l(n . <V’U>)2dS.
reFp T
Now, we derive the hp-estimate of the || - ||1,,-norm, compare with Lemma 1.35.

Lemma 5.12. Let (5.10) be valid and let o be defined by (5.19). Then, there exist constants Cy, Cy > 0 such that

T, < Jull < o < Co Bau) Ve BT, he (0,B), (5.39)
T w02 < llonl] < enllo < Collonll Yon € Supe B (0,) (5.40)
where
1/2
h2 9
Rufu) = (Z (B ol + ety + 2 u|H2<K>)> we QT (5.41)
K€7_’L

Proof. The first two inequalities in (5.39) as well as in (5.40) follow immediately from the definition of the DG-norm (5.36) and
[[[[; ,-norm (5.38). Moreover, in view of (5.38), (5.4), (5.33) and (5.34), for u € H?(Q,Tp), we have

lullf o = [uffn 0,7 + JF (nu) + - / u))*ds
rer/p
Cw Cr 2p3 pi
<3 il + M S (hfnu%2<K)+,;(||u||%Z(K>+pK|u|%p(K>
KeT, T ke V'K K
CaCuy ( 3 5 h3 . )
+ —|u + —=|u .
st 3= (g + et

Now, using the inequalities p;, > 1 and 1/pg < 1, we get

3CGCM OWCM
o < 3 (14 2550 + QO luly
KeT

CgCM h%( 3CWCMPK
2w E |U|H2(K) + TT ||U||L2(K)

Hence, (5.39) holds with

B 3CcCu  CwCyn CoCum 30w Car\\'?
Cg<max<1+ 5Coy + Cr ' 20w Cr )) .

Further, if vj, € Shp, then (5.38) and (5.35) immediately imply (5.40) with C, = (14 Cq Cy(Cr +1)/Cyw)V2. O O
Lemma 5.12 directly implies the continuity of the form Ap:

Corollary 5.13. Let (5.10) be valid and let o be defined by (5.19). Then there exist constants Cg > 0 and Cp > 0 such that
the forms Ay, defined by (5.20) satisfies the estimates

| A (un, vn)| < Colllunllllvall Y un, vn € Sy, (5.42)
|Ap (u,v4)| < C Ra(w)||vnl] Yu € H*(Q,Th) Yoi € Shp ¥ R(0, 1), (5.43)
where R, is defined by (5.41).
Proof. Estimates (5.37), (5.39) and (5.40) give (5.42) with Cz = 2C2. Moreover, by (5.37) and (5.39),
|An(u,0n)] < 2]ull1ollonll1e < 2C5CoRa(w)|lonlll

which is (5.43) with Cp = 2C,C,. O O
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Coercivity of the bilinear forms

In order to derive error estimates of the approximate solution (5.21), we need the coercivity of the form Aj. To this end, we
shall present here the generalization of the results from Section 1.6.3.

Lemma 5.14 (NIPG coercivity). For any Cyw > 0 the bilinear form Ay, defined by (5.20) with © = —1 in (5.16) satisfies the
coercivity condition

Ap(v,0) > o> Vv e HX(Q,Tp). (5.44)

Proof. If © = —1, then from (5.16) and (5.20) it immediately follows that
An(v,0) = an(v,0) + 7 (0,0) = [0l 0,7 + J7 (0,0) = [0l (5.45)
which we wanted to prove. O O

The proof of coercivity of the symmetric bilinear form Aj, defined by (5.16) with © = 1 is more complicated.

Lemma 5.15 (SIPG coercivity). Let assumptions (5.15) and (5.10) be satisfied, let
Cw > 4CcCuy (1 + Cy), (5.46)

where Cyr, Cr and Cg are the constants from (5.24), (5.25) and (5.10), respectively, and let the penalty parameter o be given
by (5.19) for allT € FP. Then the bilinear form Ay, defined by (5.20) and (5.16) with © = 1 satisfies the coercivity condition

Ah(vh,vh) 7|th|H Yy € Shp, Vhe ((LB).

Proof. Let 6 > 0. Then (5.17), (5.19), (5.16) with © = 1 and the Cauchy and Young’s inequalities imply that

an(Vn, vn) (5.47)
= [onlF .7 — 2 Z / (Vop)[vp]dS
reriP
% 1
> |vnl 3 7y — Z /d (Vup))2dS
Fe]:ID ]:ID

4]
2 \Uh\%rl(n,n) W @Jg(vhavh)a

where

Z / d(T)|(Vop)|? dS. (5.48)

Fe}‘ID

Further, from (5.9), assumption (5.10), inequality (5.30), the multiplicative trace inequality (5.24), the inverse inequality (5.25)
and the inequality p;(g <1, we get

hk
w< =Y 2 IVorlZs o) (5.49)

hK _
5 Z; ) (|vh|H1 >|Vvh|H1<K)+hK1|Uh\fq1(K))
KeTy,

CaCum hi
< s Z (CIpKh 1|Uh|H1(K) + hK |Uh|H1(K)>
KeTy p
CaCum(1+CY)
< B S [l Er1 0,7

Now let us choose

0= 20@0}\/[(1 + C[). (5.50)
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Then it follows from (5.46) and (5.47) - (5.50) that

1 4CeCr (1 4+ C
an(Vn, vn) 25 (|’Uh|fql(g77*h) - G]g,‘(/VI)Jg(Uh,Uh)) (5.51)

Z% <|Uh|%{1(9,77l) - Jﬁ(vh,vh)) :
Finally, from the definition (5.20) of the form Aj; and from (5.51) we have
Ap(vn,vr) =an(vn, vi) + Ji (vn, vn) (5.52)
> (Ionlis @y + T onown)) = gllondl,
which we wanted to prove. O O
Lemma 5.16 (IIPG coercivity). Let assumptions (5.15) and (5.10) be satisfied, let
Cw > CeCun (14 Cy), (5.53)

where Cr, Cr and Cq are constants from (5.24), (5.25) and (5.10), respectively, and let the penalty parameter o be given by
(5.19) for allT € F{P. Then the bilinear form Ay, defined by (5.20) and (5.16) with © = 0 satisfies the coercivity condition

1
An(on,vn) = Sllenll® Yon € Shp.

Proof. The proof is almost identical with the proof of the previous lemma. O O

Corollary 5.17. We can summarize the above results in the following way. We have

Ap(vn,vn) = Collonll> Von € Shp, (5.54)
with
Ce =1 for ® = -1, if Cw >0,
Ce =1/2 for©=1, if Cw >4CeCy(1+Cy),
Coe =1/2 for ® =0, if Cw > CeCun(1+Ch).

Corollary 5.18. By virtue of Corollary 0.7, the coercivity of the form Ay implies the existence and uniqueness of the solution
of the discrete problem.
Error estimates in the DG-norm

In this section we will be concerned with the derivation of the error estimates of the hp-discontinuous Galerkin method (5.21).
Let u and wy, denote the exact solution of problem (5.1) and the approximate solution obtained by method (5.21), respectively.
The error e;, = uj, — u can be written in the form

en =&+mn, with & =up — ppu € Shp, n=1Ippu — u, (5.55)

where Il is the Spp-interpolation defined by (5.27). The estimation of the error ej will be carried out in several steps.

We suppose that the system of triangulations {ﬂl}he(o,ﬁ) satisfies the shape-regularity assumption (5.15) and that the
relations (5.10) between d(I") and d(K) are valid.

First, we prove the abstract error estimate, representing a bound of the error in terms of the Sj,-interpolation error 7, cf.
Theorem 1.43.

Theorem 5.19. Let (5.10) be valid, let o be defined by (5.19) and let the exact solution of problem (5.1) satisfy the condition
u € H?(Q). Then there exists a constant Car > 0 such that

llenll < Cag Ra(n) = Cap Ra(Mppu —u) Vh e (0,h), (5.56)
where R, (u) is given by (5.41).

Proof. The proof is completely identical with the proof of Theorem 1.43. We obtain again Cag = C, + Cp /C¢, where C, and
Cp and C¢ are constants from (5.39) and (5.43) and (5.54). O O

The abstract error estimate is the basis for the estimation of the error ej; in terms of the mesh size h.
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Theorem 5.20 (DG-norm error estimate). Let {ﬁz}he(o,h) be a system of triangulations of the domain ) satisfying the shape-
reqularity assumption (5.15). Let s and p be the vectors (5.2) such that sx > 2, px > 1 and px = min(px + 1, sx) for each
K € Tpn. Let the condition of equivalence (5.10) between d(T') and d(K) be valid (c¢f. Lemma 5.1). Let u be the solution of
problem (5.1) such that u € H*(Q) N H®(,Ty,) for any h € (0,h). Moreover, let the penalty constant Cy satisfy the conditions
from Corollary 5.17. Let up, € Shp be the approzimate solution obtained by means of method (5.21). Then the error e, = up —u
satisfies the estimate

B hQ(MKfl) B B
lleall <C{ > e lulfrencry | - he(0h), (5.57)
KeT, UK

where C is a constant independent of h and p.

Proof. Tt is enough to use the abstract error estimate (5.56), where the expressions [9|g1 (), [7|m2(x) and ||9llz2(x), K € Th,
are estimated on the basis of the approximation properties (5.26), rewritten for n|x = (Ilppu — u)|xk = T p(u|x) — u|x and
K eTy:
UK
1]l L2 (xc) <Ca —2
Pk

l[wll e (26 (5.58)

pr—1

a0y <Ca—S—[|ull ey,
K
nK—2

112 () <Ca pﬁi,g wll e (x6)-
K

The above, the definition (5.41) of the expression R, and the inequalities l/pi(sf2 < l/p%,37 pr > 1 imply

3 2

P h
R = 5 (LW + il + Elal
K

2
KeTh K
3 120K 2(px—1) 2 p2ux—4
pic h h hi- h
<Ci Z (hé( bor TPk s 2 —geet | 1l i)
KeT, K Pk P Pk Pk
hQ(HK—l) hQ(MK—l) hQ(MK—l)
2 K K K 2
<Ci > ( o+ e + e | Il )
KeT, K P P
2 h%MKil) 2
=3C3 Z WHUHHHK(K)'
KeTn UK
Together with (5.56) this gives (5.57) with the constant C' = v/3Cxp Ca. O O

Comparing error estimate (5.57) with the approximation property (5.28) with ¢ = 1, we see that (5.57) is suboptimal with
respect to the polynomial degrees px, K € Tj. This is caused by the presence of the interior penalty form J; , see the last two
terms in the second inequality in (5.33), namely the terms

3 2
p p
B ol + il ) = i (TNl agre + ol )+ K € T
K K

The error estimates optimal with respect to p were derived in [GS05] using an augmented Sobolev space.

As for the analysis of further subjects concerned with the hAp-DGM, we refer to several works, namely [HSWO08], [HSW07]
dealing with the hp-DGM for quasilinear elliptic problems, [Geo06], [GHHO07] dealing with the hp-DGM on anisotropic meshes,
[WFS03] proving the exponential rate of the convergence of the hp-DGM, [HSS02], [CCSS02] dealing with the hp-DGM for
convection-diffusion problems and [Tos02], [SW03] analyzing the hAp-DGM for the Stokes problem.

5.1.4 Computational performance of the hp-DGM

In the previous sections we analyzed the hp-DGM, where the mesh 7}, and the approximation polynomial degrees px, K € Ty,
were given in advance. In practice, the hp-DGM can be applied in the combination with an adaptive algorithm, where the size
hx of the elements K € 7T, as well as the polynomial degrees px on elements K € 7, are adaptively determined. The aim of
this section is to demonstrate the ability of the hp-DGM to deal with refined grids and with different polynomial degrees on
different K € 7;,. We present one numerical example showing the efficiency and a possible potential of the hp-DGM.
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Mesh adaptation — an overview

Numerical examples presented in Section 1.8.2 show that if the exact solution of the given problem is not sufficiently regular,
then the experimental order of convergence of the DGM is low for any polynomial approximation degree. Therefore, a high
number of degrees of freedom (DOF) (=dim Sp,) has to be used in order to achieve a given accuracy. A significant reduction of
the number of DOF can be achieved by a local mesh refinement of the given grid 7}, in which we look for elements K € 7Ty, for
which the computational error is too large. Then these marked elements are refined. In practice, for each element K € T, we
define an error estimator nx such that

lu—unlx = nk, (5.59)

where |||, denotes a suitable norm of functions defined on K € 7. The elements, where nx is larger than a prescribed
tolerance, are split into several daughter elements. E.g., for d = 2, by connecting the mid points of edges of the triangle marked
for refinement, new four daughter triangles arise in place of the original one. This refinement strategy leads to hanging nodes,
see Section 1.3.1. Figure 5.2 shows a sequence of adaptively refined triangular grids.

There exist a number of works dealing with strategies for the error estimation and the corresponding mesh adaptive tech-
niques. Since a posteriori error analysis and mesh adaption are out of the scope of this book, we refer only to [EEHJ95], where an
introduction to adaptive methods for partial differential equations can be found. Moreover, an overview of standard approaches
was presented in [Ver96], [Ver13] and [Voh10].

Here we use the residual error estimator ng, K € Ty, developed in [Dol13b], which is based on the approximation of the
computational error measured in the dual norm. We suppose that similar results can be obtained by any other reasonable
error estimator. However, a single error estimator i cannot simultaneously decide whether it is better to accomplish i or p
refinement. Several strategies for making this decision have been proposed. See, e.g., [HS05] or [EMO07] for a survey.

In the following numerical examples, we employ the approach from [Dol13b], where the regularity indicator is based on
measuring the interelement jumps of the DG solution.

Numerical example

We illustrate the efficiency of the hp-discontinuous Galerkin method by the following example. Let Q = (0,1)x (0, 1), 9Qp := 99Q.
We consider the Poisson problem (5.1), where the right-hand side f and the Dirichlet boundary condition up are chosen so that
the exact solution has the form

w(zy, x0) = 2(x2 4+ 22) " ryo(1 — 21)(1 — x2), (5.60)

cf. Section 1.8.2. The function u has a singularity at the origin and, hence, v € H'(Q) but u ¢ H?(Q2). Numerical examples pre-
sented in Section 1.8.2 showed that the experimental order of convergence of DGM in the H'(f2, T3 )-seminorm is approximately
O(hl/ 2) for any tested polynomial approximation degree.

In order to study the computational properties of the hp-DGM, we carried out three types of calculations:

o fix-DGM: P,, p =1,3,5, approzimations on uniformly refined grids, i.e., the computation with fixed polynomial approxi-
mation degree (px = p for all K € 7T3,) on uniform triangular grids with hy = 1/2%+¢, ¢ =0,1,... . Figure 5.1 shows the
uniformly refined grids for ¢ = 0,2, 4.

e h-DGM: h-adaptive DGM for P,, p = 1,3,5, polynomial approximations, i.e., the computation with fixed polynomial
approximation degree (px = p for all K € T;,) on adaptively (locally) refined grids. Figure 5.2 shows the example of the
sequence of meshes generated by the h-refinement algorithm for p = 3 together with details at the singularity corner.

o hp-DGM: hp-adaptive DGM, i.e., the computation with adaptively chosen polynomial approximation degree px, K € T,
on adaptively (locally) refined grids using the algorithm from [Doll3b]. Figure 5.3 shows the hp-grids generated by this
algorithm for selected levels of adaptation. Each K € T}, is marked by the colour corresponding to the used polynomial
approximation degree.

Our aim is to identify the experimental order of convergence (EOC), similarly as in Section 1.8. Since we employ locally
adaptive grids and possible different polynomial approximation degrees on K € Ty, it does not make sense to use formula (1.176)
and to define the EOC by (1.177). Therefore, we expect that the computational error e, = up — u behaves according to the

formula
EOC

lenl| = CNy, T, (5.61)

where ||ey, || is the computational error in the (semi-)norm of interest, d = 2 is the space dimension, C' > 0 is a constant, EOC € R
is the experimental order of convergence and N}, is the number of degrees of freedom given by (cf., e.g., [BS94b, Chapter 3] or
[CiaT9])

d
. 1 .
Np = dim Spp = E EH@K + 7). (5.62)
KeT,  j=1
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Figure 5.1: Computation fix-DGM: the uniformly refined computational grids for ¢ = 0, 2, 4.

£=0,...,3 (the

whole mesh)

£=4,...,7 (the

whole mesh)

£=4,...,7 (zoom 50x

at the singularity)

Figure 5.2: Computation h-DGM: example of the sequence of the meshes ¢ = 0,

for p = 3; the last row shows the details at the singularity corner.
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whole mesh 10x zoom at the singularity 100x zoom at the singularity
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Figure 5.3: Computation hp-DGM: the hp-meshes for the levels of adaptation ¢ = 3,5,7,9,11; each K € Tp is marked by
the colour corresponding to the used polynomial approximation degree; the whole domain (left), zooms 10x and 100x at the
singularity corner (center and right), respectively.
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Figure 5.4: Convergence of errors in the H'(Q, 7;,)-seminorm with respect to the number of DOF for fix-DGM, h-DGM, hp-DGM
computations. Moreover the slope corresponding to EOC= 1/2 is plotted.

Obviously, if the mesh 7; is quasi-uniform (cf. Remark 1.3) and px = p for all K € 7T}, then the experimental orders of
convergence defined by (5.61) and by (1.176) are identical.

Since the exact solution is known and, therefore, |les| can be exactly evaluated, it is possible to determine the EOC in the
following way. Let ||ep, || and |len,|| be the computational errors of numerical solutions obtained on two different meshes Ty,
and T, having the numbers of degrees of freedom N, and Ny, , respectively. Then eliminating the constant C' from (5.61), we
come to the definition of the EOC in the form

log(llen, [I/llen, 11)
EOC = — .
log((Nn, /Nn,)*/?)

Table 5.1 shows the results of all types of computations (fix-DGM, h-DGM, hp-DGM), namely, the computational errors in the
L>(Q)-norm, the L?(2)-norm and the H'(, 73)-seminorm and the corresponding EOC together with the computational time
in seconds. The results with the error in the H'(f2, 73 )-seminorm are visualized in Figure 5.4. We observe that the fixx-DGM
computations give a low experimental order of convergence in agreement with results in Tables 1.5 and 1.6. Moreover, the
h-mesh refinements h-DGM achieve the same error level with smaller number of DOF. Namely, for P; and P5; approximation
the decrease of the number of DOF is essential. Finally, the hp-adaptive strategy hp-DGM leads to the lower number of DOF
(and a shorter computational time) in comparison to h-DGM.

We observe that in some cases EOC is negative for the hp-DGM. The relation (5.63) gives EOC < 0 in two situations:

(5.63)

e The adaptive algorithm increases the number of degrees of freedom INj, but the computational error ej increases too. This
is the usual property of hp-adaptive methods, when at the beginning of the adaptation algorithm we use high polynomial
degrees on coarse grids. The polynomial approximation oscillates and thus e is large.

e The adaptive algorithm reduces the number of degrees of freedom IV, together with a decrease of the computational error
er (see level 7 of hp-DGM in Table 5.1). This is in fact a positive property of the used algorithm.

Furthermore, from Table 5.1, we find out that for the hp-DGM computations, the error in the L?(2)-norm is almost constant
for the levels £ = 8, 9, 10 and 11, whereas the errors in the L®(£2)-norm and in the H'(£2, 7;,)-seminorm are decreasing. This
is caused be the fact that the piecewise constant function F°: Q — R given by

Flg = ||U_UhHL2(K)a KeT

attains the maximal values for K far from the singularity (if the mesh is already sufficiently refined), whereas the piecewise
constant function F! : Q — R given by

Flg = lu—unlgiry, K E€Th

attains the maximal values for K near the singularity even for sufficiently refined grids. Figure 5.3 shows that for ¢ > 5 only
elements near the singularity are adapted, and hence the error in the L?(Q)-norm cannot be further decreased.

The presented numerical experiments show that the hp-DGM can treat locally refined grids with hanging nodes and different
approximation polynomial degrees generated by an hp-adaptive technique. This approach allows us to achieve the given error
tolerance with the aid of a low number of DOF.
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fix-DGM

level V4 #7-;, DOF HE;,,HLOO(Q) EOC HehHLg(Q) EOC ”eh”Hl(Q,Th) EOC CPU(S)
0 1 32 96 2.47E-01 - 4.22E-02 - 7.01E-01 - 0.3
1 1 128 384 1.99E-01 0.3 1.83E-02 1.2 5.61E-01 0.3 0.5
2 1 512 1536 1.50E-01 0.4 7.28E-03 1.3 4.26E-01 0.4 1.4
3 1 2048 6144 1.09E-01 0.5 2.77E-03 1.4 3.14E-01 0.4 6.3
4 1 8192 24576 7.84E-02 0.5 1.02E-03 1.4 2.27E-01 0.5 38.9
0 3 32 320 1.51E-01 - 5.79E-03 - 4.63E-01 - 0.4
1 3 128 1280 1.07E-01 0.5 2.13E-03 1.4 3.34E-01 0.5 1.0
2 3 512 5120 7.55E-02 0.5 7.71E-04 1.5 2.39E-01 0.5 3.9
3 3 2048 20480 5.34E-02 0.5 2.76E-04 1.5 1.70E-01 0.5 16.8
4 3 8192 81920 3.78E-02 0.5 9.83E-05 1.5 1.20E-01 0.5 82.2
0 5 32 672 2.29E-01 - 5.09E-03 - 3.85E-01 - 0.6
1 5 128 2688 1.62E-01 0.5 1.81E-03 1.5 2.75E-01 0.5 2.2
2 5 512 10752 1.15E-01 0.5 6.42E-04 1.5 1.95E-01 0.5 9.2
3 5 2048 43008 8.12E-02 0.5 2.28E-04 1.5 1.38E-01 0.5 41.2
4 5 8192 172032 5.74E-02 0.5 8.05E-05 1.5 9.80E-02 0.5 235.3
h-DGM
level P #7-h DOF “eh”Loo(Q) EOC HehHLQ(Q) EOC ”eh”Hl(Q,Th) EOC CPU(S)
0 1 32 96 2.47E-01 4.22E-02 7.01E-01 0.3
1 1 128 384 1.99E-01 0.3 1.83E-02 1.2 5.61E-01 0.3 0.5
2 1 410 1230 1.50E-01 0.5 7.34E-03 1.6 4.26E-01 0.5 1.3
3 1 959 2877 1.09E-01 0.7 2.89E-03 2.2 3.15E-01 0.7 3.2
4 1 1952 5856 7.84E-02 0.9 1.15E-03 2.6 2.30E-01 0.9 8.2
5 1 3491 10473 5.59E-02 1.2 5.28E-04 2.7 1.67E-01 1.1 21.1
6 1 5567 16701 3.96E-02 1.5 3.11E-04 2.3 1.21E-01 1.4 47.8
7 1 7922 23766 2.81E-02 2.0 2.40E-04 1.5 8.95E-02 1.7 86.0
8 1 11387 34161 1.99E-02 1.9 1.77E-04 1.7 6.73E-02 1.6 168.6
0 3 32 320 1.51E-01 - 5.79E-03 - 4.63E-01 - 0.4
1 3 44 440 1.07E-01 2.2 2.14E-03 6.3 3.34E-01 2.0 0.7
2 3 56 560 7.55E-02 2.9 7.99E-04 8.2 2.39E-01 2.8 1.0
3 3 68 680 5.34E-02 3.6 3.42E-04 8.7 1.70E-01 3.5 1.3
4 3 80 800 3.78E-02 4.3 2.23E-04 5.3 1.21E-01 4.2 1.8
5 3 86 860 2.67E-02 9.5 2.03E-04 2.6 8.67E-02 9.3 2.2
6 3 92 920 1.89E-02 10.3 2.00E-04 0.4 6.25E-02 9.7 2.7
7 3 98 980 1.34E-02 11.0 2.00E-04 0.1 4.57E-02 9.9 3.1
0 5 32 672 2.29E-01 - 5.09E-03 - 3.85E-01 - 0.6
1 5 38 798 1.62E-01 4.0 1.81E-03 12.0 2.75E-01 3.9 1.0
2 5 44 924 1.15E-01 4.7 6.43E-04 14.1 1.95E-01 4.7 1.5
3 5 50 1050 8.12E-02 5.4 2.29E-04 16.1 1.38E-01 5.4 2.1
4 5 56 1176 5.74E-02 6.1 8.53E-05 17.5 9.80E-02 6.1 2.8
5 5 62 1302 4.06E-02 6.8 3.99E-05 15.0 6.94E-02 6.8 3.6
hp-DGM

level P #Th DOF llenllzoo (@) EOC | llenllp2q) EOC Heh’HHl(Q,ﬂL) EOC | CPU(s)
0 - 32 96 2.47E-01 - 4.22E-02 - 7.01E-01 - 0.3
1 - 32 192 1.14E-01 2.2 8.68E-03 4.6 4.14E-01 1.5 0.4
2 - 32 232 1.51E-01 -3.0 5.86E-03 4.1 4.63E-01 -1.2 0.5
3 - 32 252 2.01E-01 -7.0 5.98E-03 -0.5 3.77E-01 5.0 0.6
4 - 35 303 1.43E-01 3.7 2.25E-03 10.6 2.71E-01 3.6 0.8
5 - 38 354 1.01E-01 4.4 1.03E-03 10.0 1.95E-01 4.3 1.0
6 - 44 424 5.34E-02 7.1 7.40E-04 3.7 1.72E-01 1.3 2
7 - 44 420 3.78E-02 -81.5 6.93E-04 -15.4 1.25E-01 -76.1 1.4
8 - 47 455 2.67E-02 8.7 6.86E-04 0.2 9.15E-02 7.7 1.7
9 - 50 490 1.89E-02 9.4 6.86E-04 0.0 6.91E-02 7.6 1.9
10 53 525 1.34E-02 10.1 6.85E-04 0.0 5.46E-02 6.9 2.2
11 - 59 585 9.45E-03 6.4 6.85E-04 0.0 4.55E-02 3.3 2.4

Table 5.1: Computational errors in the L>(2)-norm, the L?(Q)-norm and the H'(f,T;)-seminorm, the corresponding EOC
and the CPU time for all types of computations.
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Chapter 6

Inviscid compressible flow

In previous chapters we introduced and analyzed the discontinuous Galerkin method (DGM) for the numerical solution of several
scalar equations. However, many practical problems are described by systems of partial differential equations. In the second part
of this book, we present the application of the DGM to solving compressible flow problems. The numerical schemes, analyzed
for a scalar equation, are extended to a system of equations and numerically verified. We also deal with an efficient solution of
resulting systems of algebraic equations.

One of the models used for the numerical simulation of a compressible (i.e., gas) flow is based on the assumption that the
flow is inviscid and adiabatic. This means that in gas we neglect the internal friction and heat transfer. Inviscid adiabatic
flow is described by the continuity equation, the FEuler equations of motion and the energy equation, to which we add closing
thermodynamical relations. See, for example, [FFS03, Section 1.2]. This complete system is usually called the Euler equations.

The Euler equations, similarly as other nonlinear hyperbolic systems of conservation laws, may have discontinuous solutions.
This is one of the reasons that the finite volume method (FVM) using piecewise constant approximations became very popular
for the numerical solution of compressible flow. For a detailed treatment of finite volume techniques, we can refer to [EGH00] and
[Krd97]. See also [Fei93] and [FFS03]. Moreover, the FVM is applicable on general polygonal meshes and its algorithmization
is relatively easy. Therefore, many fluid dynamics codes and program packages are based on the FVM. However, the standard
FVM is only of the first order, which is not sufficient in a number of applications. The increase of accuracy in finite volume
schemes applied on unstructured and/or anisotropic meshes seems to be problematic and is not theoretically sufficiently justified.

As for the finite element method (FEM), the standard conforming finite element techniques were considered to be suitable for
the numerical solution of elliptic and parabolic problems, linear elasticity and incompressible viscous flow, when the exact solution
is sufficiently regular. Of course, there are also conforming finite element techniques applied to the solution of compressible flow,
but the treatment of discontinuous solutions is rather complicated. For a survey, see [FFS03, Section 4.3].

A combination of ideas and techniques of the FV and FE methods yields the discontinuous Galerkin method using advantages
of both approaches and allowing to obtain schemes with a higher-order accuracy in a natural way. In this chapter we present
the application of the DGM to the Euler equations. We describe the discretization, a special attention is paid to the choice of
boundary conditions and we also discuss an efficient solution of the resulting discrete problem.

6.1 Formulation of the inviscid flow problem

6.1.1 Governing equations

We shall consider the unsteady compressible inviscid adiabatic flow in a domain Q@ € R? (d = 2 or 3) and time interval (0, T),
0 < T < oo. In what follows, we present only the governing equations, their derivation can be found, e.g., in [FFS03, Section
3.1].

We use the standard notation: p-density, p-pressure (symbol p denotes the degree of polynomial approximation), FE - total
energy, vs, s = 1,...,d-components of the velocity vector v = (vy,... 7Ud)T in the directions x4, #-absolute temperature,
¢y > 0-specific heat at constant volume, ¢, > 0-specific heat at constant pressure, v = ¢, /¢, > 1-Poisson adiabatic constant,
R = ¢, — ¢, > 0-gas constant. We shall be concerned with the flow of a perfect gas, for which the equation of state has the
form

p = Rpb, (6.1)

and assume that cp, ¢, are constants. Since the gas is light, we neglect the outer volume force.
The system of governing equations formed by the continuity equation, the Euler equations of motion and the energy equation
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(see [FFS03, Section 3.1]) considered in the space-time cylinder Q7 = 2 x (0,T") can be written in the form

—_ = 0
ot " O, 7
A(pvy) d d(pvivs + 6;sp) o
o +Z axs _O, 7,—1,...7d7

To the above system, we add the thermodynamical relations defining the pressure
p=(v—1(E - plv/2),
and the total energy
E = plc,d + v[2/2),

in terms of other quantities.
We define the speed of sound a and the Mach number M by

v

a=+/vp/p, M=7

(6.7)

The flow is called subsonic and supersonic in a region w, if M < 1 and M > 1, respectively, in w. If M > 1, we speak about
hypersonic flow. If there are two subregions w; and wy in the flow field such that M < 1 in w; and M > 1 in wy, the flow is

called transonic.
Exercise 6.1. Derive (6.5) from (6.1) and (6.6).
System (6.2)—(6.4) has m = d + 2 equations and it can be written in the form

d

ow Ofs(w)
- ZIsNT
at " Z:: 0z,
where
T T m
'U.):(U)l,...,wm) :(p7pv17"‘>pvdaE) eR )
is the so-called state vector, and
fs,l(w> PUs
f872(w) PU1Vs + 6lsp
fs (w) = =
fs,mfl(w) PUAVs + §dsp
fsm(w) (E +p)vs
ws+1

s —1
weet gy (y = 1) (w5 0 w?)

w1 211)1

Ws41 -1 m—1 o
“wy ('Ywm 2wy dimy W

W —1Ws 41 + 5ds(’Y _ 1) (wm 1 221721 wlg

)

(6.9)

(6.10)

is the fluzr of the quantity w in the direction z,, s =1,...,d. By d;; we denote the Kronecker symbol. Often, f;, s =1,...,d,

are called inviscid Euler fluzes.
Usually, system (6.2)-(6.4), i.e.,
functions p, vy, ..
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(6.8), is called the system of the Euler equations, or simply the Fuler equations. The
.,vq,p are called primitive (or physical) variables, whereas wi = p, ws = pvy, ..

S Wm—1 = pVq, Wy, = E are



conservative variables. It is easy to show that

(O :wH_l/wl, 1= 1,...,d, (611)
m—1
p=(y-1) <wm -y w?/(2w1)> :
i=2
1 m—1
0= (wm/wl ~5 Z;(wi/wl)2> /o
The domain of definition of the vector-valued functions fs, s =1,...,d, is the open set D C R™ of vectors w = (wy, ... ,wm)T

such that the corresponding density and pressure are positive:

m—1

D= {w ER™; wy=p >0, wp— > w/(2wr) = p/(y 1) > o}. (6.12)
=2
Obviously, f € (CH(D))™
Differentiation in (6.8) and the use of the chain rule lead to a first-order quasilinear system of partial differential equations

ow d ow
— Ay =0, 1
ot +; s(w) g =0 (6.13)
where Ag(w) is the m x m Jacobi matrix of the mapping f, defined for w € D:
D s 0 EX "
Ag(w) = Fs(w) = fsi(w) ,s=1,...,d. (6.14)
Dw ow; i
1,)=
Let
B, = {n eR% |n| =1} (6.15)
denote the unit sphere in R%. For w € D and n = (n4, ... ,nd)T € B; we denote
d
P(w,n)=>_ fi(w)ns, (6.16)
s=1

which is the physical flux of the quantity w in the direction n. Obviously, the Jacobi matrix DP(w,n)/Dw can be expressed
in the form

d
DP
# = P(w,n) = ;As(w)ns. (6.17)
Exercise 6.2. Let d = 2. Prove that the Jacobi matrices Ag, s = 1,2, have the form
0 1 0 0
Llol? —of (3= —71v2 !
2 1
Ay (w) = —V1V2 V2 U1 0 ) (618)
v1 (71\’U|2 - 7%) e —mof = B e yu
0 0 1 0
—V1V2 V2 U1 0
Ba(w) = Bol* — 03 —Mv1 (3 =7)v2 Mmoo (6.19)
U2 (’Yl\’v|2 - ’Y%) —Y10102 ’Y% — Y103 — 771|'v|2 YUg

where vy = v — 1.
Exercise 6.3. Let d =2. With the aid of (6.18) —(6.19) show that the matriz P(w,n) has the form

0 ni1 No 0
l21|v|2n1 — V1N —7Y2U1M1 +vn V1N — Y12 Y11
P(w,n) = l21|v|2n2 — VoV M UgNy — Y1UINe | —Y2UaNo + VM | Y1Ng ) (6.20)

(71|v|2 — %) v-n | Gny —yviv-n | Gng — yvv-n | yon

where n = (ny1,ng), 1 =7—1, 1o =~ —2 andG:'y% — %\UP.
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Exercise 6.4. Let d = 3. Prove that the Jacobi matrices Ag, s =1,2,3, have the form

0 1 0 0 0
%‘UP —f (B—=7)un —71V2 —71V3 7
Al — —V1V2 V2 V1 0 0 , (621)
—v103 VU3 0 v 0
or (P =7E)  yE -t - Rl —muvs —mvs v
0 0 1 0 0
—V1V2 Vo (% 0 0
Ay = Lol —v3 —7v1 (8 —=")ve -nvs M|, (6.22)
—VaU3 0 V3 Vg 0
U2 (’Yl|’v|2 - ’)’%) —Y1V102 ’Y% - ’7111% - %|v|2 —Y1V2V3  YU2
0 0 0 1 0
—U1V3 V3 0 (%1 0
As = —UgUs3 0 V3 Vg 0 , (6.23)
V1|2 _ 012 _ _ _
5 lvl* — vy Y1v1 Y12 (3—")vs M
2 _ A E _ _ E _ 2 V1,2
U3 (71|U| 7 710103 T2V Y, T V3 T g |v| V3
where vy =y — 1.
Exercise 6.5. Let d = 3. With the aid of (6.21) —(6.23), show that the matriz P(w,n) has the form
Pw,n) = (6.24)
O 1 no ns 0
%|’v|2n1 —UIVM | —YUiN1 T VT | Ui — Y1V21 ving — Y1vsny | 71
Loy —vpv-n | veng —yiving | —yavang + VM | vang — V1U3N2 | Y172
%|v|2n3 —u3v-n U3n1 — Y1v1n3 U3Ng — Y1V2N3 | —Y2U3N3 + VM | YIN3
<'y1|v|2 — %) vn | Gny —yvivn | Gng —yivev-n | Gng — yiv3v-n | yvo-n
where n = (n1,n2,n3), 1 =7—1,%2=7—2 and G = 7% — Lol
Let us summarize some important properties of the system of the Euler equations (6.8).
Lemma 6.6. (a) The vector-valued functions fs defined by (6.10) are homogeneous mappings of order 1:
fs(aw) = afs(w), a>0. (6.25)
Moreover, we have
fs(w) = Agy(w)w (6.26)
(b) Similarly,
P(aw,n) =aP(w,n), «o>0, (6.27)
P(w,n) =P(w,n)w. (6.28)
(c) The system of the Euler equations is diagonally hyperbolic. This means that the matriz P = Zj:l Aj(w)n; has only real
eigenvalues \; = \;(w,n), i =1,...,m, and is diagonalizable: there exists a nonsingular matriz T = T(w,n) such that
A 0 L 0 0
0 X O 0
T 'PT =A = A(w,n) = diag(\i,..., A\n) = | . (6.29)
0 0 )\m—l 0
0 0 0 Am

The columns of the matriz T are the eigenvectors of the matrix P.
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(d) The eigenvalues of the matriz P(w,n), w € D, n € By have the form

A(w,n) =v-n —a, (6.30)
Xe(w,n) == Ag41(w,n) = v-n,

Am(w,n) =v-n+a,

where a = \/yp/p is the speed of sound and v is the velocity vector given by v = (wq /w1, ws/wy,. .., wdH/wl)T.

(e) The system of the Euler equations is rotationally invariant. Namely, for n = (nq1,...,nq) € By,w € D it holds
d
P(w,n) =Y fi(w)n, =Q ' (n)fi(Qn)w), (6.31)
s=1
d
s=1

1 0 0
Qm)=1| 0 Qn) 0 |, (6.33)
0 0 1

where the d x d rotation matriz Qo(n) is defined for d = 2 by

—n2 N

@o(n)< mehe > n = (n1,n2), (6.34)

and for d =3 by

cosacos 3 sinacosfS  sinf
Qo(n) = —sina cos 0 ) (6.35)
—cosasinf —sinasinf cosf

n = (cosacos f3,sinacos B,sin ), a € [0,27), B € [—-7/2,7/2].
By 0 we denote the vector (0,0), if d =2, and (0,0,0), if d = 3.
Proof. See [FFS03, Lemma 3.1, Lemma 3.3, Theorem 3.4]. O O

6.1.2 Initial and boundary conditions

In order to formulate the problem of inviscid compressible flow, the system of the Euler equations (6.8) has to be equipped with
initial and boundary conditions. Let  C R%, d = 2,3, be a bounded computational domain with a piecewise smooth Lipschitz
boundary 9f2. We prescribe the initial condition

w(z,0) = w’(z), z€Q, (6.36)
where w® : Q — D is a given vector-valued function. Moreover, the boundary conditions are given formally by
B(w)=0 on I x (0,T), (6.37)

where 4 is a boundary operator.

The choice of appropriate boundary conditions is a very important and delicate question in the numerical simulation of
fluid flow. Determining of boundary conditions is, basically, a physical problem, but it must correspond to the mathematical
character of the solved equations. Great care is required in their numerical implementation. Usually two types of boundaries
are considered: reflective and transparent or transmissive. The reflective boundaries usually consist of fixed walls. Transmissive
or transparent boundaries arise from the need to replace unbounded or rather large physical domains by bounded or sufficiently
small computational domains. The corresponding boundary conditions are devised so that they allow the passage of waves
without any effect on them. For 1D problems the objective is reasonably well attained. For multidimensional problems this
is a substantial area of current research, usually referred to open-end boundary conditions, transparent boundary conditions,
far-field boundary conditions, radiation boundary conditions or non-reflecting boundary conditions. Useful publications dealing
with boundary conditions are [BT80], [Hed79], [Roe89], [Gil90], [GF87], [GF88], [GKT79], [HHSS], [Kr91], [GR9I6, Chapter V]. A
rigorous mathematical theory of boundary conditions to conservation laws was developed only for a scalar equation in [BLN79].

123



The choice of well-posed boundary conditions for the Euler equations (or, in general, of conservation laws) is a delicate
question, not completely satisfactorily solved (see, e.g., the paper [BLN79] dealing with the boundary conditions for a scalar
equation). We discuss the choice of the boundary conditions in Section 6.3 in relation to the definition of the numerical solution
of (6.8).

Let us only mention that we distinguish several disjoint parts of the boundary 02, namely inlet 9Q;, outlet 02, and
impermeable walls 0Ny, i.e., O = IQ; U IN, U Iy . In some situations the inlet and outlet parts are considered together.
Therefore, we speak about the inlet/outlet part of the boundary. On 0Qy, we prescribe the impermeability condition

v-n=0 ondQy, (6.38)

where n denotes the outer unit normal to 0Qy and v is the velocity vector.

Concerning the inlet/outlet part of the boundary 9€; U 9,, the boundary conditions are usually chosen in such a way that
problem (6.8) is linearly well-posed. (See, e.g., [FFS03, Section 3.3.6].) Practically it means that the number of prescribed
boundary conditions is equal to the number of negative eigenvalues of the matrix P(w,n) defined by (6.31). See Section 6.3.

6.2 DG space semidiscretization

In the following, we shall deal with the discretization of the Euler equations (6.8) by the DGM. We recall some notation
introduced in Chapters 1 and 2. Similarly as in Chapter 2, we shall derive the DG space semidiscretization leading to a system
of ordinary differential equations. Moreover, we develop a (semi-)implicit time discretization technique which is based on a
formal linearization of nonlinear terms. We shall also pay attention to some further aspects of the DG discretization of the Euler
equations, namely the choice of boundary conditions, the approximation of nonpolygonal boundary and the shock capturing.

6.2.1 Notation

We shall recall and extend notation introduced in Chapters 1 and 2. In the finite element method, the computational domain
Q is usually approximated by a polygonal (if d = 2) or polyhedral (if d = 3) domain 2, which is the domain of definition
of the approximate solution. For the sake of simplicity, we shall assume that the domain €2 is polygonal, and thus Q; = €.
By 75, we denote a partition of § consisting of closed d-dimensional simplexes with mutually disjoint interiors. We call 7, the
triangulation of 2.

By Fj we denote the set of all open (d — 1)-dimensional faces (open edges when d = 2 or open faces when d = 3) of all
elements K € Tp,. Further, the symbol F/ stands for the set of all I' € F), that are contained in 2 (inner faces). Moreover,
we define .7-'};‘/, ]-",il and F7 as the sets of all I' € Fj such that I' C 0Qw, I' C 0; and I' C 0%, respectively. In order to
simplify the notation, we put Fi° = Ff UF? and FP = FV U F} UF?. Finally, for each T' € Fj, we define a unit normal vector
nr = (nr1,...,nr,q). We assume that for I’ € ]-",fg the vector nr has the same orientation as the outer normal of 9€). For each
I'e ]-",{ , the orientation of nr is arbitrary but fixed.

Over the triangulation 7T;, we define the broken Sobolev space of vector-valued functions (cf. (1))

HY(Q,T) = (HY(Q, Tn)™, (6.39)
where
HY(Q,Th) ={v; v:Q =R, v|g € H(K)VK € Tp,} (6.40)

is the broken Sobolev space of scalar functions introduced by (1.29).

For each I' € F/ there exist two elements KISL), KIQR) € Tp, such that I' C KIQL) N KIQR). We use again the convention that

KIQR) lies in the direction of nr and KIQL) in the opposite direction of nr, see Figure 1.2.
In agreement with Section 1.3.3, for uw € H*(Q,7,) and ' € ]:,f, we introduce the notation:

(L) (R)

uy”’ is the trace of u|K§L) on T, uy, is the trace of u|K§R> onT (6.41)
and
1
() =5 (uf” +uf), (6.42)
[u)r =ul" — ul, (6.43)

In case that [-|p, (-)p and nr are arguments of [i.... dS, I’ € Fj, we usually omit the subscript I' and write simply [-], (-) and
n, respectively. The value [u]r depends on the orientation of nr, but the value [u]r - nr is independent of this orientation.

Finally, for u € H*(Q,7,) and I’ € FFP, we denote by u%L) the trace of u|gz) on T', where K(X) € T, such that I' ¢ K(F)noq.
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The discontinuous Galerkin (DG) approximate solution of (6.8) is sought in a finite-dimensional subspace of H'(, 75,) which
consists of piecewise polynomial functions. Hence, over the triangulation 7, we define the space of vector-valued discontinuous
piecewise polynomial functions

Snp = (Snp)™, (6.44)

where
Shp = {v € L*(Q); 0| € By(K) VK € Ty} (6.45)
is the space of scalar functions defined by (1.34). Here P,(K) denotes the space of all polynomials on K of degree < p, K € Tp,.

Obviously, Sy, C H*(Q,Tr).

6.2.2 Discontinuous Galerkin space semidiscretization

In order to derive the discrete problem, we assume that there exists an exact solution w € C*([0,7]; H*(Q,T5)) of the Euler
equations (6.8). Then we multiply (6.8) by a test function ¢ € H'(£,T}), integrate over any element K € Ty, apply Green’s
theorem and sum over all K € Tj,. Then we get

> [ Ged- ¥

KeTy, KeTy

d d
/K;fs(w) 7o, do+ > /{}K;fs(w) s pdS =0, (6.46)

KeTy

where n = (ny,...,nq) denotes the outer unit normal to the boundary of K € 7. Similarly as in Section 1.4, we rewrite (6.46)
in the form

> [ G ew= 3

d o
/ S fs(w)-a—‘pdx (6.47)
KeTh KeT, VK s=1 Ls

d d
t Z /lefs(w)nr,s-[w}dﬁ Z /Fz:lfs(w)nr,s-godb’:o.

rer! rery

The crucial point of the DG approximation of conservation laws is the evaluation of the integrals over I' € Fj, in (6.47).
These integrals are approximated with the aid of the numerical flur H: D x D x By — R™ by

d
/ > fuw)nr, - pdS ~ / Hw", w™ nr)-ods, (6.48)
| A— r

where the functions wl(ﬂL) and fwl(qR) are defined by (6.41) and By by (6.15). The meaning of wlgR) for I' € FP will be specified
later in the treatment of boundary conditions in Section 6.3. The numerical flux is an important concept in the finite volume
method (see, e.g., [FFS03, Section 3.2] or [Wes01]). It has to satisfy some basic conditions:

o continuity: H(w, w2, n) is locally Lipschitz-continuous with respect to the variables w; and wa,

e consistency:

d
H(w,w,n) = Zfs(w)ns, weD, n=(nyg,...,nq) € By, (6.49)
s=1
e conservativity:
H(w;,ws,n) = —H(ws, w1, —n), wi,wy €D, n e By. (6.50)

Examples of numerical fluxes can be found, e.g., in [Fei93], [FFS03], [Kr697], [Tor97].
Now, we complete the DG space semidiscretization of (6.8). Approximating the face integrals in (6.47) by (6.48) and
interchanging the derivative and integral in the first term, we obtain the identity

d

T (w(t),p) +bp(w(t),p) =0 Yo c H(Q,Ty) Vt e (0,T), (6.51)
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where

(w, @) /w pdx, (6.52)
n(w, ) Z/er wF n dS—i—Z/H ") w ) nr)-@dS
rerf rerp
- > / Z fs(w . (6.53)
KeTh

The meaning of wl(qR) for T' € .7-",? will be specified in Section 6.3. We call by, the convection (or inviscid) form. The expressions
in (6.51) — (6.53) make sense for w,p € H'(Q, 7). The approximation of the exact solution w(t) of (6.8) will be sought in the
finite-dimensional space Sy, C H'(Q,7y) for each t € (0,T). Therefore, using (6.51), we immediately arrive at the definition
of an approximate solution.

Definition 6.7. We say that a function wy, : @ x (0,T) — R™ is the space semidiscrete solution of the Euler equations (6.8),
if the following conditions are satisfied:

wy, € CH([0,T7; Shp), (6.54a)
d

a (wh(t)7(ph) + bh(wh(t)asoh) =0 V(ph € Shp Vie (OvT)7 (654b)
wp, (0) = w®, (6.54c)

where I,w® is the Spy,-approzimation of the function w® from the initial condition (6.36). Usually it is defined as the L*-
projection of w° on the space Sh,.

Problem (6.54) represents a system of Ny, ordinary differential equations (ODEs), where Ny, is equal to the dimension of
the space Sjyp. Its solution will be discussed in Section 6.4.

Remark 6.8. If we consider the case p = 0 (i.e., the approzimate solution is piecewise constant on Ty ), then the numerical
scheme (6.54) represents the standard finite volume method. See, e.g., [FFS03], [Wes01], [Kré97]. Actually, for p = 0 we
choose the basis functions of Spo as characteristic functions xx of K € Tn. Let us recall that xx = 1 on K and xxg = 0
elsewhere. Therefore, putting ¢;, = xx, K € Th, in (6.54b), we obtain

d
E’w[{(t) + Z |FK,K" H('wK(t),'wK/ (t), nK)K/) =0, (655)
K'eN(K)
where
1
W = 7\/ wp, dl’, K e 7;“ (656)
K| Jx

and N(K) = {K', 0K NOK' € F} is the set of all elements K' having a common face Tk g+ with K. The set N(K) contains
also fictitious elements outside of Q having a common face 0K N Q with K € Ty. In this case, the value wg: in the numerical
fluz H is determined from boundary conditions. By |I'k k| and |K| we denote the (d—1)-Lebesgue measure of the common face
Tk k+ between K and K' and the d-dimensional measure of the element K, respectively. The symbol nk k+ denotes the outer
unit normal to OK on I'k k.

6.3 Numerical treatment of boundary conditions

If I' € B, then it is necessary to specify the boundary state wlgR) appearing in the numerical flux H in the definition (6.53)
of the convection form b;,. In what follows, we shall describe the treatment of the boundary conditions for impermeable walls
and the inlet/outlet part of the boundary. The boundary conditions should be theoretically determined at all boundary points.
In practical computations, when the integrals are evaluated with the aid of quadrature formulae, it is enough to consider the
boundary conditions at only integration boundary points. Therefore, for the sake of simplicity, the symbol 'wl(ﬂR) will mean the
value of this function at a boundary point in consideration.

6.3.1 Boundary conditions on impermeable walls

ForT e f;‘{v we should interpret in a suitable way the impermeability condition (6.38), i.e., v-n = 0, where v is the velocity vector
and n the outer unit normal to 9€y. This condition has to be incorporated in some sense into the expression H(w%L) wéR) nr)
appearing in the definition (6.53) of the form by,.

We shall describe two possibilities. The first one is based on the direct use of the impermeability condition in the physical

flux P(w,n). The second one applies the mirror operator to the state w.
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Direct use of the impermeability condition

Let n = (n1,...,nq) € B;. Then from (6.16) and (6.10) we have

fs1(w) pv-n
d [fs,2(w) pUIV - T+ Py
Pw,n)=> fl(wmn,=>_ : ne = : . (6.57)
o=t T fsmei(w) pUgY - M+ pig
fsm(w) (E+pv-n
Using the condition v -n =0 in (6.57), we obtain
d T
— — —_. gl
P(w,n) = Zfs(w)ns =(0,pn1,...,png,0) =: fiy(w,n), (6.58)
s=1

where the pressure satisfies the relation p = (y — 1)(wy, — (w3 + -+ + w2,_;)/(2w1)). Then, taking into account (6.48) and
(6.58), for I' € 7}V we can put

/ H(w{", wi¥, nr) - ¢, dS = / fy(w nr) @, ds, TeF). (6.59)
I T

For the purpose of the solution strategy developed in Section 6.4, we introduce a linearization of f{;. By virtue of (6.28),
we have

Z fs(w)ns = P(w,n) =P(w,n)w YweDVn=(n,...,ng) €Bs. (6.60)

Our aim is to introduce a matrix (denoted by Py, hereafter), which is the simplest possible and such that
Plw,n)w = Py (w, n)w (6.61)

provided that w € D and n € B; satisfy the impermeability condition v - n = 0, where v is the velocity vector corresponding
to w. Taking into account the explicit expression (6.24) for P, we remove some of its entries and define the matrix

0 0 0 0
lv[?n1/2  —ving ... —vgng ng
Py (w,n) = (y - 1) : : : N (6.62)
v[?ng/2 —ving ... —vang Na
0 0 0 0
where w € D, n = (ny,...,n4) € B1, v; = wjy1/w1, j = 1,...,d, are the components of the velocity vector and |v|? =

v? + -+ v2. We can verify by a simple calculation that (6.61) is valid.
Moreover, we define the linearized form of f; by

fi (0, w,n) =Py (b, n)w, w,weD, neB, (6.63)

which is linear with respect to the argument w. Obviously, due to (6.58), (6.61) and (6.63), we find that under the condition
v -n = 0, the linearized form f\%\}L is consistent with f{, i.e.,

f\%\}L(w, w,n) = fiy(w,n) Yw € DVn € By such that v-n = 0. (6.64)

Exercise 6.9. Verify relation (6.61) for Py, given by (6.62), provided v - n = 0.

Inviscid mirror boundary conditions

This approach is based on the definition of the state vector w(FR)7 I' € 7V in the form
wi =4 (w), (6.65)

where the boundary operator .#, called the inviscid mirror operator, is defined in the following way. If w € D, w = (p, pv, E)T
and n € B is the outer unit normal to ) at a point in consideration lying on 9y, then we set

vt =v—2(v-n)n, (6.66)
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I c o9,

Figure 6.1: Impermeability conditions defined by the mirror operator, vectors of velocity of v and v+ = v — 2(v - n)n.

and
T

M (w) = (p,po*, )" (6.67)

The vectors v and v+ have the same tangential component but opposite normal components, see Figure 6.1. Obviously, the
operator .# is linear.
Now we define the mapping f3 : D x B; — R™ by

fiy(w,n) = H(w, 4 (w),n) (6.68)
and, if I' € F}V, then in (6.53) we have
H(w", wi® nr) = £ (w” nr). (6.69)

6.3.2 Boundary conditions on the inlet and outlet

The definition of the boundary state 'w(FR) in (6.53) for T' € .F,io C 09, U9, (ie, I' C 9Q; UIN,) is more delicate. The
determination of the inlet/outlet boundary conditions is usually based on a given state vector function wpc prescribed on
(0Q2; U 0Q,) x (0,T). For example, when we solve flow around an isolated profile, the state vector wpc corresponds to the
unperturbed far-field flow (flow at infinity). For flow in a channel, the state vector wpc may correspond to a flow at the inlet
and outlet of the channel.

However, since system (6.8) is hyperbolic, we cannot simply put w(FR) = wpc. As we shall show later (see also [FFS03]), for
a linear hyperbolic system with one space variable

% A% =0, (x,t) € (—00,0) x (0,00), (6.70)

where q : (—00,0) x [0,00) — R™ and A is a constant m x m matrix, only some quantities defining q at = 0 can be prescribed,
whereas other quantities have to be extrapolated from the interior of the computational domain. We shall see that the number
of prescribed components of q is equal to the number of negative eigenvalues of A.

However, for nonlinear hyperbolic systems the theory is missing. Therefore, a usual approach is to choose the boundary
conditions in such a way that a linearized initial-boundary value problem is well-posed, i.e., it has a unique solution. We
describe this method in the following part of this section.

Approach based on the solution of the linearized Riemann problem

LetT' € ]-'}'LO and let zr € T" be a point in consideration, at which we want to determine boundary conditions. We introduce a new
coordinate system (Z1, ..., Z4) such that the coordinate origin lies at the point zr, the axis Z; is parallel to the normal direction
n to the boundary, and the coordinate axes Zo,...,Z4 are tangential to the boundary, see Figure 6.2. This transformation of
the space coordinates is carried out by the mapping & = Qo(n)(x — zr), where Qy(n) is the rotation matrix defined by (6.34)
for d = 2 and (6.35) for d = 3.

Let w%L) be the value of the trace of the state vector w on I' from the interior of 2 at the point zr and let

gt = Q(nr)w™, (6.71)
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Figure 6.2: The new coordinate system (Z1,...,Zq).
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Figure 6.3: Initial-boundary value problem (6.72)—(6.73) (left) and the Riemann problem (6.74)—(6.75) (right), the computational
domains (—o0,0) x (0,00) and (—o0,00) X (0,00) are grey.

where Q(nr) is given by (6.33).
Using rotational invariance of the Euler equations introduced in Lemma 6.6, €), we transform them to the coordinates

Z1,...,%q, neglect the derivative with respect to Z;, j = 2,...,d, and linearize the resulting system around the state qI(‘L). Then
we obtain the linear system

=0, (41,t)€ (—00,0) x [0,00) (6.72)

for the transformed vector-valued function ¢ = Q(nr)w, see Figure 6.3, left. To this system we add the initial and boundary
conditions

q(71,0) = ¢, 7 <0, (6.73)

q(oat) = q%‘R)a t>0,
where qlgL) is given by (6.71) and the unknown state vector qlgR) should be determined in such a way that it reflects the state

vector gpc = Q(nr)wpc with a prescribed state wpc, and the initial-boundary value problem (6.72)—(6.73) is well-posed, i.e.,

has a unique solution.

In order to find the vector ql(ﬂR), we consider the linearized Riemann problem

o B
E—kAl(q(FL))ag}l =0, (i1,t) € (—00,00) x [0,00) (6.74)
with the initial condition
B it 3 <0
i,0) =24 v 1 I<b 6.75
ata,0={ & Hn=0 (6.75)

see Figure 6.3 (right).
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The exact solution of problem (6.74)—(6.75) can be found by the method of characteristics in the following way: Let
gs, s =1,...,m, be the eigenvectors corresponding to the eigenvalues 5\3, s=1,...,m, of the matrix A, = Al(qlgL)). Hence,
Ags = 5\395, s=1,...,m.

Taking into account (6.32), we see that the eigenvalues of the matrices A; (ql(ﬂL)) and IP’(w;L), nr) attain the same values, i.e.,

As =Xy s=1,....,m, (6.76)
where A4 are the eigenvalues of the matrix P(w%L), nr).
The explicit formulae for the eigenvectors gs, s = 1,...,m, can be found in [FFS03], Section 3.1. These eigenvectors form
a basis of R™, and thus the exact solution of (6.74) can be written in the form

q(ir,t) =Y pa(F1,t)gs, F1ER, t>0, (6.77)
s=1
where ps, s = 1,...,m, are unknown functions defined in (—oc,0) x [0,00). Similarly, the initial states from (6.75) can be
expressed as
L
4t = ags, aec=_ Bsgs. (6.78)
s=1 s=1
The vectors @ = (aq,...,q,) and B = (51,...,Bm) are given by the relations
a=T"q", B=T gge, (6.79)
where T is the m X m-matrix whose columns are the eigenvectors g5, s = 1,...,m. The functions us, s =1,...,m, are called
the characteristic variables.
Substituting (6.77) into (6.74), we get
i Ous  ~ Ous
0= As == S5 =1,...,m, 6.80
;<8t+ 81‘1)9 s m (6.80)
which holds if and only if
Ops | Ops ~
As=—— =0, ER, t>0, s=1,...,m. 6.81
o + 07 1 s m ( )

These equations are equipped with initial conditions following from (6.75) and (6.78)

- M Qg, T <0, B
ws(Z1,0) = fis(21) == { 8. >0 °= 1,...,m. (6.82)
We can simply verify that the exact solution of (6.81)—(6.82) reads
ps(d1,t) = fis(F1 — Ast), i1 ER, £ >0,
where [is is given by (6.82). This together with (6.82) gives
- as, if #1— At <0,
s 7t = op ~ iy = ]., ey . .
a1, ) { Be, if @1 — At >0, " (6.83)

We define the sought state ql(ﬂR) as the solution of problem (6.74)—(6.75) at #; = 0. Hence, we put qlgR) = ¢(0,t), and by

(6.77) and (6.83), we get

NIV

(R _ \- as, A >0,
ar’ = nGs, N = P (6.84)
S:1 S S M

Finally, we introduce the inlet/outlet boundary operator based on the solution of the linearized Riemann problem

L@LRP(’U’{}),’U}BC) = @71("F)Q(FR)- (6.85)
Then we define the sought boundary state
w = P () wpc). (6.86)
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flow regime Mpr Mex
supersonic inlet m 0
subsonic inlet m—1 1
subsonic outlet 1 m—1
supersonic outlet 0 m

Table 6.1: Boundary conditions based on the well-posedness of the linearized problem: number of prescribed my, and extrapo-
lated mex components of w for subsonic/supersonic inlet/outlet.

Remark 6.10. From the above process (taking into account (6.76)) we can conclude that the sought boundary state wl(qR)

is determined using mpy quantities characterizing the prescribed boundary state wwc, where mp, is the number of negative

etgenvalues of the matriz P(wlg“), nr), whereas we extrapolate meyx quantities defining the state w;L), where Mex = M — Mpy is

the number of nonnegative eigenvalues of the matrix ]I”(wlg‘), nr).

This observation is in agreement with the definitions of boundary conditions on impermeable walls. Taking into account that
by (6.30) the eigenvalues of the matrix P(wl(ﬂL),'np) read

M=v-n—a, M=...=X31=0'N, Aj2=v -n+a, (6.87)

where v and a represent the velocity vector and the speed of sound, respectively, corresponding to the state wl(ﬂL), and n = nr.
Then the impermeability condition v -n = 0 implies that \y < 0, Ao = ... = Agy1 = 0, Agy2 > 0. Hence, in this case we
prescribe only one quantity, namely v-n = 0 or the opposite normal component —v - n of the velocity vector and the remaining
quantities defining the state w%R) are obtained by extrapolation.

Approach based on physical properties of the flow

It follows from the above considerations and the form (6.87) of eigenvalues s, s = 1,...,m = d+ 2, that in the case of the inlet
or outlet, on which v-n < 0 or v-n > 0, respectively, it is necessary to distinguish between the subsonic or supersonic regime,
when |v-n| < a or |v-n| > a, respectively. The number of prescribed and extrapolated boundary conditions for the mentioned
possibilities is shown in Table 6.1.

On the basis of these results, it is possible to introduce a widely used method for determining the inlet/outlet boundary
conditions based on the use of physical variables. In this approach we extrapolate or prescribe directly some physical variables.
Particularly, we distinguish the following cases:

o supersonic inlet, mp, = m, we prescribe all components of the boundary state wﬁR). Hence, we set 'w(FR) = wpC,
o subsonic inlet, mp, = m — 1, we extrapolate the pressure from the interior of the domain, and prescribe the density and
the components of the velocity on the boundary,

o subsonic outlet, mp, = 1, we prescribe the pressure and extrapolate the density and the components of the velocity on the
boundary,

o supersonic outlet, mp, = 0, we extrapolate all components of w from the interior of {2 on the boundary. This means that

we set wl(ﬂR) = 'wl(ﬂL).

Hence, we define the inlet/outlet boundary operator based on physical variables:

WRC ifv-n<-—a supersonic inlet

Phys(psc, vBC, piﬂL)) if —a<wv-m<0 subsonic inlet

(L) (L)

%phys w(L) w —
( r > BC) PhyS(pp , o, pBC) fo<v-n <a subsonic outlet

(6.88)
wp ifv-n>a supersonic outlet

where ppc, vBc, psc are the density, the velocity vector and the pressure, respectively, corresponding to the prescribed state
wpc and p%L), vlgL), p}L) denote the density, the velocity vector and the pressure corresponding to wl(ﬂL). The symbol Phys

denotes the transformation from the physical variables to the conservative ones, namely, for p > 0, p > 0 and v € R? we set

T

Phys(p,v,p) = (p, pv, p/(v = 1) + plv|?/2) €R™ (6.89)

This approach is usually used with success for the transonic low. However, its application to low Mach number flows does
not give reasonable results, because these boundary conditions are not transparent for acoustic waves coming from inside of
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the computational domain €. In numerical simulations, we observe some reflection from the inlet/outlet parts of the boundary.
Therefore, in a low Mach number flow, it is suitable to apply the method based on the solution of a linearized Riemann problem.

This means that the boundary state 'w§ is defined by (6.86). Another more sophisticated method will be treated in the
following section.

Boundary conditions based on the exact solution of the nonlinear Riemann problem

The generalization of the method based on the solution of the linearized Riemann problem uses the exact solution of the
nonlinear Riemann problem. The only difference is that we do not linearize the system of the Euler equations around the state

wl(ﬂL)7 but instead of (6.72) we consider the nonlinear system

0q Jq -

— +A = t - .

D +Ai(q )3i"1 0, (Z1,t) € (—00,0) x [0,00) (6.90)
with the initial and boundary conditions (6.73). This means that instead of (6.74), we consider the Riemann problem

% + Ai(q )88;1 =0, (Z1,t)€ (—00,00) X [0,00) (6.91)

equipped with the initial condition (6.75). The solution of problem (6.91), (6.75) is much more complicated than the solution
of the linearized problem (6.74)—(6.75) but for the Euler equations it can be constructed analytically, see e.g., [FFS03, Section
3.1.6] or [Wes01, Section 10.2]. This analytical solution contains an implicit formula for the pressure p, which has to be obtained
iteratively.

When the solution g of the Riemann problem (6.91), (6.75) is obtained, then we define the inlet/outlet boundary operator
based on the solution of the nonlinear Riemann problem as

B (wi wpe) == Q (nr)q(0, 1) (6.92)

and set w = B (w L),ch).
Flnally, based on the presented approaches to the choice of boundary conditions we specify the definition (6.53) of the form
bh by

b -2 / Zfs 'ai (6.93)

KeT,

" Z/H 5y - ]S

reri

+ 3 /fw ) - pds

rerl

+ Z / ) , A '“’FL) WRBC), ’nr) ~pdS,

reFje

where ¢ = 1 or i = 2, if we use the impermeability boundary condition (6.58) or (6.68), respectively. Moreover, the inlet/outlet
boundary operator % represents 8PS BLRP and #RP given by (6.88), (6.85) and (6.92), respectively.

Remark 6.11. The definitions of the boundary operators ZBPYs, BYRY and BRY and of the form by and their evaluations
may seem to be rather complicated and CPU time demanding. However, it is necessary to take into account that the integrals
appearing in the definition of the form by are computed with the aid of numerical integration and the boundary conditions have
to be determined only at integration points.

6.4 Time discretization

The space semidiscrete problem (6.54) represents a system of ordinary differential equations (ODEs), which has to be solved with
the aid of suitable numerical schemes. In the framework of the finite difference and finite volume methods, the explicit Euler
or Runge—Kutta time discretization is very popular for solving the Euler equations. In early works on the DGM for the Euler
equations ([CS89], [BRI7Db], [BO99]), explicit time discretization was also used. Their advantage is a simple algorithmization,
but on the other hand, the size of the time step 7 is strongly restricted by the Courant—Friedrichs—Lewy (CFL) stability condition
written, for example, in the form

K]
7 < CFL min ; (6.94)
e o(P(wn,n)[r)|T|
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where o(P(wp,n)|r) denotes the spectral radius of the matrix P(wp,, n)|r given by (6.17) and evaluated at the points of I € F,,
| K| is the d-dimensional measure of K € 7, and |I'| denotes the (d — 1)-dimensional measure of I" € Fj,. Moreover, 0 < CFL <1
is the Courant-Friedrichs—Lewy (CFL) number. Our numerical experiments indicate that whereas the value CFL = 0.85 was
sufficient for almost all flow regimes in finite volume computations, the P; discontinuous Galerkin approximation requires the
value CFL = 0.15 in order to guarantee stability. Moreover, the stability condition (6.94) becomes more and more restrictive
with increasing polynomial approximation degree p.

Therefore, it is suitable to consider implicit methods for numerically solving compressible flow problems, see, e.g., [BR00],
[BBHNO09], [HHO6a], [HHO6b]. Tt is well known that the use of implicit methods contributes to improving the efficiency of
numerical schemes for solving the Euler equations in some cases, because implicit methods allow using longer time steps. In the
framework of the finite volume methods, implicit schemes were used, for example in [Sto85], [FS89] and [Mei98]. The drawback
of the implicit schemes is having to solve a large nonlinear algebraic system on each time level. To this end, the Newton method
is often applied leading to a sequence of linear discrete problems. One variant of this approach is a well-known A-scheme by
Beam and Warming [BW76], [BWT78], see also [Hir88]. This approach is often combined with multigrid techniques, see e.g.,
[HS86], [KH91], [Dic91].

The application of the Newton schemes requires, of course, the differentiability of the numerical flux and the computation
of its partial derivatives, which is usually rather complicated. This is the reason that some authors use artificial pseudo-time-
integration, as was applied together with multigrid in [vdVvdV02a] and [vdVvdV02b] for the DG discrete problem. Multigrid
techniques usually require using structured meshes and, in the case of the mesh refinement, a sequence of nested meshes. This
is not the case when the anisotropic mesh adaptation (AMA) method is used. Then the algebraic multigrid would have to
be applied, but its efficiency is not high. Therefore, one often uses the Krylov subspace methods for solving linear systems in
linearized schemes for the Euler equations (cf., e.g., [Mei98]).

In the following we will be concerned with developing several numerical schemes for the full space-time discretization of the
Euler equations. The presented techniques were developed on the basis of results from [DF03], [DF04a], [DFS03], [FDKO06],
[FDKO7], [FKOT].

6.4.1 Backward Euler method

The implicit backward Euler time discretization of (6.54) is the simplest implicit method for numerically solving ODEs. It can
be formally considered either as the first-order implicit Runge-Kutta method or as the first-order backward difference formula
(BDF), or as the first-order time discontinuous Galerkin method, see [HNWO00], [Tho06]. The higher-order time discretizations
will be discussed in Section 6.4.5.

In what follows we consider a partition 0 = tg < t; < to--- < t, = T of the time interval [0,7T] and set 74, = t}, — tp—1 for
k=1,...,7. We use the symbol w} for the approximation of wy,(t;), k =1,...,7.

Using the backward Euler scheme for the time discretization of (6.54), we can define the following method for the numerical
solution of problem (6.8).

Definition 6.12. We say that the finite sequence of functions 'wﬁ, k=0,...,r, is an approximate solution of problem (6.8)
obtained by the backward Euler —discontinuous Galerkin method (BE-DGM) if the following conditions are satisfied:
wy € Spp, k=0,1,...,7, (6.95a)
% (wf —wy ™) + bu(w), @) =0 Y, € Spy, k=1,....7, (6.95b)
w) = Mw°, (6.95¢)

where I,w" is the Spy-approzimation (usually L*(Q)-projection on the space Shy) of the function w® from the initial condition
(6.36).

Remark 6.13. The BE-DGM has formally the order of convergence O(hP*1+7) in the L>(0,T; (L*(Q))™)-norm and the order
of convergence O(hP + 7) in the L?(0,T; (H*(2))™)-seminorm, provided that the exact solution is sufficiently reqular. These
results were verified numerically in [DF04a] and [Doll3a.

Problem (6.95) represents a nonlinear algebraic system for each k = 1,...,r. Its solution will be discussed in the following
sections. First, we shall present its solution with the aid of the standard Newton method [Deu04]. Then we shall develop
a Newton-like method based on the approximation of the Jacobi matrix by the flux matrix.

6.4.2 Newton method based on the Jacobi matrix

In order to develop the solution strategy for the nonlinear systems (6.95b), we introduce their algebraic representation. Let Ny,
denote the dimension of the space Sj, and let By, = {¢;(x), i = 1,..., Np,} denote a set of linearly independent functions
forming a basis of Sp;,. It is possible to construct a basis By, as a composition of local bases constructed separately for each
K € Ty. See Section 6.4.8, where one possibility is described in detail.
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Any function w} € Sy, can be expressed in the form

th
; i\ Np,
wi(z) = ) €p(x) € Spp > &= (€M) ;2f RV k=1, (6.96)
j=1
where €87 € R, j = 1,.. .y Nnp, k= 1,...,r, are its basis coefficients. Obviously, (6.96) defines an isomorphism between

wy € Sy, and &, € RVw». We call €, the algebraic representation of wy.
In order to rewrite the nonlinear algebraic systems (6.95b), we define the vector-valued function Fj, : RNwr x RNww — RNwp
by
Nip
Fy (€r-1381) = (m (wh —w, ™" @) +bh<w,’z,soi>> ck=1 (6.97)
i=1

where £, _, € RV is the algebraic representation of 'wz—l € Spp for 1 = 0,1. We do not emphasize that Fj, depends explicitly
on 7. Therefore, the algebraic representation of the systems (6.95b) reads: For a given vector £, _; € RVt find £, € RV such
that

Fi(€x136) =0, k=1...n (6.98)

Here 0 denotes a generic zero vector (i.e., all entries of 0 are equal to zero) and § is given by the initial condition (6.95c) and
the isomorphism (6.96). Systems (6.98) are strongly nonlinear and their efficient and accurate solution is demanding.

A natural strategy is to apply the (damped) Newton method ([Deu04]) which generates a sequence of approximations
627 1 =0,1,..., to the actual numerical solution £, using the following algorithm. Given an iterate 62 € RNwr the update of
dq reads

Fl=E6 N (6.99)
where 8' € RV#» is defined as the solution of the system
Dy (£,)8" = —Fu(€_1:€3)- (6.100)

Here A! € (0,1] is the damping parameter (for its choice see Section 6.4.4) and Dy, is the Jacobi matriz of the vector-valued
function F}, given by (6.97), i.e.,

B DF, (£, 1:€1)

Dy (€)) = — o =E (6.101)
' Dgj
From (6.96), (6.97) and (6.101) we obtain
D (€5,) =(dij (€))7 r2s, (6.102)
1 by, (Z;\Qf ey, ‘Pi) o
dij(€x) =—(p;, ;) + i,j=1,..., Npp.

Tk 8{’“’? ’
For A! = 1 we get the standard Newton method. This technique was also successfully applied in [HH06a], [BROO0] for computing
viscous flow.

Evaluating of the Jacobi matrix Dy, is not quite easy, since the form b;, depends nonlinearly on its first argument. Moreover,
there are difficulties with the differentiability of the mapping F}, because the numerical flux H is sometimes only Lipschitz-
continuous, but not differentiable.

In the following section we present an alternative approach inspired by the semi-implicit technique from [DF04a], [FKO07]
and based on the so-called flux matrix.

6.4.3 Newton-like method based on the flux matrix

Evaluating of the Jacobi matrix D, in (6.100) can be avoided with the aid of a formal linearization of the convection form by,.
The aim is to define the form bﬁ : Spp X Shp X Shp — R such that it is linear with respect to its second and third arguments
and is consistent with by, i.e.,

bh(’wh;‘Ph) = bﬁ(whvwhawh) - Bh(’wh;‘Ph) th7(ph € Shp7 (6103)
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where by, : Shp X Spp — R is some “residual” form, vanishing for the majority of functions ¢; € Sy, see (6.121).
By (6.93), we defined the form

bh(wh;SOh Z / Zfs wh 7 dx (:1 771) (6104)

KeTh

+ Z /H th 7th ,np) lpnldS (=:m2)
rer}

+ Z /fvv th‘7 ) - ppdS (=:1m3)
rery

+ Z / “’hr »% wh??“’BC) "I‘) “ppdS (=:n4),
reFe

where w;é) and w;f;) denote the traces of wy on I’ € Fp, cf. (6.41). The individual terms 7y, ..., n4 will be partially linearized.

For 7; we use the property (6.26) of the Euler fluxes and define the form n} : Sy, x Sh, x Sp, — R by

0
0y (@, wn, @) = — / ZA ‘z da. (6.105)

KeTh

Obviously, n¥(wn, wh,),) = 71 and Y is linear with respect to its second and third arguments.

Linearizing of the term 7y can be carried out on the basis of a suitable choice of the numerical flux H. For example, let
us use in (6.104) the Vijayasundaram numerical flux, see [Vij86], [Fei93, Section 7.3] or [FFS03, Section 3.3.4]. It is defined
in the following way. By (6.29), the matrix P = P(w,n) defined in (6.17) is diagonalizable: there exists a nonsingular matrix
T = T(w,n) such that

P = TAT !, (6.106)

where A = diag (A1,...,A\n) and Aq, ..., A\, are the eigenvalues of P. The columns of the matrix T are the eigenvectors of the
matrix P. We define the “positive” and “negative” part of P by

TAET™!, A = diag (\E,...,\D), (6.107)
where a* = max(a,0) and a~ = min(a, 0) for a € R. Then the Vijayasundaram numerical fluz reads as
Hys(w;,we,n) =P7" (wl_ng,n) wy + P~ (1111-;-1112771) wy. (6.108)

We can characterize the properties of the Vijayasundaram numerical flux.

Lemma 6.14. The Vijayasundaram numerical flur Hys = H(wy, wa, n) is Lipschitz-continuous with respect to wy,ws € D
and satisfies conditions (6.49) and (6.50), i.e., it is consistent and conservative.

Proof. (a) From (6.10) it follows that the entries of the matrix P are continuously differentiable. This fact, the definition of
the matrices P*, definition (6.108) and the Lipschitz-continuity of the functions A € R — A* and A € R — A\~ imply that the
Vijayasundaram numerical flux is locally Lipschitz-continuous.

(b) The consistency of Hy g is a consequence of the relations (6.16), (6.28) and P(w,n) = Pt (w,n) + P~ (w,n).

(c) The proof of the consistency of Hy g is more complicated. First, we show that

P*(w, —n) = —PF(w, n) (6.109)
for w € D and n = (nq,...,n4) € By. It follows from (6.16) that
P(w, —n) = —P(w, n).

By differentiation,
P(w, —n) = —P(w, n),

and thus
P*(w, —n) = (-P(w, n))*. (6.110)
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Further, by (6.106),
' LP(w, n) = T(w, n) (+A(w, n)) T~ (w, 1),

where
Alw, n) = diag (A (w, n),..., An(w, n)).
Thus,
P*(w, n) = T(w, n) A*(w, n) T~ (w, n) (6.111)
and
(—P(w, n))* = T(,w, n) (—A(w, n))* T (w, n). (6.112)
Here
Af(w,n) = diag (A (w, n),..., A% (w, n)),
(—A(w, n))* = diag ((-\)*(w, n),...,(=Am)*(w, ),

It is easy to find that (—\)* = —AT, which implies that
(—A(w, n))" = ~AF(w, n).
The above, (6.111) and (6.112) yield
(=P(w, n))ﬂE = —T(w, n)AT(w, n) T(w, n) (6.113)
—PF(w, n).

Now, by (6.110) and (6.113) we get (6.109).
Finally, by virtue of (6.109), for w;, w2 € D and n € By,

HVS(wlaw27n> = PJ’_ (u}l—;w7 n) w1 + P~ (ujl—;u}Qa n) w2

=P <w1+w2 —n) wy, — Pt (101—&2-102’ —n) wo = —Hvs(wz,wh _n)a

which is what we wanted to prove. ([ O

The form of Hy g is a way of defining the form 7% : Shp X Shp X Spp = R by

donwne) = X [ [P (@) ne)wll) + B (e o) wf] g8 (6.114)
rer}

where (wy,). denotes the mean value of wy, on I' € F}, defined by (6.42). Obviously, n% (wp, wn,¢;,) = 12 and 1% is linear with
respect to its second and third arguments.

Concerning the term n3 in (6.104), we distinguish between the direct use of the impermeability condition and the inviscid
mirror boundary condition presented in Section 6.3.1. For the former case we define the form

_ (L L
0 (B, wn, ) = / i (@i wir m) -, dS, (6.115)
rery
where f\%\}L is defined by (6.63), i.e
fo (@, w,n) = Py (w,n)w, @, weD, ncB, (6.116)

with Py given in (6.62).
In the case of inviscid mirror boundary conditions we use relations (6.68) and (6.108) and put

fot (@, wp,n) = Pt (@, n) wy, + P~ (@, n) A (wy,), (6.117)

where P* are defined by (6.107). Now, on the basis of (6.68), (6.69) and (6.117), we put

_(L
o (@, 0p) = 3 / FEE @D, wi n) - oy dS. (6.118)
reryV
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Therefore, (6.115) and (6.118) can be written as

N (@, wh 0p) = Z/ L) w® n)- g, dS, (6.119)
rer)

where a« = 1 for directly using the impermeability condition and o = 2 for the inviscid mirror boundary condition. It follows
from (6.116)—(6.119) and the linearity of the operator .# that n} is linear with respect to its second and third arguments.
Moreover, 0% (wp, wp,, @;,) = n3-

Finally, n, is approximated with the aid of the forms

0k (B, wn ) = Y / (P* (wip mr)wif)) - @yds, (6.120)
i T
reFje
and
(o) =— Y [ (Pl ne) (0l wno)) g0 (6.121)
reFje

where % represents the boundary operators ZPYs ZLRP and %8P given by (6.88), (6.85) and (6.92), respectively. Let us
underline that in the arguments of P* we do not use the mean value of the state vectors from the left- and right-hand side of T’
as in (6.108). Moreover, if supp ¢, N (9Q; U 9Q,) = 0, then by (wp, @) = 0.

Obviously, due to (6.93) and (6.120), we have

Ny (wn, wh, @) — b (W, @) = 4. (6.122)
Taking into account (6.93), (6.105), (6.114), (6.119) and (6.120), we introduce the form

O
b (wh wh ) = — / ZA %dx (6.123)
KeTh s

+ 3 [ [P (nde ) i - <<wh>p,nr>w2’§>}~whds

rer!

aL 7(L) . ds

+ Z fw hf‘vwhf‘, n) -,

rerlVv
+ Z / IP’Jr whr,nr) (L)er (UJ;LLF) nr)%(’lﬁfﬂmy’ch))"PhdS-

reFie

From the definitions (6.93) of by, (6.123) of bX and (6.121) of by, we can see that relation (6.103) is valid. Moreover, the form
bﬁ is linear with respect to the arguments wy, and ¢,,.

Now we introduce the Newton-like method for solving systems (6.98) based on the flux matrix. We again return to the
algebraic representation of the method. Using notation from Section 6.4.2, we define the Ny, x Ny, fluz matriz

Np,
. 1 ) .
i,j=1
and the vector
_ 1 o Nhp
dh (gk—laé) = (Tk (wh 7(pz) b (wha(pz)) ) (6125)
i=1
where ¢; € Bpp, @ =1,..., Ny, are the basis functions in the space Sy, EcRMw and &, ; € RN [ = 0,1, are the algebraic

representations of wy, € Sp, and 'w,]fl € Shp, 1 = 0,1, respectively. (We do not emphasize that C;, and dj, depend explicitly
on 7x.) Finally, using (6.97), (6.103) and (6.124) —(6.125), we have

Fr(€r1:8r) = Cr(€p)€r — dn(€r1.81), k=1,....m (6.126)

Obviously, the sparsity of Cy, is identical with the sparsity of the Jacobi matrix Dy, introduced in (6.101). Therefore, in the
following Newton-like method for solving systems (6.98), we use Cj, as the approximation of Dy, in the definition of our iterative
Newton-like method, which is represented as the following algorithm.
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If the approximate solution wz_l € Shyp, represented by £,_;, was already computed, then we set {2 = §,_, and apply the
iterative process

=g N, =01, (6.127)
with &' defined by
Ch(£1)8' = —Fu(€4_1:€1)- (6.128)

The term A! € (0, 1] is a damping parameter which should ensure convergence of (6.127)—(6.128) in case when the initial guess
€Y is far from the solution of (6.98). The initial guess £2 can be defined as

& =¢_,, k=1,...r (6.129)
where &, _, corresponds to the approximate solution w,}fl.
In the following section we discuss several aspects of the iterative method (6.127)—(6.128).

Remark 6.15. Let us note that if we carry out only one Newton-like iteration at each time level, put A’ = 1, and the matriz Cy,
is updated at each time step, then the implicit method (6.95) reduces to the semi-implicit time discretization approach presented
in [DF04a] and [FKO7]. It can be formulated in the following way: We seek the finite sequence of functions wf, k=0,1,...,r,
such that

wy € Spp, k=0,1,...,7, (6.130a)
1 5

. (wf —wy ™) + bp(w) T wf ) =0 Ve, €8, k=1,...,7, (6.130D)
wl = Tw°, (6.130c)

where TIwO is the Shp-approzimation of w® from the initial condition (6.36) and

bh(mhaw}‘m()Oh) = bﬁl(wh/lﬂh,(‘oh) - B}L(mh7(ph) (6131)

with bl and by, given by (6.123) and (6.121), respectively.

6.4.4 Realization of the iterative algorithm

In this section we mention some aspects of the Newton-like iterative process (6.127) —(6.128).

Choice of damping parameters

The damping parameters !, [ =0,1,..., should guarantee convergence of the iterative process (6.127)—(6.128). Following the
analysis presented in [Deu04], we start from the value A! = 1 and evaluate a monitoring function

HFh(Ek—ﬁdjl)H

HFh(fkﬂ%fﬁc)H 7

K=

(6.132)

where [|-|| is a norm in the space R™w». If k! < 1, we proceed to the next Newton-like iteration. Otherwise, we put A\l = \!/2
and repeat the actual I*® Newton-like iteration.

Update of the flux matrix

As numerical experiments show in the iterative process it is not necessary to update the flux matrix Cj (52) at each Newton-like
iteration [ = 1,2,... and each time level k = 1,...,r. Computational costs of the evaluation of F} are much smaller than the
evaluation of C,. For simplicity, let us consider the case d = 2 and assume that 7} is a conforming triangulation. By #7j
we denote the number of elements of 7j,. Then Fj, has Ny, = #7n(p + 1)(p + 1)/2 components and C;, has approximately
4#Tn((p+1)(p+ 1)/2)? non-vanishing components. Hence, the evaluation of F}, is approximately 2(p + 1)(p + 2)-times cheaper
than the evaluation of Cy,.

Therefore, it is more efficient to perform more Newton-like iterations than to update the matrix Cy. In practice, we update
C},, when either the damping parameter A achieves a minimal prescribed value (using the algorithm described in Section 6.4.4)
or the prescribed maximal number of Newton-like iterations is achieved.

138



Termination of the iterative process

The iterative process (6.127) —(6.128) is terminated if a suitable algebraic stopping criterion is achieved. The standard approach
is based on the condition

|5 < ToL, (6.133)

where [|-|| is a norm in R¥»» and TOL is a given tolerance. However, it is difficult to choose TOL in order to guarantee the
accuracy of the solution and to avoid a too long iterative process. The optimal stopping criterion, which balances the accuracy
and efficiency, should be derived from a posteriori estimates taking into account algebraic errors. This is out of the scope of
this monograph and we refer, for example, to [CS07] and [AEV11], dealing with this subject. In [Doll3a] a heuristic stopping
criterion solving this problem was proposed.

Solution of the linear algebraic systems (6.128)

The linear algebraic systems (6.128) can be solved by a direct solver (e.g., UMFPACK [DD99]) in case that the number of
unknowns is not high (the limit value is usually 10°). In general, iterative solvers are more efficient, because a good initial
approximation is obtained from the previous Newton-like iteration or the previous time level. Usually it is necessary to compute
only a few iterations. Among the iterative solvers, very efficient are the Krylov subspace methods, see [LS13].

It is possible to apply, e.g., the GMRES method ([SS86]) with block diagonal or block ILU(0) preconditioning ([DHH11]).
Usually, the GMRES iterative process is stopped, when the preconditioned residuum is two times smaller than the initial one.
This criterion may seem to be too weak, but numerical experiments show that it is sufficient in a number of applications.

6.4.5 Higher-order time discretization

In Section 6.4.1, we have introduced the space-time discretization of the Euler equations (6.8) with the aid of the backward
Euler —discontinuous Galerkin method (BE-DGM). However, by virtue of Remark 6.13, this method is only of the first order in
time. In solving nonstationary flows, it is necessary to apply schemes that are sufficiently accurate in space as well as in time.
There are several possibilities (see, e.g., [HNWO00], [Tho06]) how to obtain a higher-order time discretizations.

We shall mention three techniques having the order n with respect to the time discretization, i.e., the error is of order O(7"):

o backward difference formula (BDF) method, which is a multistep method using computed approximate solutions from n
previous time levels. On each time level, it is necessary to solve one nonlinear algebraic system with Ny, equations, where
Ny, is the dimension of the space Sj,. Hence, the BDF method has (approximately) the same computational costs as the
backward Euler method.

e implicit Runge—Kutta (IRK) method, which is a one-step method and it evaluates several (at least n) stages within one
time step. This means that we solve (at least) n-nonlinear algebraic systems with N, equations at each time level. Hence,
the IRK method has approximately n-times higher computational cost than the backward Euler method.

o time discontinuous Galerkin (TDG) method, which is based on a polynomial approximation of degree n — 1 with respect
to time. The TDG method was introduced in Section 4.2 for a scalar equation. We solve one nonlinear algebraic system
with n Nj, equations at each time level. As we see, the TDG method has approximately n?-times higher computational
cost than the backward Euler method or the BDF method.

The BDF, IRK and TDG time discretizations reduce to backward Euler method for the limit case n = 1. An overview of
theoretical aspects of the higher-order time discretization in combination with the DG space discretization can be found in
[V1al0].

It follows from the above discussion that the cheapest approach is the BDF technique, which will be described in this section.
Again let 0 =ty < {1 < t2 < ...t. =T be a partition of the time interval [0,T], 7x =t — tg—1, k=1,...7, and let 'w’,j € Shp
denote a piecewise polynomial approximation of wy(tx), k= 0,1,...,r. We define the following scheme.

Definition 6.16. We say that the finite sequence of functions 'wﬁ, k=0,...,r, is the approximate solution of (6.8) computed
by the n-step backward difference formula—discontinuous Galerkin method (BDF-DGM) if the following conditions are satisfied:
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constant time step variable time step
n=1|n=2|n=3|n=1 n=2 n=3
3 11 20,+1 Orbk—1 205 +1
An,0 1 2 6 1 0r+1 OrOk—1+0k_1+1 + 0r+1
01,+1) (010 —14+0k_1+1
Qn1 -1 _9 -3 -1 _(ak 4 1) _ (Bkt+1)( gkfl-li-—; k—1+1)
o 1 3 03 02 (0x0k—1+0k_1+1)
n,2 2 2 O +1 Op+1
. L e,
n,3 3 (0k—14+1)(0x0k—1+0_1+1)
Table 6.2: Values of o, ;, 1 =0,...,n, for n = 1,2,3 for constant and variable time steps, 0 = 7/7%—1, k =1,2,...,7.
n=1 n=2 n=3
a 1 27K +Th—1 (27h+7r—1) @Th+Th_1+Th_2)—Tp
n,0 Tre+Th—1 (Tt Tie—1) (Te+Th—1+Tk—2)
o 1 TR (et ) (Tt TR—1+TR—2)
n,1 Th—1 Tr—1(Tk—1+Tk—2)
o T T (Tt Tr—1+Te—2)
n,2 Tr—1(Tk+TK-1) Tr—1Tk—2(Tk+Tk—1)
2
o . T (T+TK—1)
n,3 T2 (Th+Tk—14+Tk—2) (Tk—1+Tk—2)

Table 6.3: Values of the coefficients a,; expressed in terms of the time steps.

wy € Spp, k=0,1,...,7, (6.134a)
1 n

— (Z angwy o | +bn (Wi, e,) =0 Ve, € Shp, k=mn,...,, (6.134b)
k \i=o

w) is the Spy-approzimation (usually L*(Q)-projection on Spy) of the (6.134c¢)

initial condition w®,
wl, € Shp, L =1,...,n—1, are determined by a suitable q-step method (6.134d)
with ¢ <1 or by an explicit Runge—Kutta method.

Some Runge-Kutta schemes can be found in Section ??. Their application to a system of partial differential equations can
be written in the same form.

The BDF coefficients a,,;, { = 0,...,n, depend on time steps 74_;, { = 0,...,n. They can be derived from the Lagrange
interpolation of pairs (tk,l,wzfl), 1=0,...,n, see, e.g. [HNWO00]. Table 6.2 shows their values in the case of constant and
variable time steps for n = 1,2, 3. Obviously, the one-step BDF-DGM is identical with the BE-DGM defined by (6.95). In Table
6.3 these coefficients are expressed directly in terms of the time steps 7.

Remark 6.17 (Stability of the BDF-DGM). The n-step BDF method is unconditionally stable for n = 1 and n = 2, and for
increasing n the region of stability decreasing. For n > 7 this method is unconditionally unstable, see [HNWOO, Section III.5].
In practice, the n-BDF-DGM with n = 1,2, 3 is usually used.

Remark 6.18 (Accuracy of the BDF-DGM). The n-step BDF-DGM has formally the order of convergence O(hPTL +7m) in the
L0, T; (L2(2))™)-norm and O(hP + ™) in the L*(0,T; (H'(Q))™)-seminorm, provided that the exact solution is sufficiently
regular. These orders of convergence were numerically verified for a scalar equation.

Problem (6.134) represents a nonlinear algebraic system for each k = 1, ..., r, which can be solved with the strategy presented
in Section 6.4.3.

Again, let Np, denote the dimension of the space Sy, of the piecewise polynomial functions and let By, = {p;(z), i =
1,...,Npp} be a basis of Sp,. Using the isomorphism (6.96) between w¥ € Sy, and £, € RV, we define the vector-valued
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function F}, : (RNhP)" x RNwp —y RNrp by

th
({Ek} l}l 17§k < (Zanlw 7(pi> +bh(w;’§,(pl)> y k?:l,...7'f‘7 (6135)
i=1
where £, , € RV is the algebraic representation of 'wk Le Spp for I = 1,...,n. Then scheme (6.134) has the following
algebraic representation. If §,_,, I =1,...,n, (k=1,...,7) are given vectors, then we want to find £, € R™»» such that
Fh({ék_z}?:l 1€,) = 0. (6.136)

System (6.136) is strongly nonlinear. It can be solved with the aid of the Newton-like method based on the flux matrix, presented
in Section 6.4.3. Let b and by, be the forms defined by (6.123) and (6.121), respectively. Then (6.103) implies the consistency

b (wh, @) =bf; (Wh, wi, @) — bu(wn, @) Ywn, @), € Shy, (6.137)

where the form b} is defined in (6.123).
We see that instead of (6.124) and (6.125), we define the flux matriz C; and the vector dj by

th
s Qn 0 _
Ch (€) = ( ol N +bﬁ(wh,<pj,<pi)) (6.138)
ij=1
and
th
di ({€rmi )y - €) = ( (Z 1wy, ,<pi> + bh<wh,soi>> , (6.139)
i=1
respectively. Here ¢, € By, @ = 1,..., Njyp, are the basis functions, € € RV»» and &, €RNww [ =1,... n, are the algebraic
representations of wy, € Sp, and wﬁ_l € Shp, L =1,...,n, respectively. Finally, using (6.135) and (6.137) - (6.139), we have
Fh({fk*l};l:l’&k (Ch(gk dh {gk‘ l}l 17£k k:].,...,/r'. (6.140)

Let us note that the flux matrix Cp, given by (6.138) has the same block structure as the matrix Cp, defined by (6.124). The
sequence of nonlinear algebraic systems can be solved by the damped Newton-like iterative process (6.127)—(6.128) treated in
Section 6.4.4.

Concerning the initial guess {2 for the iterative process (6.127)—(6.128), we use either the value known from the previous
time level given by (6.129), i.e, 62 =&,_1, k=1,...,r, or it is possible to apply a higher-order extrapolation from previous
time levels similarly as in the high-order semi-implicit time discretization from [Dol08b]. Hence, we put

n
€= Buibiy k=1,...1 (6.141)
1=1
where §,_;, | =1,...,n, correspond to the solution w,’f‘l at the time level ¢,_; and 8, | =1,...,n, are coefficients depending

on time steps 7x—;, | = 0,...,n. Table 6.4 shows the values of 3,;, I =1,...,n, for n =1,2,3. In Table 6.5, these coefficients
are expressed in terms of the time steps.

Remark 6.19. Similarly as in Remark 6.15, if we carry out only one Newton-like iteration at each time level, put \° = 1,
the matriz C is updated at each time step and use the extrapolation (6.141); then the implicit method (6.134) reduces to the
high-order semi-implicit time discretization approach presented in [DF04a] and [FK07], which can be formulated in the following
way: We seek the finite sequence of functions {'wﬁ}zzo such that

wy € Spp, k=0,1,...,7, (6.142a)

1 n - . n -
?k (Z an’lwfli l7(ph> + bh (Z 6":“'0}]2 lawl]sw(ph> =0 (6142b)
=0 =1

V(PhGShp, k:].,...,T

Similarly as in (6.134), wY, ..., 'wﬁ_l are defined by (6.134c) and (6.134d). Here, 3,1, l =1,...,n, are coefficients introduced
above and by, is the form given by (6.131), i.e.,

by (W, wh, py,) = b, (Wh, wh,9y) = bi(Wh, @), Wi, Py, € Shp-

Obuviously, by, is consistent with by, because by (wp, py) = bp(wp, wy, y,) for all wy, @, € Shp. Problem (6.142) represents a
sequence of systems of linear algebraic equations.
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constant time step variable time step
n=1|n=2|n=3||n=1| n=2 n=3
Baa | 1 2 3 Lo | 140, | (146 225 s
Bn.,2 -1 -3 —0r | —0k(0kOk—1 +0k—1+1)
B3 1 Opbpy 2101

Table 6.4: Values of 8,1, [ =0,...,n, for n =1,2,3 for constant and variable time steps, 0 = 71, /Tk—1, k=1,2,...,7.

n=1 n=2 n=3
6 1 T+ Tk—1 (Te+Te—1+Tk—2) (T +Tk—1)
n,1 Th—1 Th—1(Th—1+Tk—2)
B Tk _ TRk A TR 14Th-2)
m,2 Th—1 Th—1Tk—2
6 Tr (T +Tr—1)
n,3 Th—2(Th—1+Tk—2)

Table 6.5: Values of 3,,; expressed in terms of time steps.

6.4.6 Choice of the time step

The choice of the time step has a great influence on the efficiency of the BDF-DGM. We already mentioned that the implicit
time discretization allows us to choose the time step many times larger than an explicit scheme. Too large time step causes the
loss of accuracy and too small time step reduces the efficiency of the computation.

On the other hand, in the beginning of the computation, we usually start from a nonphysical initial condition and a large
time step may cause failure of the computational process. Therefore, the aim is to develop a sufficiently robust algorithm which
automatically increases the time step from small values in the beginning of the computation to larger values, but which also
ensures accuracy with respect to time.

The standard ODE strategy chooses the size of the time step so that the corresponding local discretization error is below
a given tolerance, see, e.g., [HNWO00]. Very often, the local discretization error is estimated by a difference of two numerical
solutions obtained by two time integration methods. However, we have to solve two nonlinear algebraic systems at each time
level which leads to higher computational costs, see [DKO08].

In this section we present a strategy, which is based on a very low cost estimation of the local discretization error. For
simplicity, we deal only with the first-order method, but these considerations can be simply extended to higher-order schemes.
Let us consider the ordinary differential equation

vo= L= ), w0 =, (6143)

where y : [0,7] = R, f: R — R and yo € R. We assume that problem (6.143) has a unique solution y € C?([0,T]). Moreover,
let 0 =ty < t1 < ta <--- <t, =T be a partition of [0,T]. We denote by yi = y(t;) an approximation of the solution y at
ty, k=1,...,r. The backward Euler method reads as

Yk :yk—1+7—kf(yk)7 k= 1723"'7T7 (6144)

where 7, =t — t—1. By the Taylor theorem, there exists 0y € [tx_1, tx] such that the corresponding local discretization error
Ly, has the form

1
L, = 57‘,3y”(9k), 0, € (tk717tk)7 (6.145)

where 3" denotes the second-order derivative of y.
Our idea is the following. We define the quadratic function gy : [tx—2,tx] — R such that gg(tx—;) = yx—i, { = 0,1,2. The
second-order derivative of gy is constant on (tx_o,t;). We use the approximation

1 5.
| Ll & Ly = Sl (6.146)
Let w > 0 be a given tolerance for the local discretization error. Our aim is to choose the time step as large as possible but
guaranteeing the condition Li*® <w, k=1,...,r. On the basis of (6.146), we shall assume that
1
wm (T2, (6.147)
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where 7,*" denotes the optimal size of 7. We express |§;| from (6.146), insert it in (6.147) and express 7o°" as

ot w 1/2
Tk =Tk W . (6 148)
k

On the basis of the above considerations, we define the following
Adaptive time step algorithm

1) let w>0,k>1, yp—1,yx—2 € R and 7, > 0 be given,

2) compute yi by (6.144),

4) compute 7 by (6.146) and (6.148),

(1)
(2)
(3) from [te_s,ye_i], [ =0,1,2, construct g,
(4)
(5)

if T,?pt > T
then

(i) put 741 = min(ﬁjpt, 1Tk, THEX),
(i) put k =k +1
(iii) go to step 2)

else

(i) put 7 = T]?pt,

(ii) go to step 2).

The constant ¢; > 1 restricts the maximal ratio of two successive time steps. It is possible to use the value ¢; = 2.5. The value
T™MaX restricts the maximal size of the time step for practical reasons. For example, 7% = 27310'2, but any sufficiently large
value yields similar results. If the else branch in step (5) of the algorithm is reached, then on each time level we solve more
than one algebraic problem, which is expensive. However, this branch is reached very rarely in practice. It may occur only if
the initial time step 7y or the constant c¢; are chosen too large.

This approach is extended to a system of ODEs in the following way. Let 4, € RY be an approximation of the solution of the
system of ODEs at t, k =0,1,... . For each time level t;, we define a vector-valued quadratic function gy (t) : [tp_2,tx] — RY
such that gi(tx—i1) = yr—i, | = 0,1,2. Then the optimal time step is given by (6.148) with the approximation of the local
discretization error

1
L = SRl (6.149)

where g € RY denotes the second-order derivative of gy (t) with respect to t. The adaptive time stepping algorithm remains
the same, g, is replaced by gy and (6.146) is replaced by (6.149).

Concerning the choice of the first two time steps in the case of the solution of the Euler equations, we use the relation (6.94),
namely

7, = CFL min K] )
KeTn maxrcox Q(P(WZ|F))|F|

k=01, (6.150)

where o(P(wf|r)) is the spectral radius of the matrix P(wF|r, nr) given by (6.17) on ' € F, and the value CFL is the initial
Courant—Friedrichs—Lewy number. In order to avoid drawback resulting from a nonphysical initial condition (which is the usual
case), we put CFL = 0.5. Thus 79 and 71 correspond to the time steps used for the explicit time discretization with this CFL
value. This choice may be underestimated in some cases, but based on our numerical experiments, it is robust with respect to
the flow regime.

Remark 6.20. The presented technique can be simply extended to n-step BDF-DGM. For n > 1 we derive (instead of (6.146))
the relation LiPP = ’ynT,:L+1|gj,in+1)|, where v, > 0. Then relations (6.147) and (6.148) have to be modified.

Remark 6.21. In order to accelerate the convergence to the steady state solutions, it is possible to apply local time stepping.
However, our aim is to develop a scheme which can also be applied to nonstationary problems. Therefore, we consider only
global time stepping.
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M Ci, Cia
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My G | G
My, Cus Cot | Cus
M Cs4 Css Csp
M6 Css | Cop

Figure 6.4: Example of a triangular mesh with elements K, © = 1,...,6 (top) and the corresponding block structure of the
matrices My, (left bottom) and Cj, (right bottom).

6.4.7 Structure of the flux matrix

The flux matrix Cp, given by (6.124) can be written in the form

Cn(€) = T—lth + B (£), (6.151)
where
My = (9 0))007, . Bu(€) = (b (wn 0, 0))0 7, (6.152)

The matrix M), is called the mass matriz. If the basis in S}, is constructed elementwise (i.e., the support of each basis function
is just one simplex from 7j), then My, is block diagonal. Similarly, the matrices B, and therefore Cj have a block structure.
By virtue of (6.123), we easily find that each block-row of By, corresponds to one element K € T, and contains a diagonal block
and several off-diagonal blocks. Each off-diagonal block corresponds to one face I' € Fj,. See Figure 6.4, where an illustrative
mesh and the corresponding block structures of matrices My, and Cj, are shown.

Similarly, the vector dj, from (6.125) can be written as

dh (gk—hé) = %mh (gk_l) + up (E)a (6153)

where

ma €)= (wf o) un(®) = (Bulanp) " (6.154)

=1

If the time step 7 in (6.151) is small enough, then the matrix My, /7, dominates over Bj. Hence, if we construct a basis
of Sp, which is orthonormal with respect to the L2-scalar product, then M}, is the identity matrix and the linear algebraic
problems (6.128) is solved easily for small 7.

Remark 6.22. On the other hand, there exists a limit value 7°° > 1, such that for any 7, > 7°° we have
Cin(€) =Bn(€), &eRYmw, (6.155)

where the symbol = denotes the equality in the finite precision arithmetic. Similarly, for any 7, > 7°° from (6.153) — (6.154)
we obtain the relation

dp (&,_1,€) = un(§). (6.156)
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This means that Cp, as well as dj, are independent of the size of 7. Moreover, by virtue of (6.126), problem (6.98)

0=Fpn(€_1:&) =Cn(€r)€k — dnl(€r—1,€1) (6.157)
iBh(ﬁk)&k_uh(fk)v k=1,...,m

is independent (in the finite precision arithmetic) on the size of T, provided that 7, > 7°°. Our numerical experiments indicated
that limit value Too = 10'2 in the double precision arithmetic.

6.4.8 Construction of the basis in the space Sy,

In this section we present one possibility, how to construct a basis By, = {¢;(z), ¢ = 1,..., Np,} in the space Sp,p, in order
to solve efficiently the Euler equations with the aid of the DGM. Obviously, it is advantageous to use functions from By, with
small supports. Since S}, consists of discontinuous functions, for each element K € 7}, it is possible to define a local basis

Bg = {d}m € Shp; supp(Pg ;) C K, i=1,... ,N} , (6.158)

with 9, ; € (P,(K))™ (= the space of vector-valued polynomials of degree < p on K € Tj,), where N = %H?Zl(p + j) is its
dimension. Then the basis By, will be a composition of the local bases Bx, K € T.
Let

d
K={(i1,...,8); % >0, i=1,....d, Y & <1} (6.159)
i=1

be the reference simplex. We consider affine mappings

Fx:K >R Fp(K)=K, K¢cF. (6.160)

(In Section 6.6 we deal with curved elements. In this case Fy is a polynomial mapping of degree > 1.)
On the reference element K we define a basis in the space of vector-valued polynomials of degree < p by

S, =(S,)™, (6.161)

d
Sp = {bnma (@1, Ba) =TI, (& — )™ ma,...,na >0, Y nj <p},
j=1

where (£§,...,29) is the barycenter of K. The dimension of the space spanned over the set S’p is N = %H?zl(p +j). By
the Gram—Schmidt LQ(k )-orthonormalization process applied to Sp we obtain the orthonormal system {(ﬁj, j=1,....,N }.
The Gram—Schmidt orthonormalization on the reference element can be easily computed, because N is small (moreover, the
orthonormalization can be done for each component of Sy, independently). Hence, this orthonormalization does not cause any
essential loss of accuracy.

Furthermore, let Fi, K € Ty, be the mapping introduced in (6.160). We put

Br = {$x ;i ¥i (@) = ¢;(F'(2), €K, j=1,...,N}, (6.162)

which defines a local basis By for each element K € Ty, separately. For an affine mapping Fy the basis By is L?(K )-orthogonal
with respect to the L?-scalar product and the blocks M i of the mass matrix M given by (6.152) are diagonal. If Fy is not
afine, then the orthogonality of By is violated. However, in practical applications, the curved face Kx N9oS2 is close to a straight
(polygonal) one (see Section 6.6), and thus the matrix block M x is strongly diagonally dominant.

Finally, a composition of the local bases Bx, K € Tj, defines a basis of Sy, i.e.,

Bip = {¥x; ¥k, €Bx, j=1,....,N, K € T}, (6.163)

which is, for affine mappings Fx, K € Ty, the L?-orthogonal basis of Sj,. In case that Fx is not an affine mapping for some
K € Ty, the L?-orthogonality is violated, i.e., ("/’K,m"/)K,j) #0fori,j=1,... N, i # j. However, since F is usually close to

an affine mapping, we have | (Y ;, ¥ ;)| < |(¢K7i,¢K7i)’ fori,j=1,...,N,i#j.

Remark 6.23. [t is possible to find that every entry of Fy, and/or Cj depends on wy, on at most two neighbouring elements.
This is a favourable property which simplifies the parallelization of the algorithm.
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6.4.9 Steady-state solution

Very often, we are interested in the solution of the stationary Euler equations, i.e., we seek w : @ — D (D is given by (6.12))
such that

4 9f, (w)
‘ =0, (6.164)
Sz:; 0x

where w is the steady-state vector and fs, s = 1,...,d, are the Euler fluxes defined in (6.9) and (6.10), respectively. This
system is equipped with boundary conditions (6.37), discussed in detail in Section 6.3.

The stationary Euler equations can be discretized in the same way as the non-stationary ones, omitting only the approxi-
mation of the time derivative.

Definition 6.24. We say that wy, € Sy, is a DG approzimate solution of (6.164) if
bh(wh,tph) =0 V(ph S Shp, (6.165)

where by, is given by (6.93). We call wy, the steady-state solution of the Euler equations.

With the aid of the notation introduced in Section 6.4.2, we can formulate (6.165) as the algebraic problem to find & € RVr»
such that

F®() =0, (6.166)

where £ is the algebraic representation of wy by the isomorphism (6.96) and

Np,
Nip »
F5 (€)= | ba < > & soz-) € RNw, (6.167)
=1 i=1
By virtue of (6.137), (6.152) and (6.154), we have
F5(€) =B(€)€ —un(§), €£eRVw. (6.168)

Problem (6.166) represents a system of nonlinear algebraic equations. It can be solved directly by the (damped) Newton
method, see [HH02]. Another very often used possibility is to apply the time-marching (or time stabilization) method based
on the solution of the nonstationary Euler equations (6.8) and to seek the steady-state solution as a limit of the nonstationary
solution for ¢ — co. This means that the methods for solving unsteady flow are applied as iterative processes, assuming that
wy, = hmk_wo'w}’i. The nonstationary computational process is stopped, when a suitable steady-state criterion is achieved.

The usual steady-state criterion often used for explicit time discretization reads (for an othonormal basis) as

ow h
ot

1 _ 1
, RNk = T;H“’i - w,’j 1||L2(Q) = €|€k —&,_1| < TOL, (6.169)
L2(Q)

where wf;l, [ =0, 1, denote the values of the approximate solution at time levels tx_;, { =0,1,&,_;, [ = 0,1, are their algebraic
representations given by the isomorphism (6.96) and TOL is a given tolerance.

Criterion (6.169) is not suitable for the implicit time discretization, when very large time steps are used, see [DHH11, Section
4.3.1.]. Then it is suitable to use the steady-state residual criterion

|F35(€5)| = [B(€5,)€x — un(€y)| < TOL, (6.170)

which is independent of 73, and measures the residuum of the nonlinear algebraic system (6.167).

However, it is an open question as to how to choose the tolerance TOL in (6.170), since the residuum depends on the size
of the computational domain €2, on the magnitude of components of w,’i, etc. Therefore, from the practical reasons, we use the
relative residuum steady-state criterion

SSres(k) := E:;Zigz;l < TOL, (6.171)

which already does not suffer from the mentioned drawbacks. Here £ is the algebraic representation of the initial state w.

Another possibility are the stopping criteria which follow from the physical nature of the considered problem. E.g., in
aerodynamics, when we solve flow around a 2D profile, we are often interested in the aerodynamic coefficients of the considered
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flow, namely coefficients of drag (cp), lift (c1,) and momentum (cpr). In the 2D case, the coefficients c¢p and ¢, are defined as
the first and second components of the vector

1
— ds, 6.172
%poo‘vooPLref /1" b ( )

prof

where po, and v, are the far-field density and velocity, respectively, L, is the reference length, I'y.of is the profile, n is outer
unit normal to the profile pointing into the profile and p is the pressure. Moreover, cy; is given by

morl
—_— T — Tper) X predS, 6.173
%poo|voo|2Lgef I ( ) ( )

prof

where ¢ is the moment reference point. We adopt the notation z x y = x1y2 — xoy; for @ = (z1,72),y = (y1,y2) € R%
Then it is natural to stop the computation when these coefficients achieve a given tolerance tol, e.g.,

Acy (k) < tol, Acq(k) = max co(l) — min co(1), (6.174)
1=F,...k 1=F,...k

where o = D, L and M (for the drag, lift and momentum), ¢, (k) is the value of the corresponding aerodynamic coefficient at
the k*®-time level and k is the entire part of the number 0.9%. This means that the minimum and maximum in (6.174) are taken
over the last 10% of the number of time levels.

In contrast to the tolerance TOL in (6.171), which has to be chosen empirically, the tolerance tol in (6.174) can be chosen
only on the basis of our accuracy requirements (without any previous numerical experiments). Since the absolute values of
aerodynamic coefficient are (usually) less than one, the stopping criterion (6.174) with tolerance, e.g., tol = 10~%, gives accuracy
of the aerodynamic coeflicients for 3 decimal digits.

Finally, let us note that since we seek only the steady-state solution, we do not need to take care of an accurate approximation
of the evolution process. Therefore, we can choose the time step 7y relatively large. Hence, the tolerance w appearing in (6.148)
can also be large.

6.5 Shock capturing

In higher-order numerical methods applied to the solution of high speed flows with shock waves and contact discontinuities
the Gibbs phenomenon appears manifested by spurious (nonphysical) oscillations in computed quantities propagating from
discontinuities. In the standard Galerkin finite element methods, these oscillations propagate far into the computational domain.
However, in DG numerical solutions the Gibbs phenomenon is manifested only by spurious overshoots and undershoots appearing
in the vicinity of discontinuities. These phenomena do not occur in low Mach number regimes, when the exact solution is regular,
but in the high-speed flow they cause instabilities in the numerical solution and collapse of the computational process.

In order to cure this undesirable feature, in the framework of higher-order finite volume methods one uses suitable limiting
procedures. They should preserve the higher-order accuracy of the method in regions where the solution is regular, and decrease
the order to 1 in a neighbourhood of discontinuities or steep gradients. These methods are based on the use of the flux limiter.
See e.g., [FFS03] and citations therein. In [CS89] and [CHS90], the finite volume limiting procedures were generalized also to
DGM.

Here we present another technique, based on the concept of artificial viscosity applied locally on the basis of a suitable jump
(discontinuity) indicator.

6.5.1 Jump indicators

Approximate solutions obtained by the DGM are, in general, discontinuous on interfaces between neighbouring elements. If the
exact solution is sufficiently regular, then the jumps in the approximate solution are small and, as follows from the theory as
well as numerical experiments, tend to zero if h — 0.

The DG solution of inviscid flow can contain large inter-element jumps in subdomains, where the solution is not sufficiently
smooth, i.e., in areas with discontinuities (shock waves or contact discontinuities). Numerical experiments show that the inter-
element jumps in the approximate solution are [wy]r = O(1) on discontinuities, but [wp|r = O(hP*1) in the areas where the
solution is regular. This inspires us to define a jump indicator , which evaluates the inter-element jumps of the approximate
solution. On general unstructured grids, it appears to be suitable to measure the magnitude of inter-element jumps in the
integral form by

/BK [ PdS. KeT, (6.175)
n

on interior faces I' € ]-',{, where wy, 1 denotes the first component, i.e., the density pj, corresponding to the state wy,. (Here we
take into account that the density is discontinuous both on shock waves and contact discontinuities.)
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This leads us to the definition of the jump indicator in the form

248
g (wy) = Jorglwnal K €T, (6.176)

B | K| ZFCaKnQ diam(T")’

where |K| denotes the d-dimensional measure of K and diam(T") is the diameter of I'. We see that we have

O(h??)  for K € Ty, where the solution is smooth,

gx(wn) = { O(h=2) for K € T, near discontinuities. (6.177)

Thus, gk — 0 for h — 0 in the case when K € 7}, is in a subdomain where the solution is regular, and gx — oo for h — 0 in
the case when K € 7Tj, is in the vicinity of a discontinuity.
There are various modifications of this indicator, as for example,

g (wn) = / k2 dS ) (hie K1), K €T, (6.178)
oK

in the 2D case, proposed in [DFS03] and applied in [FK07]. The indicator gx was constructed in such a way that it takes an
anisotropy of the computational mesh into account. It was shown in [DFS03] that the indicator gx (wp,) identifies discontinuities
safely on unstructured and anisotropic meshes.

Now we introduce the discrete jump (discontinuity) indicator

GK(wh) =0, if gK(wh) <1, GK(wh) =1, ifgg(wy)>1, KEeT,. (6.179)

Numerical experiments show that under the assumption that the mesh space size h < 1, it is possible to indicate the areas
without discontinuities checking the condition Gx(wp) < 1. On the other hand, if Gx(wp) > 1, the element K is lying in a
neighbourhood of a discontinuity.

However, it appears that the above discrete discontinuity indicators and the artificial viscosity forms (6.181) and (6.182)
introduced in the following section are too strict. Particularly, it may happen in some situations that the value of g in (6.176)
is close to 1 and then during the computational process the value Gk from (6.179) oscillates between 1 and 0. This can be
disabled to achieve a steady-state solution. Therefore, it is suitable to introduce some “smoothing” of the discrete indicator
(6.179). Namely we set

0, if gx(wn) < &min,
G (wy) =4 3sin (w 9K<‘§ggmf:ﬂg;m§min>> 1, i gr(wh) € [Emini Emax), (6.180)
17 if gK(wh) Z gmaxa

where 0 < &nin < Emax. In practical applications, it is suitable to set &nin = 0.5 and Epax = 1.5.

6.5.2 Artificial viscosity shock capturing

On the basis of the discrete discontinuity indicator we introduce local artificial viscosity forms, which are included in the numerical
schemes for solving inviscid compressible flow. For example, we define the artificial viscosity form B, : Spp X Shp X Spp — R by

Bulwn wigp) = 3 hicGic(wn) [ V- Vi de (6.181)
KeTh K

with 14 = O(1). Since this artificial viscosity form is rather local, we propose to augment it by the form vy, : Sy, X Spp %X Spp — R
defined as

1
'yh('wh,wh,goh) =1 E §(GK§L>(wh) + GKIQR) ('u_)h)) /[wh] . [(ph] ds, (6.182)
r
rer}

where v5 = O(1) and KIQL)7K1ER) € Ty, are the elements sharing the inner face I' € F/. This form allows strengthening the
influence of neighbouring elements and improves the behaviour of the method in the case, when strongly unstructured and/or
anisotropic meshes are used. These artificial viscosity forms were introduced in [FK07], where the indicator (6.179) was used.

Because of the reasons mentioned already above, using the discontinuity indicator (6.180), we also introduce more sophisti-
cated artificial viscosity forms 8,7}, : Shp X Shp X Shp — R, defined as

Bulwn wip) =11 Y. Grlwn) e [ Vw, Vo, da, (6.183)
KeTh K

148



and
1
7h(wh7wh7¢h) = Z §(GK1£L) (wh) + GKlﬁR) (u—)h)) hi“m /[wh] : [Soh] ds, (6184)
rer! r

with the parameters oy, ag, v1, va = O(1).

The described approach was partly motivated by the theoretical paper [JJS95]. However, the artificial viscosity was applied
there in the whole domain, which can lead to a nonphysical entropy production. In our case, it is important that the discrete
indicators G vanish in regions where the solution is regular and the artificial viscosity acts only locally in the vicinity of
discontinuities. Therefore, the scheme does not produce any nonphysical entropy in regions where the exact solution is regular.

The artificial viscosity forms B, and 7, are added to the left-hand side of the numerical schemes presented in previous
sections. For example, the backward Euler - discontinuous Galerkin method with shock capturing now reads as

1 _
E (’LUZ - ’UJZ 1790h) + bh(wlliagoh) +ﬁh(wlf€wwilia<ph) +7h(w£7wllia<ph) =0
Vo, € Spy k=1,...,1. (6.185)

Equalities (6.185) represent a system on nonlinear algebraic equations. In the case when the artificial viscosity forms B, and =,
are defined with the aid of the jump indicator (6.180), the discrete problem can be solved by the Newton-like method, presented
in Section 6.4.3. Namely, in (6.97), we replace by, (w?,¢,) by

bh(w;cwtpz) +:Bh(wll§a wzv%) +’Yh(w;i7wﬁa¢i)7
and, in (6.124), we replace bﬁ(u’)h,tpj,tpi) by
by, (W, p;,9;) + Br(Wn, 9;,9;) + 71, (W, 0, 0;)-

Also in other schemes we proceed in a similar way. The discrete problem with higher-order time discretization and shock
capturing reads as

wh € Shp, k=0,1,...,7, (6.186a)
1 [« _
L (St o) k) + k) 4 ) 0
=0
Vo, € Shp, k=mn,...,7, (6.186b)

where w, ..., w}'"" are defined by (6.134c) and (6.134d).
Similarly we formulate the higher-order semi-implicit scheme with shock capturing:

wy € Spp, k=0,1,...,7, (6.187a)
1 S k—1 7 S k—1 k S k—1 k
- Zan,l’wh Pn | + b Zﬁn,l’wh » Wh; P, +:Bh(z Brgwy, ™" wy, ¢p)
=0 =1 =1
+9, (O Brawh L wk 0,) =0 Ve, €Sy, k=mn,...,7, (6.187b)
=1

n—1

where w),...,w) " are defined by (6.134c) and (6.134d). Problem (6.187) represents again a sequence of systems of linear
algebraic equations. In this case the artificial viscosity can be defined by any jump indicator introduced in Section 6.5.1.

6.5.3 Numerical examples

In this section we present the solution of some test problems showing the performance of the shock capturing technique introduced
above.
We consider transonic inviscid flow past the profile NACA 0012 given by the parametrization

0.12
x, iW(O.Z%Q\f —0.126x — 0.35162% 4 0.28432° — 0.10152%) | , 2 € [0, 1],

see Figure 6.5. We consider the far-field Mach number M., = 0.8 (see (6.7)) and the angle of attack o = 1.25°. (Let us note
that tan « = vy/v1, where (v1, v2) is the far-field velocity vector.) This flow regime leads to two shock waves (discontinuities in
the solution). The shock wave on the upper side of the profile is stronger than the shock wave on the lower side.
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Figure 6.5: Geometry of the NACA 0012 profile.

We seek the steady-state solution of the Euler equations (6.8) with the aid of the time stabilization technique described in
Section 6.4.9, using the backward Euler —discontinuous Galerkin method (BE-DGM) (6.95). The nonlinear algebraic systems
are solved by the Newton-like iterative process (6.127)—(6.128).

We employ two unstructured triangular grids with piecewise polynomial approximation of the boundary described in Section
6.6. The first grid is formed by 2120 triangles and is not adapted. The second one with 2420 elements was adaptively refined
along the shock waves by ANGENER code [Dol00] developed in papers [Dol98], [DF04b] and [Dol01]. See Figure 6.6. The
problem was solved by the DGM using the P, polynomial approximations with p = 1,2, 3.

Figure 6.7 shows the Mach number isolines and the distribution of the Mach number along the profile in dependence on
the horizontal component obtained with the aid of the P; and P, approximation on the non-adapted mesh without the shock
capturing technique. We observe overshoots and undershoots in the approximate solution near the shock waves. Let us note
that the P3 computation failed.

Figure 6.8 shows the results obtained with the aid of the P;, P, and P3; approximations on the non-adapted mesh with the
shock capturing technique. We can see that the nonphysical overshoots and undershoots are mostly suppressed. Finally, Figure
6.9 shows the results for P, P, and P5 approximations on the adapted mesh with the shock capturing technique. We see that
a very good resolution of the shock waves was obtained.

Further numerical experiment can be found in Section 6.7.4, where an example of the supersonic flow past the NACA 0012
profile is presented.

6.6 Approximation of a nonpolygonal boundary

In practical applications, the computational domain €2 is usually nonpolygonal, and thus its boundary has to be approximated in
some way. In [BR00], Bassi and Rebay showed that a piecewise linear approximation of 9 can lead to a nonphysical production
of entropy and expansion waves at boundary corner points, leading to incorrect numerical solutions. In order to obtain an
accurate and physically admissible solution, it is necessary to use a higher-order approximation of the boundary. We proceed
in such a way that a reference triangle is transformed by a polynomial mapping onto the approximation of a curved triangle
adjacent to the boundary 0f2.

6.6.1 Curved elements

Here we describe only the two dimensional (d = 2) situation, the case d = 3 has to be generalized in a suitable way. Let K be
a triangle with vertices P}O [ =1,2,3, numbered in a such way that P} and P lie on a curved part of 9Q and P} lies in the
interior of Q. By I' we denote the edge P P#. Moreover, we assume that P} and P% are oriented in such a way that  is on
the left-hand side of the oriented edge from P} to PZ, see Figure 6.10. We consider elements having at most one curved edge.
The generalization to the case with elements having more curved edges is straightforward. ‘

Let ¢ > 2 be an integer denoting the polynomial degree of the boundary approrimation. We define ¢ — 1 nodes PIC(;’], j=

1,...,q— 1, lying on 9Q between P} and P2 in such a way that nodes Pg’j, j=1,...,q—1, divide the curved segment of 92

between P} and P2 into ¢ parts having (approximately) the same length. We assume that Pg’j , 7=1,...,q9— 1, are ordered

with an increasing index on the path along 9Q from P} to PZ. See Figure 6.10 showing a possible situation for ¢ = 2 and
q=3.
Let

K = {(#1,@2); & >0, i =1,2, &1 + i < 1} (6.188)

be the reference triangle. In K , we define the Lagrangian nodes of degree ¢ by
Pt =[ifgj/g, 0<i<q 0<j<q 0<itj<q, (6.189)

i.c., the vertices of K are the points P%0, POt and P10,
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Figure 6.6: Transonic inviscid flow around the NACA 0012 profile (Ms = 0.8, a = 1.25°): the non-adapted (left) and the
adapted (right) computational meshes.

DGM: p=1, without shock capturing DGM: p=1, without shock capturing
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Figure 6.7: Transonic inviscid flow around the NACA 0012 profile (M = 0.8, @ = 1.25°): DGM with P; approximation (top)
and P, approximation (bottom), Mach number isolines (left) and the distribution of the Mach number along the profile (right)
on a non-adapted mesh without the shock capturing technique.
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DGM: p=1, with shock capturing
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Figure 6.8: Transonic inviscid flow around the NACA 0012 profile (M, = 0.8, a = 1.25°):
(top), P» approximation (center) and P approximation (bottom), Mach number isolines (left) and the distribution of the Mach
number along the profile (right) on a non-adapted mesh with the shock capturing technique.
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Figure 6.9: Transonic inviscid flow around the NACA 0012 profile (M, = 0.8, o = 1.25°): DGM with P; approximation (top),
P, approximation (center) and Ps approximation (bottom) and with boundary approximation, Mach number isolines (left) and
the distribution of the Mach number along the profile (right) on an adapted mesh with the shock capturing technique.
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Figure 6.10: Triangle K with vertices P} and P# lying on a nonpolygonal part of 9¢2; adding one (left) and two (right) nodes
on 0N).

153



pO;O P%;O Pl:O

P =pPY°

Figure 6.11: Mapping Fx : K — K: quadratic (top) and cubic (bottom).

Let K be the triangle with vertices Pilf, 1 =1,2,3, and let Pg’j €0, j=1,...,q— 1, be the points lying on 02 between
P} and P as described above. We define the Lagrangian nodes of degree q of K by

PK%}‘J ngI%—&-éPIQ(—i—%Pf(, 0<i<q 0<5<¢q 0<i+j<q. (6.190)
Obviously, Py’ = Pk, P” = P% and Ppi' = P},
Then, there exists a unique polynomial mapping Fk : K — R2? of degree < ¢ such that
Fi(P%) = P, Fr(PY%) = P2, Fg(P%) =P} are vertices,
FK(P?O) = Pg’i, t=1,...,g—1, arenodes on the curved edge, (6.191)
FK(PE%) = Pé;%, 0<i1<q, 1<73<q—1, 0<i+j <gq, are other nodes.

The existence and uniqueness of the mapping Fix follows from the fact that a polynomial mapping of degree g from R? to R?

has (g + 1)(q + 2) degrees of freedom equal to the number of conditions in (6.191). Then we obtain a linear algebraic system,

which is regular, since the Lagrangian nodes on K are mutually different and at most ¢ nodes belong to any straight line.
Then the triangle K will be replaced by the curved triangle

K = Fg(K). (6.192)

The set K is a plane figure having two straight sides and one curved side T, which is an image of the reference edge P%0 P10,
see Figure 6.11.

Using the described procedure, we get a partition Ty, associated with the triangulation 7,. The partition 7~71, called the
curved triangulation, consists of triangles K € T, and curved elements K, associated with triangles K € 7T, with one edge
approximating a curved part of 0f).

Remark 6.25. Let us note that the considerations presented in this section make sense also for ¢ = 1. In this case, any node
Pg’l that is not inserted on 0, mapping Fx given by (6.191) is linear and K = Fx(K) = K is the triangle with straight edges.

Remark 6.26. The concept of the curved element can be extended also to 3D by defining a polynomial mapping Fr from a
reference tetrahedron Ksp into R? for each tetrahedron K with one face approzimating a curved part of 0. Then K is replaced

by FK(KgD).

6.6.2 DGM over curved elements

Let 75, be a curved triangulation consisting of (non-curved) simplexes K as well as possible curved elements K. By virtue of
Remark 6.25, a non-curved element can be considered as a special curved simplex obtained by a linear (¢ = 1) mapping F.
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Therefore, we shall not distinguish between curved and non-curved elements in the following and we shall use the symbol K
also for curved elements. Moreover, instead of Ty, we shall write 7j,.

Since T;, may contain curved elements, we have to modify the definition (6.44) of the space Sy,. For an integer p > 0, over
the triangulation 7 we define the finite-dimensional function space

Shp = (Shp)™,  Shp = {v; v € L*(Q), v|x 0o Fx € P(K) VK € Tp}, (6.193)

where P,(K ) denotes the space of all polynomials of degree < p on the reference element K and the symbol o denotes the
composition of mappings. Hence, instead of (6.44) and (6.45), we employ definition (6.193).

Remark 6.27. The definition (6.193) of the space Sp, implies that for a curved element K, the function wp|x is not a
polynomial of degree < p. Moreover, if all K € Ty, are non-curved (i.e., Fx are linear for all K € Ty, ), then the spaces defined
by (6.193) are identical with the spaces defined by (6.44) and (6.45).

Now let us describe how to evaluate the volume and boundary integrals over elements K and their sides I'. We denote by

D Fg
Dz

Trrc (&) = (#), #ekK, (6.194)

the Jacobian matrix of the mapping Fx. Since Fk is a polynomial mapping of degree ¢, Jr, is a polynomial mapping of degree
g — 1 in the variable & = (&1, &2). The components of the vector-valued test functions ¢; € S, from (6.193) are defined on the
curved elements K (adjacent to the boundary 9€) with the aid of the mapping F. Hence, for each ¢;, € Sy, and each K € T,
there exists a function ¢ € (P,(K))™ such that

Pk (2) = ¢ (Fi (1), @€K. (6.195)

In the following, we shall describe how to evaluate the volume and face integrals appearing in the definition of the forms
b, and bl given by (6.93) and (6.123), respectively. Evaluating the integrals is based on the transformation to the reference
element (or reference edge) with the aid of the substitution theorem.

Volume integrals

The volume integral of a product of two (or more) functions is simply expressed as
/ wp(z,t) -y (x)da = / Wi (Z,t) - @ (@) det Jp ()| dE, K € Ty, t € (0,7T), (6.196)
K K
where Wi (£,t) = wp |k (Fi(Z,t)) and @y is given by (6.195).

Moreover, the evaluation of the volume integral of a product of a function and the gradient of a function requires a trans-
formation of the gradient with respect to the variable = to the gradient with respect to £. Hence, we obtain

/ Z.fs wy, 6‘?(8 )z (6.197)

A A 1 -
:/A Zfs(w Z "’a ’ja(:K(x))|detJFK(i)|dfﬁ, KeTh, te(0,T),
Ks:l j=1 S

where Fj K. L denotes the j-th component of the inverse mapping F*. In order to compute the inverse mapping Fgl, we use the
following relation written in the matrix form:

(@) = (S @) (6.195)

following from the identity @ = Fx (Fg'(x)). The computation of the inverse matrix in (6.198) is simpler than the evaluation
of Ft.

Face integrals

Finally, we describe the evaluation of face integrals along a curved edge in R?. The three-dimensional case can be generalized
in a natural way. Let ' € F}, be a (possibly curved) edge of K € T,. Our aim is to evaluate the integrals

/ F(z)dS, / £(2) - n(z) @(z)dS, (6.199)
I T
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where m is the normal vector to I'and f : ' — R, f : I' — R? are given functions. Such type of integral appears in (6.93) in terms
containing the numerical flux. Let us recall the definition of the face integral. If ¢ = (¢1,12) : [0,1] — T' is a parameterization
of the edge I', then

/F f(z)ds = / FEON W) + (64(6)ds, (6.200)

where 9.(£), ¢ = 1,2, denotes the derivative of 1;(§) with respect to &.
Integrals (6.199) are evaluated with the aid of a transformation to the reference element. Let I' be an edge of the reference
element K such that K = Fi(K) and I' = Fg(T'). We call " the reference edge. Let

25(8) = (71 (€), 2p,(€) 1 [0,1] = T (6.201)

be a parametrization of the reference edge r preserving the counterclockwise orientation of the element boundary. Namely, the
reference triangle given by (6.159) (with d = 2) has three reference edges parametrized by

zp, () = (£,0), £€0,1, (6.202)
xf‘z(g) = (1 - gag)a f S [0’ 1]7
zp, (§) = (0,1-¢), €01

Moreover, we use the notation &4 (§) = d%mf (€) € R? and have

(1,0), £€]0,1], (6.203)
i 2 (717 1)3 5 € [Oa 1]3
(07 _1)a f € [Oa ]-]

8 R
-
1

8.
>
I

Therefore, the edge I" is parameterized by

z = Fg(zp(8) = (Fr1(zp(€)), Fr2(zp(€))) (6.204)
— (P4 (9):5.5(6), Frcair, (€, 374(6)) . € € 0.1],

The first integral in (6.199) is transformed by

1 d 2\ /2
[ #@as = [ Pt (2_; (dEFK,mf(g))) ) a¢ (6.205)
1/2
e ) 2 aFKz(m(g))i, ’
- [ sEctenien) Z_( i o) | ae

- / F(Fre(p(€) | e (0 (€))iig | de,

where Jp, is the Jacobian matrix of the mapping Fx multiplied by the vector iy given by (6.203) and | - | is the Euclidean
norm of the vector. Let us note that if F is a linear mapping, then e is a straight edge and ’JFK (xr(ﬁ))xr(ﬁ)’ is equal to its
length.

Now, we focus on the second integral from (6.199). Let tr be the tangential vector to I defined by

tr(z(8)) =(tr1(z(£)), tr2(x(£))) (6.206)
:d%FK(l’f(f)) = (Jre, (@p ()21 (6), Trye o (2 (€)1 (8)) -

(If T is a straight line, then ¢r is constant on I, it has the orientation of I and |tr| = |T'|.) Now, by the rotation we obtain the
normal vector nr pointing outside of K, namely

nr(z(§)) = (nr,1(2(§)), nr2(z(§))), (6.207)
nr1(2(§)) = tra(x(§)), nra2(z(§)) = —tra(x(§)).
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Figure 6.12: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, a = 2°): computational mesh, detail around the
whole profile (left) and around the leading edge (right).

Here it is important that the counter-clockwise orientation of the elements is considered. Therefore, from (6.206) and (6.207),
we have

nr(2(8)) = (Jr, (@) (8), =T, (22(6)72(6)) - (6.208)

Let us note that because nr(z(§)) is not normalized, it is necessary to divide it by |nr(z(£))| = |Jrk (p(€))2p(€)]. Finally,
similarly as in (6.205), we obtain

/F £(2) - n(z) p(z)dS (6.209)

nr(z(£))

nr(a(

- / F(Fr(2a(6)
- / F(FR(2(6))) - nr(@(€)) @(ap(€)) dé,

where np(x(§)) is given by (6.208) and ¢ was obtained by transformation of the function ¢: @(Z) = ¢(Fk (Z)). Let us note that
if F is a linear mapping, then I is a straight edge and |nr(x(£))| is equal to its length.

Implementation aspects of curved elements

The integrals over the reference triangle K and over the reference edge I in (6.196), (6.197), (6.205) and (6.209) are evaluated
with the aid of suitable numerical quadratures. For the volume integrals we can employ the Dunavant quadrature rules [Dun85],
which give the optimal order of accuracy of the numerical integration. For face integrals the well-known Gauss quadrature rules,
having the maximal degree of approximation for the given number of integration nodes, can be used. For other possibilities, we
refer to [SSD03].

Finally, let us mention the data structure in the implementation. Let p be an integer denoting the maximal implemented
degree of the polynomial approximation in the DGM. We put N = (p+1)(p+2)/2 denoting the corresponding maximal number
of degrees of freedom for one element and one component of w for d = 2. Hence, in order to evaluate integrals appearing in
(6.93) and (6.123) with the aid of the techniques presented above and with the aid of numerical quadratures, it is enough to
evaluate (and store) the following quantities:

o for each K € 7j, the determinant det Jr,, of the Jacobi matrix and the transposed matrix to the inversion of the Jacobi
matrix Jg, evaluated at the used edge and volume quadrature nodes,

e the reference basis functions @;(#), i = 1,..., N, with their partial derivatives 0@, (%)/0%;, j=1,2, i=1,...N, on K
evaluated at the used edge and volume quadrature nodes.

6.6.3 Numerical examples

In this section we present the results of numerical experiments demonstrating the influence of higher-order approximation of the
nonpolygonal boundary. We consider an inviscid flow around the NACA 0012 profile with the far-field Mach number M, = 0.5
(see (6.7)) and the angle of attack o = 2°. We seek the steady-state solution of the Euler equations (6.8) with the aid of the time
stabilization described in Section 6.4.9, using the BE-DGM (6.95) combined with the Newton-like iterations (6.127) - (6.128).
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Figure 6.13: Subsonic inviscid flow around the NACA 0012 profile (M, = 0.5, a = 2°): DGM with polynomial approximation
with p = 1, boundary approximation with ¢ = 1 (top), ¢ = 2 (center) and ¢ = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).

The computation was performed on a coarse unstructured triangular grid having 507 elements, refined around the leading
edge of the profile by the ANGENER code [Dol00] (see Figure 6.12). The polynomial approximations P,, p = 1,3,5, in the
DGM and the polynomial approximations P, ¢ = 1,2, 3, of the boundary described in Section 6.6 were used. Figures 6.13-6.15
show results of these computations, namely Mach number isolines and the Mach number distribution along the profile.

We observe that the P; approximation of the boundary produces nonphysical oscillations in the solution. This unpleasant
behaviour disappears for P, or P3 approximation of the boundary. There is almost no difference between P, and P;. Finally, it
is possible to see that the high-order DG approximation (Ps) gives very smooth isolines even on a coarse grid.

6.7 Numerical verification of the BDF-DGM

In this section we shall present computational results demonstrating the robustness and accuracy of the BDF-DGM for solving
the Euler equations.
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Figure 6.14: Subsonic inviscid flow around the NACA 0012 profile (M, = 0.5, a = 2°): DGM with polynomial approximation
with p = 3, boundary approximation with ¢ =1 (top), ¢ = 2 (center) and ¢ = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).
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Figure 6.15: Subsonic inviscid flow around the NACA 0012 profile (M, = 0.5, a = 2°): DGM with polynomial approximation
with p = 5, boundary approximation with ¢ = 1 (top), ¢ = 2 (center) and ¢ = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).
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6.7.1 Inviscid low Mach number flow

It is well-known that the numerical solution of low Mach number compressible flow is rather difficult. This is caused by the stiff
behaviour of numerical schemes and acoustic phenomena appearing in low Mach number flows at incompressible limit. In this
case, standard finite volume and finite element methods fail. This led to the development of special finite volume techniques
allowing for the simulation of compressible flow at incompressible limit, which are based on modifications of the Euler or
Navier—Stokes equations. We can mention works by Klein, Munz, Meister, Wesseling and their collaborators (see e.g. [Kle95],
[RMGKO7], [MS02, Chapter 5], or [Wes01, Chapter 14]). However, these techniques could not be applied to the solution of high
speed flow. Therefore, further attempts were concentrated on extending these methods to solving flows at all speeds. A success
in this direction was achieved by several authors. Let us mention, for example, the works by Wesseling et al. (e.g., [vdHVWO03]),
Parker and Munz ([PMO05]), Meister ([Mei03]) and Darwish et al. ([DMS03]). The main ingredients of these techniques are
finite volume schemes applied on staggered grids, combined with multigrid, the use of the pressure-correction, multiple pressure
variables and flux preconditioning.

In 2007, in paper [FKO07], it was discovered that the DG method described above allows the solution of compressible flow
with practically all Mach numbers, without any modification of the governing equations, written in the conservative form with
conservative variables. The robustness with respect to the magnitude of the Mach number of this method is based on the
following ingredients:

e the application of the discontinuous Galerkin method for space discretization,

e special treatment of boundary conditions,

e (semi-)implicit time discretization,

e limiting of the order of accuracy in the vicinity of discontinuities based on the locally applied artificial viscosity,
e the use of curved elements near curved parts of the boundary.

In this section we present results of numerical examples showing that the described DG method allows for the low Mach
number flow, nearly at incompressible limit. First, we solve stationary inviscid low Mach number flow around the NACA 0012
profile similarly as in [BBHN09]. The angle of attack is equal to zero and the far-field Mach number M, is equal to 10~%, 1072,
1072 and 10~%. The computation was carried out on a grid having 3587 elements (see Figure 6.16, bottom) with the aid of the
3-steps BDF-DGM with P,, p = 1,2, 3,4, polynomial approximation in space. The computations are stop when the relative
residuum steady-state criterion (6.171) is achieved for TOL = 10~°.

Table 6.6 shows the relative maximum pressure and density variations (Pmax — Pmin)/Pmax a0d (Pmax — Pmin)/Pmax, reSpec-
tively, the drag coefficient cp and the lift coefficient cy,, see (6.172). Let us note that

Pmax = Iax pn(x), Pmin = rapelg pn(x), Pmax = MAX pr(x), Pmin = Ifelslzl pn(z),

where pp,(z) and pp(x) are the numerical approximations of the pressure and the density, respectively, evaluated from wy,.
Both the pressure and density maximum variations are of order M2, which is in agreement with theoretical results in the

analysis of compressible flow at incompressible limit. One can also see that the drag and lift coefficients attain small values,

which correspond to the fact that in inviscid flow around a symmetric airfoil with zero angle of attack these quantities vanish.

Figure 6.16 shows the pressure isolines obtained with the aid of P, and P, approximations.

6.7.2 Low Mach number flow at incompressible limit

It is well-known that compressible flow with a very low Mach number is very close to incompressible flow. This fact allows us to
test the quality of numerical schemes for solving compressible low Mach number flow using a comparison with exact solutions
of the corresponding incompressible flow, which are available in some cases. Here we present two examples of stationary com-
pressible flow compared with incompressible flow. The steady-state solution was obtained with the aid of the time stabilization
using the backward Euler linearized semi-implicit scheme (6.130). The computational grids were constructed with the aid of
the anisotropic mesh adaptation technique by the ANGENER code [Dol00]. In both examples quadratic elements (p = 2) were
applied.

Irrotational flow around a Joukowski profile

We consider flow around a negatively oriented Joukowski profile given by parameters A = 0.07,a = 0.5,h = 0.05 (under the
notation from [Fei93], Section 2.2.68) with zero angle of attack. The far-field quantities are constant, which implies that the
flow is irrotational and homoentropic. Using the complex function method from [Fei93], we can obtain the exact solution of
incompressible inviscid irrotational flow satisfying the Kutta—Joukowski trailing condition, provided the velocity circulation
around the profile, related to the magnitude of the far-field velocity, v.of = 0.7158. We assume that the far-field Mach number of
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Figure 6.16: Low Mach number flow around the NACA 0012 profile for far-
(
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Pmax —Pmin Pmax —~ Pmin

Moo p | m2o—r o CD L

10~1 1] 9.89E-03 7.08E-03 | 2.57E-04 1.46E-03
107! 2| 9.87E-03 7.09E-03 | 6.63E-05 1.20E-03
1071 3| 9.87E-03 7.06E-03 | 4.26E-05 7.97E-04
107! 4] 9.87E-03 7.06E-03 | 1.90E-05 6.83E-04
1072 1] 9.92E-05 7.10E-05 | 3.80E-04 1.80E-03
1072 2| 9.91E-05 7.11E-05 | 9.63E-05 1.22E-03
1072 3] 9.90E-05 7.65E-05 | 4.68E-05 1.11E-03
1072 4] 9.91E-05 7.13E-05 |-5.73E-05 3.01E-04
1073 1] 9.92E-07 7.11E-07 | 3.95E-04 1.57E-03
1073 2| 9.93E-07 7.56E-07 | 3.74E-05 4.75E-04
1072 3| 9.90E-07 7.08E-07 | 5.70E-05 8.96E-04
1072 4] 9.90E-07 7.08E-07 | 3.69E-05 6.64E-04
1077 1] 9.88E-09 4.84E-08 [-1.69E-05 5.42E-04
107% 2] 9.91E-09 8.29E-08 | 1.17E-04 1.10E-03
107% 3] 9.90E-09 2.51E-08 |-9.56E-06 5.02E-04
107% 4] 9.93E-09 3.32E-08 |-2.80E-04 3.17E-04

Table 6.6: Low Mach number flow around the NACA 0012 profile for far-field Mach number M., = 10~%, 1072, 1073 and 1074,
with the aid of P,, p=1,...,4, polynomial approximation: ratios (Pmax — Pmin)/Pmax; (Pmax — Pmin)/Pmax, drag coefficient cp
and lift coefficient cy,.

compressible flow M., = 1074, The computational domain is of the form of a square with side of the length equal to 10 chords
of the profile from which the profile is removed. The mesh (in the whole computational domain) was formed by 5418 triangular
elements and refined towards the profile. Figure 6.17 (top) shows a detail near the profile of the velocity isolines for the exact
solution of incompressible flow and for the approximate solution of compressible flow. Further, in Figure 6.17 (bottom), the
distribution of the velocity related to the far-field velocity and the pressure coefficient distribution around the profile is plotted
in the direction from the leading edge to the trailing edge. The pressure coefficient was defined as 107 - (p — pso), Where poo
denotes the far-field pressure.

The maximum density variation is 1.04 - 1078. The computed velocity circulation related to the magnitude of the far-
field velocity i Yrefcomp = 0.7205, which gives the relative error 0.66% with respect to the theoretical value 7yef obtained for
incompressible flow.

In order to establish the quality of the computed pressure of the low Mach compressible flow in a quantitative way, we
introduce the function

p L oo
B==4+ - 6.210
gl (6.210)

which is constant for incompressible, inviscid, irrotational flow, as follows from the Bernoulli equation. In the considered
compressible case, the relative variation of the function B, i.e., (Bmax — Bmin)/Bmax = 3.84 - 1076, where Bjax = max,cq B(x)
and Bpin = mingeq B(x). This means that the Bernoulli equation is satisfied with a small error in the case of the compressible
low Mach number flow computed by the developed method.

Rotational flow past a circular half-cylinder

In the second example we present the comparison of the exact solution of incompressible inviscid rotational flow past a circular
half-cylinder, with center at the origin and diameter equal to one, and with an approximate solution of compressible flow. The
far-field Mach number is 10~* and the far-field velocity has the components v; = xo,v2 = 0. The analytical exact solution
was obtained in [Fra61]. This flow is interesting for its corner vortices. The computational domain was chosen in the form
of a rectangle with length 10 and width 5, from which the half-cylinder was cut off. The mesh was formed by 3541 elements.
We present here computational results in the vicinity of the half-cylinder. Figure 6.18 shows streamlines of incompressible and
compressible flow. Figure 6.18 (bottom) shows the velocity distribution along the half-cylinder in dependence on the variable
¥ — /2, where ¥ € [0, 7] is the angle from cylindrical coordinates. The maximum density variation is 3.44 - 1077.

Accuracy of the method

An interesting question is the order of accuracy of the semi-implicit DG method. We tested numerically the accuracy of the
piecewise quadratic DG approximations of the stationary inviscid flow past a circular cylinder with the far-field velocity parallel
to the axis x; and the Mach number M., = 10~*. The problem was solved in a computational domain in the form of a square
with sides of length equal to 20 diameters of the cylinder. Table 6.7 presents the behaviour of the error in the magnitude
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Figure 6.17: Flow around a Joukowski airfoil, velocity isolines for the exact solution of incompressible flow (top left) and
approximate solution of compressible low Mach number flow (top right), velocity (left bottom) and pressure coefficient (right
bottom) distribution along the profile: exact solution of incompressible flow (dots) and the approximate solution of compressible
flow (full line).
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Figure 6.18: Flow past a half-cylinder, streamlines of rotational incompressible (top left) and compressible (top right) flows and
the velocity distribution (bottom) on the half-cylinder incompressible flow ( dots) and compressible flow (full line).
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#Tn | |lerror|p=) | EOC
1251 5.05E-01 -
1941 4.23E-01 0.406
5031 2.77E-02 2.86
8719 6.68E-03 2.59

Table 6.7: Error in the L% (Q2)-norm and corresponding experimental order of convergence for approximating incompressible
flow by low Mach number compressible flow with respect to h — 0.

of the velocity related to the far-field velocity and experimental order of convergence (EOC) for approximating of the exact
incompressible solution by compressible low Mach number flow on successively refined meshes measured in the L (2)-norm.

We see that the experimental order of convergence is close to 2.5, which is comparable to theoretical error estimate (in the
L>(0,T; L?(£2))-norm) obtained in Section 2.6.

6.7.3 Isentropic vortex propagation

We consider the propagation of an isentropic vortex in a compressible inviscid flow, analyzed numerically in [Shu98]. This
example is suitable for demonstrating the order of accuracy of the BDF-DGM, because the regular exact solution is known, and
thus we can simply evaluate the computational error.

The computational domain is taken as [0,10] x [0, 10] and extended periodically in both directions. The mean flow is p = 1,
v = (1,1) (diagonal flow) and p = 1. To this mean flow we add an isentropic vortez, i.e., perturbation in v and the temperature
6 = p/p, but no perturbation in the entropy n = p/p":

(v = 1)e?

5
dv = —exp[(1 —72)/2](~%2,71), 0= — S

o exp[l —r?%], dn=0, (6.211)

2

where (—Z2,Z1) = (v1 — 5,72 —5), 72 = 27 + 23, and the vortex strength e = 5. The perturbations §p and §p are obtained from

the above relations according to
i="p/p", 0=5/p,

é+50 1/(v—1) ~ ~ B ~
5p — (n) s 5p = (p+ 69)(0 + 66) — .

It is possible to see that the exact solution of the Euler equations with the initial conditions
p(x,0) =p+dp, v(z,0)=0+dv, p(z,0)=p-+Ip, (6.212)

and periodic boundary conditions is just the passive convection of the vortex with the mean velocity. Therefore, we are able
to evaluate the computational error ||w — wy,|| over the space-time domain Qr := Q x (0,T), where w is the exact solution
and wy, is the approximate solution obtained by the time interpolation of the approximate solution computed by the n-step
BDF-DGM with the discretization parameters i and 7. This means that the function wy,, is defined by

wh(r,tp) = wh(z), 2€Q, k=0,...,7, (6.213)
Wi (2, 1) oxr, = L™ (wy L wp, . w o,

where I, = (tg—1,t;) and £ is the Lagrange interpolation of degree n in the space R x S}, constructed over the pairs

(tkfn+17wzin+1)7 (tk7n+27w}]’iin+2)7 sy (tkvwlhc)v (tk+17w2+1)'

In our computations we evaluate the following errors:

o llen(T)[l(z2()m — error over Q at the final time T,

o |en(T)|(m1(q))m — error over ) at the final time T

e |lenrll(z2(@r)ym — error over the space-time cylinder  x (0,T),

o |lenrll(z2(0,7; 1 (02)))m — error over the space-time cylinder €2 x (0, 7).
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h T k=nlllen(Dllr2y len(M)ara) |llenrllrzp) llenrllL2or; m1 )
5.87E-01 1.00E-02 1 8.54E-01 1.69E4-00 1.71E400 4.01E+00
2.84E-01 5.00E-03 1 3.30E-01 7.56E-01 6.27E-01 1.81E4-00

EOC | (1.31) (1.11) (1.38) (1.09)
1.41E-01 2.50E-03 1 1.50E-01 3.51E-01 2.82E-01 8.66E-01
EOC |  (1.13) (1.10) (1.15) (1.06)
5.87E-01 1.00E-02 2 3.93E-02 2.40E-01 9.64E-02 7.10E-01
2.84E-01 5.00E-03 2 3.84E-03 5.05E-02 1.02E-02 1.61E-01
EOC |  (3.20) (2.14) ( 3.00) ( 2.04)
1.41E-01 2.50E-03 2 6.69E-04 1.26E-02 1.55E-03 3.96E-02
EOC |  (2.51) ( 1.99) ( 2.70) ( 2.01)
5.87E-01 1.00E-02 3 3.97E-03 3.75E-02 1.19E-02 1.30E-01
2.84E-01 5.00E-03 3 4.89E-04 5.04E-03 1.47E-03 1.56E-02
EOC |  (2.88) ( 2.76) ( 2.88) (2.91)
1.41E-01 2.50E-03 3 1.14E-04 7.38E-04 3.45E-04 2.87E-03
EOC |  (2.09) ( 2.76) (2.08) (2.43)

Table 6.8: Isentropic vortex propagation: computational errors and the corresponding EOC.

Figure 6.19: Isentropic vortex propagation: the isolines of the Mach number computed with the aid of P, approximation on the
coarsest mesh (left) and P; approximation of the finest one (right).

We perform the computation on unstructured quasi-uniform triangular grids having 580, 2484 and 10008 elements, which
corresponds to the average element size h = 0.587, h = 0.284 and h = 0.141, respectively. For each grid, we employ the k-step
BDF-DGM with Py polynomial approximation, £ = 1,2,3. We use a fixed time step 7 = 0.01 on the coarsest mesh, 7 = 0.005
on the middle one and 7 = 0.0025 on the finest one. It means that the ratio h/7 is almost fixed for all computations. The final
time was set T' = 10.

Table 6.8 shows the computational errors in the norms mentioned above for each case and also the corresponding experimental
orders of convergence (EOC). We observe that EOC measured in the H!-seminorm is roughly O(h*) for k = 1,2, 3, cf. Remarks
6.13 and 6.18. On the other hand, EOC measured in the L?-norms are higher for k = 2 than for k¥ = 3. However, the size of the
error is smaller for k£ = 3 than for k = 2.

Moreover, Figure 6.19 shows the isolines of the Mach number for P; polynomial approximation on the coarsest mesh and for
P35 polynomial approximation on the finest mesh.

6.7.4 Supersonic flow

In order to demonstrate the applicability of the described DG schemes to the solution of supersonic flow with high Mach numbers,
we present an inviscid supersonic flow around the NACA 0012 profile with the far-field Mach number M, = 2 and the angle
of attack o = 2°. This flow produces a strong oblique shock wave in front the leading edge of the profile. The computation
was performed on the anisotropically refined grid by the ANGENER code [Dol00] shown in Figure 6.20. We observe a strong
refinement along shock waves. Some elements in front of the oblique shock wave are very obtuse, however the DGM was able
to overcome this annoyance. Figure 6.21 shows the Mach number obtained with the aid of the P3 approximation. Due to the
applied shock capturing technique presented in Section 6.5 (with the same setting of all parameters ay, e, v1 and v3), a good
resolution of the shock waves is obtained.
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Chapter 7

Viscous compressible flow

This chapter is devoted to the numerical simulation of viscous compressible flow. The methods treated here represent the gener-
alization of techniques for solving inviscid flow problems contained in Chapter 6. Viscous compressible flow is described by the
continuity equation, the Navier—Stokes equations of motion and the energy equation, to which we add closing thermodynamical
relations.

In the following, we introduce the DG space semidiscretization of the compressible Navier—Stokes equations with the aid of
the interior penalty Galerkin (IPG) techniques. Since the convective terms were treated in detail in Chapter 6, we focus on
discretization of viscous diffusion terms. We extend heuristically the approach developed in Chapter 1. Semidiscretization leads
to a system of ordinary differential equations (ODEs), which is solved by the approach presented in Chapter 6 for the Euler
equations. We demonstrate the accuracy, robustness and efficiency of the DG method in the solution of several flow problems.

7.1 Formulation of the viscous compressible flow problem

7.1.1 Governing equations

We shall consider unsteady compressible viscous flow in a domain @ C R? (d = 2 or 3) and time interval (0,7) (0 < T < o0).
In what follows, we present the governing equations. Their derivation can be found, e.g., in [FFS03, Section 1.2].

We use the standard notation: p-density, p-pressure (symbol p denotes the degree of polynomial approximation), E - total
energy, vs-components of the velocity vector v = (v1,...,v4)7 in the directions x,, s = 1,...,d, 0-absolute temperature,
¢y > 0-specific heat at constant volume, ¢, > 0-specific heat at constant pressure, v = ¢, /¢, > 1-Poisson adiabatic constant,
R = ¢, — ¢, > 0-gas constant, Ti\;, i,j = 1,...,d-components of the viscous part of the stress tensor, ¢ = (qi,...,qq)-heat
flux. We will be concerned with the flow of a perfect gas, for which the equation of state (6.1) reads as

p = Rpb, (7.1)

and assume that cp, ¢, are constants. Since the gas is light, we neglect the outer volume force and heat sources.
The system of governing equations formed by the continuity equation, the Navier—Stokes equations of motion and the energy
equation (see [FFS03, Section 3.1]) considered in the space-time cylinder Q7 = 2 x (0,7T") can be written in the form

dp = (pvs)
aJr; e 0 (7.2)
0pvi) | N~ Apvive +0p) _ IR
OE ~O((E+p)v.) = O(rv) K dg.
AP D il Dy rasiad B o 4
p=(y—1)(E - plv|2/2). (7.5)

As we see, system (7.2)—(7.4) consists of m = d + 2 partial differential equations. This whole system is usually simply called
compressible Navier—Stokes equations. The total energy is defined by the relation

E = plesd + [v]2/2) (7.6)
The heat flux ¢ = (q1, ..., qq) satisfies the Fourier law
q=—kvo, (7.7)
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where k > 0 is the heat conductivity assumed here to be constant. This relation allows us to express the absolute temperature
6 in terms of the quantities £, p and |v|?. Furthermore, we consider the Newtonian type of fluid, i.e., the viscous part of the
stress tensor has the form

Oovs, 0
Ts‘izu(aszraz’“)Hv.vask, s,k=1,....,d, (7.8)
where dg1 is the Kronecker symbol and p > 0 and A are the viscosity coefficients. We assume that A = f% w. It is valid, for

example, for a monoatomic gas, but very often it is also used for more complicated gases.
Moreover, we recall the definition of the speed of sound a and the Mach number M by

a=+p/p, M =]v|/a. (7.9)

It appears suitable to write and solve numerically the Navier—Stokes equations describing viscous compressible flow in a
dimensionless form. We introduce the following positive reference (scalar) quantities: a reference length L*, a reference velocity
U*, a reference density p*. All other reference quantities can be derived from these basic ones: we choose L*/U* for t, p*U*?
for both p and E, U*3/L* for heat sources ¢, U*?/c, for §. Then we can define the dimensionless quantities denoted here by
primes:

wp =x /L%, vp=v/UY, o =0/U" p'=p/p", (7.10)
* T Tk * T Tk CU9 * *
' =p/(p’U), E'=E/(pU), 0'=5, t=tU"/L"

Moreover, we introduce the Reynolds number Re and the Prandtl number Pr defined as
Re = p*U*"L" [/, Pr=c,p/k. (7.11)

In the sequel we denote the dimensionless quantities by the same symbols as the original dimensional quantities. This means
that v will denote the dimensionless velocity, p will denote the dimensionless pressure, etc. Then system (7.2)—(7.4) can be
written in the dimensionless form (cf. [FFS03])

d d
ow Ofs(w) ORs(w,Vw) .
e = bk S SR has 12
a " E oz, ; oe O (7.12)
where
T T
w = (wi,...,war2) = (p, pv1,...,pv4, F) (7.13)
is the state vector,
fsa(w) pUs
fs,Q(w) PU1Vs + 61,sp
fs;m—1(w) PUaVs + Od,sP
fs,m(w) (E + P)Us
are the inviscid (Euler) fluzes introduced already in (6.10). The expressions
R 1(w, Vw) 0
R, 2(w, Vw) ™
R, (w,Vw) = : = : , s=1,...,d, (7.15)
Rs,mfl(uﬁ vw) 7.;(/1
d .
Rs,m(wa Vw) Zk:l Ts\‘i:vk + RgPr ad:i

represent the viscous and heat conduction terms, and

i Bvs + 8vk
Re \ 0z, Oz,

2
TN = —3v.v55k>, s,k=1,...,d, (7.16)

are the dimensionless components of the viscous part of the stress tensor. The dimensionless pressure and temperature are
defined by

p=(y=DE-pll*/2), 0=E/p—|v]*/2. (7.17)
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Of course, the set Qr is obtained by the transformation of the original space-time cylinder using the relations for ¢' and 7.
The domain of definition of the vector-valued functions fs; and R, s = 1,...,d, is the open set D C R™ of vectors

w = (wr,..

D= {weRm;wl =p>0, wy — Zw?/(le):p/('y—l) >0}.

Obviously, fs, Rs € (C*(D))™, s=1,...,d.

., wp,)T such that the corresponding density and pressure are positive:

m—1

=2

(7.18)

Similarly as in (6.13)—(6.17), the differentiation of the second term on the left-hand side of (7.12) and using the chain rule

give

d

s=1

Ofs(w
> -

d
ow
Z As(w)aixs’

s=1

where A (w) is the m x m Jacobi matrix of the mapping f, defined for w € D:

As(w) = Dw

Moreover, let

Dfs(w) (8fs,i(w)>m

, s=1,...,d.

dw; ij=1

B ={ncRkR% |n|=1}

denote the unit sphere in R%. Then, for w € D and n = (n4,...

,nq)T € By we denote

d

P(w,n) = Zfs(w)ns,

s=1

(7.19)

(7.20)

(7.21)

(7.22)

which is the physical fluz of the quantity w in the direction n. Obviously, the Jacobi matrix DP(w,n)/Dw can be expressed

in the form

d
DP
# =P(w,n) = ;As(w)ns. (7.23)
The explicit form of the matrices Ag;, s =1,...,d, and P is given in Exercises 6.2—6.5.
Furthermore, the viscous terms R;(w, Vw) can be expressed in the form
¢ Jw
R (w,Vw) = K, _—, =1,...,d, 7.24
(0, V0) = 3 Kaaw)z s (724
where K; () are m x m matrices (m = d + 2) dependent on w. These matrices K, 5, := (Ki%ﬁ))fgzl, s,k=1,...,d, have for
d = 3 the following form:
0 0 0 0 0
4 w 4 1
3 Re'i)2 3 Rew; 0 0 0
w 1
K1,1(’w) = " Re z;f 0 Re wy 0 0 s (725)
w 1
" Re ;1”% 0 0 Re w; 0
5,1 w w
KRV G- AR08 £0-08 e
. 5,1
with K% = — b (4w + wl +wd) /wf + 525 (—ws/w? + (w3 +wd + w}) /w),
0 0 0 0
w 1
_4Re i}f Re w1 A 0 0 0
g 1
KQ)Q(’UJ) = 3 Rq:juf 0 3 Rew; 0 0 s (726)
*le;‘ua 0 R - 0
€ wq
5,1 w w w
KE R0-30% £6-88 R0-08 e
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with K" =

—fe (W3 + jwi +wi) jwt + g5 (~ws/w? + (w3 +wi +wi)/w}),

ﬁ (w3 +wi + %wi) Jw} + 725 (—ws/w? + (w3 +wi +wi)/w}),

0 0 0
2 _wsg 1 0
3 Re w? Rew;
— w2
Ki2(w) = Rew? 0 0
0 0 0
_lwows wa 0
3 Re w% Re wf
0 0 0
2 _wy 0 —2_1_
3 Rew? 3 Rew;
K, 5(w) = 0 0 0
__wa
Rew% 0 0
_lwywy 0 —2_w
3 Rew? 3 Rew?
0 0 0
_ w3 1 0
Rcw% Re w
2 _wo
KQJ(’LU) = 3 Rew% 0 0
0 0 0
_lwaws wo 0
3 Rcw% Rcw%
0 0 0 0
0 0 0 0
2 _wa 2 1
Kgﬁg(’w) = 3 Rew? 0 0 3 Rew;
i, 0 g 0
Rew?
_lwsws _2_wy
3 Rew‘;’ 3 Re wf
0 0 0
__wa 0 =1
Re w? Rew;
Ky 1 (w) = 0 0 0
2_ws 0 0
3 Rewf
_lwywy 0 wo
3 Rew? Re w?
0 0 0
0 0 0
w4 1
Kg@(’lﬂ) = Re w? 0 Re wy
2 us, 0
3 Rew? Rew;
_lwsws ws
3 Rew‘;’ Re w% Re w%

Exercise 7.2. Derive the form of Ky 5, s,k =1,2, ford=2.

Exercise 7.1. Verify the form of K1, s,k =1,2,3, given by (7.25)-(7.33).

o O OO

oo ocooco co o oo c oo oo coe o e
\_/ \—/ S ———————————— S ———————————— S ————————————

O OO OO

o O O oo

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)



7.1.2 Initial and boundary conditions

In order to formulate the problem of viscous compressible flow, the system of the Navier-Stokes equations (7.12) has to be
equipped with initial and boundary conditions. Let Q C R?, d = 2,3, be a bounded computational domain with a piecewise
smooth boundary 0€2. We prescribe the initial condition

w(z,0) = w’(z), ze€9Q, (7.34)

where w® : Q — D is a given vector-valued function.

Concerning the boundary conditions, we distinguish (as in Section 6) the following disjoint parts of the boundary 99Q: inlet
09, outlet 092, and impermeable walls 0Ny, i.e., 0N = 0Q; U 9N, U Ny . We prescribe the following boundary conditions on
individual parts of the boundary:

v 08
= = — =0 0, 7.35
p=pp, V="1p, ; (Zﬁﬂl) Ut R b An on (7.35)
0
Z Tank =0, s=1,...,d, g—n =0 on 99, (7.36)
00
v =0, n =0 on 0w, (7.37)
where pp and vp are given functions and n = (n1,...,ng) is the outer unit normal to 9. Another possibility is to replace the

adiabatic boundary condition (7.37) by
v=0, §=60p ondQw, (7.38)

with a given function p defined on 9Qyy. Moreover, in the sequel we shall also apply boundary conditions in the discretization
of the convective terms, similarly as in Section 6.3.

Finally, we introduce two relations, which we employ in the DG discretization. If w is the state vector satisfying the outlet
boundary condition (7.36), then, using (7.15) and (7.24), on 9, we have

0
d
Zs 1 ‘s\/lvn«5
d )
> R, (w,Vw)n,| = L = 0. (7.39)
s=1 o0, Zs:l T;:inS

d v ol d 06
Zk,s:l Tsi Tk Us + RePr Zs:l Oz N

Therefore, condition (7.36) represents the so-called “do-nothing” boundary condition.
Moreover, if w is the state vector satisfying the no-slip wall boundary condition (7.37), then using (7.15) we have

0

d %
Zs:l T1sTs

d d
ow
K = ; = KW (w)=—n , 7.40
szl el 89ck o0 i v s;1 il )8xk ) o0 ( !
* v Zs:l TasTs v v
0
where T,}’S are the components of the viscous part of the stress tensor and Kgf/k, s,k =1,...,d, are the matrices that have the
last row equal to zero and the other rows are identical with the rows of K, x, s,k =1,...,d, i.e.,
KW, = (K50))r_,, where (7.41)

TW0d) _ K& fori=1,...,m—1, j=1,...,m, skl d
sk 0 fori=m, j=1,...,m, ’ B

where K; 5, are given by (7.24).

7.2 DG space semidiscretization

In the following, we describe the discretization of the Navier—Stokes equations (7.12) by the DGM. Similarly as in Chapter 6,
we derive the DG space semidiscretization leading to a system of ordinary differential equations.
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7.2.1 Notation

We use the same notation as in Section 6.2.1. It means that we assume that the domain 2 is polygonal (if d = 2) or polyhedral
(if d = 3), Ty, is a triangulation of  and JFj, denotes the set of all faces of elements from T,. Further, Ff, Fi, F? and F}V
denote the set of all interior, inlet, outlet and wall faces, respectively. Moreover, we put ]-";113 = ]—",‘;V UF}: UFy. Each face T’ € F,
is associated with a unit normal nr, which is the outer unit normal to 9Q2 on I € FinB.

Further, over T;, we define the broken Sobolev space of vector-valued functions

H*(Q,Tp) = (H*(Q, 7)™, (7.42)
where
H*(Q,Th) ={v: Q= R; v|g € H(K)VK € Tp,} (7.43)

is the broken Sobolev space of scalar functions introduced by (1.29) (cf. (6.39)-(6.40)). The symbols [u]r and (u) denote the
jump and the mean value of u € H*(Q,7;,) on I' € F{ and [u]r = (u); = ulr for I' € FP. The approximate solution is sought
in the space of piecewise polynomial functions

Shp = (Snp)™, (7.44)

where
Sip = {v € L*(Q);v|x € By(K) VK € Ty} . (7.45)
Finally, let us note that the inviscid Euler fluxes fs, s = 1,...,d, are discretized (including the boundary conditions) with

the same approach as presented in Section 6.2.2. Therefore, we will pay attention here mainly to the discretization of the viscous
terms.

7.2.2 DG space semidiscretization of viscous terms

In order to derive the discrete problem, we assume that there exists an exact solution w € C*([0,T]; H?*(,Ty,)) of the Navier—
Stokes equations (7.12). We multiply (7.12) by a test function ¢ € H?(2,7},), integrate over an element K € Ty, apply Green’s
theorem and sum over all K € T;,. Then we can formally write

0
3 / a—l: .o da + Tnv + Vis = 0, (7.46)
KeT, VK
where
d d D
Inv = Z /BKZfS(w)nswpdS— Z /KZfs(w)~a—de:L‘ (7.47)
KeTy s=1 KeTy s=1
d d B
Vis = — R (w,V s pdS R;(w,Vw) - —d 7.48
= 3 [ e T pds e 5 [ 3Rt V) e a5
KeTy, s=1 KeTy, s=1
represent the inviscid and viscous terms and (nq,...,ng) is the outer unit normal to OK.

The inviscid terms Inv are discretized by the technique presented in Chapter 6, namely, by (6.53). Hence,
Inv = by, (w, @), (7.49)

where by, is the convection form, given by (6.93). Let us mention that now the inviscid mirror boundary condition (6.68) is
replaced by the wviscous mirror boundary condition with the viscous mirror operator

M (w) = (p,—pv, B) (7.50)

replacing (6.67).
Here, we focus on the discretization of the viscous terms Vis. Similarly as in (1.36), we rearrange the first term in (7.48)
according to the type of faces T, i.e.,

d
> /E)KZRS(w,Vw)nS ~pdS (7.51)

KeTh
d d
= Z /Z(Rs('w,Vw)) ns - [p]dS + Z /ZRS(w,Vw)nswpdS.
rerl /T s=1 reFp t s=1
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Let us deal with treating of the boundary conditions on the outlet, where only the ”Neumann” boundary conditions are
prescribed. With the aid of (7.39), we immediately get the relation

d
> /FZRS(w,Vw)nS cpdS =0. (7.52)

rerp

Concerning the boundary conditions on the inlet and fixed walls, the situation is more complicated, because both the Dirichlet
and Neumann boundary conditions are prescribed there. However, using (7.48), (7.51), (7.52) and (7.24), we obtain

d
Vis= 3 / 3 Ry(w, V) - C%pdx (7.53)
K s=1 S

KeTs

d d
0
=X [ Rktw) o n-pas
¢ & ow
- 2 [ R, s,

In the last term of (7.53), we shall use relation (7.40) following from the wall boundary condition (7.37). Hence, we obtain

d
Vis= Y / 3" R, (w, V) - B%‘de (7.54)
K s=1 S

KeTy

d d
15,
-3 /FZZKKk(w)%nS-godS.

Similarly as in Section 1.4, relation (1.44), we have to add to the relation (7.54) a stabilization term, which vanishes for
a smooth solution satisfying the Dirichlet boundary conditions. Analogous to scalar problems, by the formal exchange of
arguments w and ¢ in the second term of (7.54), for the interior faces we obtain the expression

oY /zdj<zdj11< (w)&p>n - [w] S (7.55)
o1 \k=1 Y oy ) .

rer!

with © = —1 or 1 depending on the type of stabilization, i.e., NIPG or SIPG variants. If we do not consider this stabilization,
ie., if © = 0, we get the simple IITPG variant. However, numerical experiments indicate that this choice of stabilization is
not suitable. It is caused by the fact that for ¢ = (p1,0,.. .,O)T, 01 € H*(,Tn), @1 # const, we obtain a nonzero term
(7.55), whereas all terms in (7.54) are equal to zero, because the first rows of R, K ,s,k = 1,...,d, vanish, see (7.15) and
(7.25)—(7.33). This means that we would get nonzero additional terms on the right-hand side of the continuity equation, which
is zero in the continuous problem. Therefore, in [BO99], [HH06a], [HHO6D], the stabilization term

oY /zdj<zd:KT (w)&p>n fw] dS (7.56)
o1 \k=1 T Oy ) .

rer}

was proposed. This avoids the drawback mentioned above. Here, K:’k denotes the matrix transposed to K, 1, s,k =1,...,d.
Obviously, expression (7.56) vanishes for w(t) € (H?(2))™, t € (0,T).
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Moreover, similarly as in Section 1.4, we consider an extra stabilization term for the boundary faces, where at least one
Dirichlet boundary condition is prescribed. Particularly, for the inlet part of the boundary, we add

=D / Z K, 4 (w) -ny(w — wp) dS, (7.57)

rer; s,k=1

where wg is a boundary state. It is defined on the basis of the prescribed density p and the velocity v in condition (7.35) and
the extrapolation of the absolute temperature. This yields the boundary state

1 T .
wglr = (pp, PDVUD 1, - - - 7PDUD,d7pD9§‘L) + §PD|UD|2) , TeF, (7.58)

where 01(}) is the trace of the temperature on I' € ]-',i from the interior of Q, and pp and vp = (vp1,...,vp,q) are the prescribed
density and velocity from (7.35), respectively.

In the case of the flow past an airfoil, when usually the far-field state vector wgc is prescribed, it is possible to define wg
to agree with the inviscid boundary conditions introduced in Section 6.3.2. In this case, we put

wplr = Bw wse), T eF, (7.59)

where the inlet/outlet boundary operator % represents P ZLRP and ZRY given by (6.88), (6.85) and (6.92), respectively,

and w(FL) is the trace of the state vector on I' € ]-',il from the interior of .

The last term in (7.54) is stabilized by the expression
-0 Y / S &Y ()" 22w — wp) dS (7.60)
S, 8$k )

where (KW (w ))T is the transposed matrix to ]KW (W), s,k=1,...,m, and wg is the prescribed boundary state vector. In the
case of the adiabatic boundary condition (7.37), we define the boundary state as

wplr = (p,0,...,0,p" 0", T e A, (7.61)

where p%L) and 91(}) are the traces of the density and temperature on I' € F}V from the interior of €, respectively. In the case
of the boundary condition (7.38), we put

wplr = (pt",0,...,0,p"0p)", TeRY, (7.62)

where péL) is the trace of the density on I' € F}V and 6 is the prescribed temperature on the solid wall QW .

As we see, the boundary state wp depends partly on the unknown solution w and partly on the prescribed Dirichlet boundary
conditions. Hence, we can write

wp = BC(w,up), (7.63)

where up represents the Dirichlet boundary data and BC' represents the definitions of boundary states (7.58), (7.59), (7.61)
and (7.62).
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Analogous to the DG discretization of the model problem in Section 1.4, for w, ¢ € H?(£,T,) we define the viscous form

d
an(wnp) = Y [ (Ks,k(wmz’;’:)g‘z d (7.64)

KeT, 'K s k=1

" Z / Z (Km(wh))T gi:”s : ('wh - ’lUB) ds

We consider © = —1,0,1 and get the NIPG, ITPG and SIPG variant of the viscous form, respectively.
Similarly as in Section 1.4, relations (1.41)—(1.42), in the scheme we include interior and boundary penalty terms, vanishing
for the smooth solution satisfying the boundary conditions. Here we define the form

T = 3 [ olwl -pias+ 3 [ atw, —ws) s

rerf rer;
+ Y / o(wn — wg) - ¥ (@) dS, (7.65)
reFw /T

where, in view of (7.63), wp = BC(wp,, up) is the boundary state vector (given either by (7.58) or (7.59) for I' € F} and either
by (7.61) or (7.62) for T' € F}V). The operator ¥ : R¥*2 — R4+2 is defined as

T

T
V((p) = (0a§027"'ﬂ¢d+1a0) for Y= (@17@27"'a§0d+17@d+2) . (766)

The role of ¥ is to penalize only the components of w, for which the Dirichlet boundary conditions are prescribed on fixed
walls. Let us mention that we penalize all components of w on the inlet. It would also be possible to define a similar operator
¥ for I' € ;. However, numerical experiments show that it is not necessary.

The penalty weight o is chosen as
Cw

= — P .
dam(D)Re’ 1 &Tm (7.67)

U|F

where Re is the Reynolds number of the flow, and Cy > 0 is a suitable constant which guarantees the stability of the method.
Its choice depends on the variant of the DG method used (NIPG, IIPG or SIPG), see Section 7.4.1, where the choice of Cy is
investigated with the aid of numerical experiments. The expression diam(I") can be replaced by the value hr defined in Section
1.6. (Another possibility was used in [HH06a].)

We conclude that if w is a sufficiently regular exact solution of (7.12) satisfying the boundary conditions (7.35) - (7.37),
then the viscous expression Vis from (7.48) can be rewritten in the form

Vis = ap(w, @) + J7 (w,p) Vo € H*(Q,Ts). (7.68)

7.2.3 Semidiscrete problem

Now, we complete the DG space semidiscretization of (7.12). By (-,-) we denote the scalar product in the space (L?(€2))4+2:

(w,p) = /Qw cpdz, w, ¢ e (L3(Q))42 (7.69)
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From (7.46), where we interchange the time derivative and integral in the first term, (7.47) and (7.68) we obtain the identity

S (w(t), ) + bu(aw(0),9) + an(w(t), ) + I (w(t). ) = 0 (7.70)

Vo € H*(Q,Ty) Vt € (0,T),

In the discrete problem, because of the solution of high-speed flow containing discontinuities (shock waves and contact
discontinuities, slightly smeared by the viscosity and heat conduction), we shall also consider the artificial viscosity forms B,
and 7, introduced in (6.183) and (6.184), respectively. Therefore, we set

ch(w, @) =by(w, ) + an(w, ) + J; (w, ) (7.71)
+ B (w, w, ) + v, (w,w,p), w,pc H*(Q,Ty),

with the forms by, an, J7, B, and 7, defined by (6.93), (7.64), (7.65), (6.183) and (6.184), respectively. The expressions in
(7.70)—(7.71) make sense for w,p € H?*(Q,Ty). For each t € [0,T] the approximation of w(t) will be sought in the finite-
dimensional space Sy, C H?(,T) defined by (7.44)—(7.45). Using (7.70), we immediately arrive at the definition of an
approximate solution.

Definition 7.3. We say that a function wy is the space semidiscrete solution of the compressible Navier—Stokes equations
(7.12), if the following conditions are satisfied:

wy, € CH([0,T7; Sp). (7.72a)
d

7 (Wr(t),@n) +en(wa(t), ) =0 Ve, € Sy VE € (0,T), (7.72b)
wy, (0) = w’, (7.72¢)

where I, w® is an Sy,-approzimation of w° from the initial condition (7.34). Usually it is defined as the L*(2)-projection on
the space Shy.

7.3 Time discretization

The space semidiscrete problem (7.72) represents a system of N, ordinary differential equations (ODEs), where Ny, is equal to
the dimension of the space Sp,. This system has to be solved with the aid of a suitable numerical scheme. Often the Runge-Kutta
methods are used. (See e.g., Section ?7.) However, they are conditionally stable and the CFL stability condition represents
a strong restriction of the time step. This is the reason that we will be concerned with using implicit or semi-implicit time
discretizations. We follow the approach developed in Section 6.4.1 and introduce the backward Euler and the BDF discretization
of the ODE system (7.72). Then we develop the solution strategy of the corresponding nonlinear algebraic systems with the aid
of the Newton-like method based on the flux matrix. In Chapter 77, the full space-time discontinuous Galerkin method will be
described and applied to the solution of flows in time-dependent domains and fluid-structure interaction problems.

7.3.1 Time discretization schemes

In what follows, we consider a partition 0 =ty < t; < t3... < t, = T of the time interval [0, T] and set 7, = t),—tp_1, k=1,...,7r.
We use the symbol w¥ for the approximation of wy,(t), k = 1,...,7.
Similarly as in Definitions 6.12 and 6.16, we define the following methods for the time discretization of (7.72).

Definition 7.4. We say that the finite sequence of functions w,’i, k=0,...,r, is an approximate solution of problem (7.12)
obtained by the backward Euler —discontinuous Galerkin method (BE-DGM), if the following conditions are satisfied:

wy € Spp, k=0,1,...,7, (7.73a)
1 _

- (wf —wi ™t e,) +en(wh, @) =0 Ve, € Shp, k=1,...,7, (7.73b)
w) = Tw°, (7.73¢)

where I,w" is the Spy-approzimation of w.

Definition 7.5. We say that the finite sequence of functions 'w,’;’, k=0,...,r, is the approximate solution of (7.12) computed
by the n-step backward difference formula —discontinuous Galerkin method (BDF-DGM) if the following conditions are satisfied:

177



wy € Spp, k=0,1,...,7, (7.74a)

1 n
— (Z an,lwlljl,goh) +en (W) =0 Yo, €8Sy, k=mn,...,1, (7.74b)
w)) = Tw, (7.74c)
wil € Shp, 1 =1,...,n—1, are determined by a suitable q-step method

with ¢ < n or by an explicit Runge—Kutta method — cf. Section ?77. (7.74d)

The BDF coeflicients a,,;, { = 0,...,n, depend on time steps 74—;, { = 0,...,n. They can be derived from the Lagrange
interpolation of pairs [t;_;, 'wZ_l], 1=0,...,n, see e.g. [HNWO0]. Tables 6.2 and 6.3 show their values in the case of constant
and variable time steps for n = 1,2,3. One-step BDF-DGM is identical with BE-DGM defined by (7.73).

Remark 7.6. By virtue of Remark 6.13 and Chapters 1-77, we expect that the BE-DGM has formally the order of accuracy
O(hP+1) in the L>(0,T; L*(Q))-norm as well as in the L*(0, T; H'(Q))-seminorm, provided that the exact solution is sufficiently
reqular. Concerning the stability of the BDF-DGM, we refer to Remark 6.17.

Schemes (7.73) and (7.74) represent nonlinear algebraic systems for each time level ¢, k =1,...,r, which should be solved
by a suitable technique. It will be discussed in the following sections.

7.3.2 Solution strategy
Since the backward Euler method (7.73) is a special case of the BDF discretization (7.74), we deal here only with the latter

case. The nonlinear algebraic system arising from (7.74) for each k = n,...,r will be solved by the Newton-like method based
on the approximation of the Jacobi matrix by the flux matrix, which was developed in Sections 6.4.3-6.4.5.
Again, let Ny, denote the dimension of the piecewise polynomial space Sj, and let By, = {p;(z), ¢ =1,..., Npp} be a basis

of Shp, see Section 6.4.8. Using the isomorphism (6.96) between w¥ € Sj,, and &, € RV»» | we define the vector-valued function
Fy : (RNwo)n x RNwe — RNwp by

N}Lp

n RS _
Fh ({é'kfl}l=1 ;gk) = (Tk (Z a”alwﬁ l790i> + Ch(wilivsoi)> ’ k= Nyoooy T,y (775)
=0

=1

where £, _, € R is the algebraic representation of w}’j*l € Spp for I = 1,...,n. We do not emphasize that Fj, depends
explicitly on 7. Then scheme (7.74) has the following algebraic representation. If §;,_;, I =1,...,n, (k = 1,...,r) are given
vectors, then we want to find £, € RV such that

F({& 1}, :&) = 0. (7.76)

System (7.76) is strongly nonlinear. In order to solve (7.76) with the aid of the Newton-like method based on the flux matrix,
presented in Section 6.4.3, we have to linearize the form ¢y, similarly as the form b, was linearized in (6.137).
To this end, on the basis of (7.64) we introduce the forms

d
8w 0
af (W, wy, @) = Z/ Z ( sk ( 8x:> 52’1 dz (7.77)

KeTy, s,k=1

rer; s, k=1
d w _ 8wh
- Z Z Kek( h)a ns - @, dS
rery s k=1
CIDY Ed: KT, () 220 Y n, - [y ] dS
sk ( h)axk ns - [wy,
rer! 'l s k=1 ’
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+Z/ZK nswhdS

reF} s,k=1

d
X3 @ Tg%ns-whds ,

reryw /T s k=1

d
an(Wn, ) == 0 Y / Z —kng wpdS (7.78)
s,k=

TeF}
+z/z o))" 2P, -y dS

al’k s B )
rerv s,k=1

where wp = BC(wy,, up) is the boundary state vector given either by (7.58) or (7.59) for I' € F} and either by (7.61) or (7.62)
for T € F}V. The above forms are consistent with the form a,:

an(wn,@,) = aj; (W, wh, @) — an(Wh, @) Ywn, @), € Shy. (7.79)

The form aﬁ is linear with respect to the second and third variables.
Furthermore, because of the penalty form J¢ given by (7.65), we introduce the forms

J;Z’ Wh, Q) Z/ olwy] - [py] dS + Z /awh @, dS (7.80)

reri rer;
+ Z /th () dS,
rerlV
HRSESY /a'wB @ dS+ Y /JwB (p,,) dS, (7.81)
reF} rery

where wp = BC(wp,, up) is the boundary state vector corresponding to the function wj,. Obviously,
Jy (wn, @) = JZ’L(wh,‘Ph) — J7 (w3 Y wn, @), € Shp- (7.82)

Finally, let by, b and by, be the forms defined by (6.93), (6.123) and (6.121), respectively. By virtue of (7.71), we define
the forms

ci (W, wi, ) =bf; (Wn, wh, @) + af (Wn, w, ;) + Ty (wn, @3, (7.83)
+,Bh(wh;wh790h)""'Yh(wh;wh,(Ph)a whvwhawh € Shp’
&n(Wn, ¢y) =bn(Wn, 1) + @n(®n, ) + J7 (Wh, 1), ©n, @, € Sip,
which together with (6.137), (7.79) and (7.82) imply consistency:
Ch(wh,(Ph) - c%(whawh7‘ph) h(whasoh) wp, Py, € Shp' (784)

Following directly the approach from Section 6.4.5, we transform problem (7.88b) into a system of algebraic equations.
Instead of (6.138) and (6.139), for k = n,...,r we define the flux matriz Cj;, and the vector dj, by

th
_ o B
Ch (é) = ( ;:0 (‘Pja‘Pi) + Cﬁ(w}u‘Pjv‘»Di)) (7.85)
i,j=1
and
Nhp
di ({€x-1} -, .6) = ( (Z anwy g ) + éh(wh,so») : (7.86)
i=1
respectively. Here @, € Bpp, @ =1,..., Npp, are the basis functions in the space Sy, € € RV and €, ERNw [ =1, ... n,
are the algebraic representations of wj € S}, and w}’j_l € Shp, 1 =1,...,n, respectively. Then problem (7.74) is equivalent to
the nonlinear systems (compare with (6.126))
W({€k1 )y 1€k) = Cu(€)ér — dn({&1} &) =0, k=n,....rm (7.87)
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Let us note that the flux matrix Cj, given by (7.85) has the same block structure as the matrix Cy, given by (6.124). The
sequence of nonlinear algebraic systems (7.87) can be solved by the damped Newton-like iterative process (6.127)—(6.128)
treated in Section 6.4.4.

Concerning the initial guess 52 for the iterative process (6.127)—(6.128), we use either the value known from the previous
time level given by (6.129), i.e, 52 =&,_1, k=1,...,r, or it is possible to apply a higher-order extrapolation from previous
time levels given by (6.141).

Remark 7.7. Similarly as in Remarks 6.15 and 6.19, if we carry out only one Newton iteration (I =0) at each time level, put
A% =1 and use the extrapolation (6.141), then the implicit method (7.74) reduces to the BDF-DG higher-order semi-implicit
method of the viscous compressible flow including the shock capturing, which can be formulated in the following way: We seek
the finite sequence of functions {wk}r_ such that

wh € Spy, k=0,1,...,7, (7.88a)
1 n 3 n 3 ~ n 3
L (St ) ok (S nt-tution) = (S ko)
1=0 =1 1=1
Ve € Shpy, k=mn,...,7, (7.88b)
w) = Tw, (7.88¢)
wﬁl € Shp, L =1,...,n—1, are determined by a suitable q-step method
with ¢ < n or by an explicit Runge—Kutta method — cf. Section ?77. (7.88d)
Here Ipw? is the Spy-approzimation of w°, a, g, 1 =0,...,n, are the BDF coefficients and B, | = 0,...,n, are the coefficients
of the extrapolation (6.141). (See Tables 6.2, 6.3 and 6.4, 6.5, forn=1,2,3.)
Setting
wf = Boawy Tl &= Buibi i (7.89)
=1 =1

problem (7.88) is equivalent to the linear algebraic systems

Fh({fk—l}ln:l ;§k) = Ch(ék)ﬁk - dh({fk—l}ln:l 7§k) =0, k=mn,...,m (7~90)

Finally, because of our considerations in Chapter 7?7, we introduce the notation
dh(w}u wha‘ph) = a’}l;(wha wh,7(ph) - dh(wh,,(Ph)7 (791)
Ag(whm Wy, (ph) = J}?L(wh, Wy, ‘ph) - j}(;(wh7 Soh)a (792)

for the viscous and penalty forms. Then (7.88b), can be replaced by the identity

1 (& _ - o L ,

. <Zan7zw;’i l,¢h> + bi(wf, wi, ¢,) + an(wf, wi, @) + J7 (0F, wf, @) (7.93)
=0

+ﬁh(u_];z’w}liv‘ph) +7h(w57w}liv‘ph) =0, Vo, € Shp’ k=mn,....r

where by, is given by (6.131) and WY is defined in (7.89).

7.4 Numerical examples

This section is devoted to applications of the presented BDF-DG schemes to the numerical solution of several test problems
for the compressible Navier—Stokes equations. First, we consider a low Mach number flow past an adiabatic flat plate, where
the analytical solution of incompressible flow is known. This example shows that the developed method is sufficiently accurate
and stable even for compressible flow at an incompressible limit. Further, we present several flow regimes around the NACA
0012 profile, demonstrate the high accuracy of the DG discretization and mention some possible problems in the simulation of
unsteady flows with the aid of implicit time discretization. Finally, we present a simulation of the viscous shock-vortex interaction
by high-order methods. For the steady-state problems, the backward Euler method is used for the time discretization.

7.4.1 Blasius problem

The so-called Blasius problem represents the well-known test case, when a low-speed laminar flow along an adiabatic flat plate
is considered. In this case the exact analytical solution is known for incompressible flow, see [Bla08]. Since the flow speed is
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Figure 7.1: Blasius problem: computational grids — B1 with 662 elements (top) and B2 with 2648 elements (bottom), the whole
computational domain (left) and their details around the leading edge (right).

low, similarly as in Section 6.7.2, we compare the compressible numerical solution with the exact solution of the corresponding
incompressible flow.

We consider the laminar flow past the adiabatic flat plate {(z1,22); 0 < 21 < 1, 29 = 0} characterized by the freestream
Mach number M = 0.1 and the Reynolds number Re = 10*. The computational domain is shown in Figure 7.1, where two used
triangular grids are plotted together with their details around the leading edge. We prescribe the adiabatic boundary conditions
(7.37) on the flat plate, the outflow boundary conditions (7.36) at {(z1,22); #1 = 1, —1.5 < x5 < 1.5} and the inflow boundary
conditions (7.35) on the rest of the boundary.

We seek the steady-state solution by the time stabilization approach, in which the computational process is carried out for
“t — 00”. As a stopping criterion we use condition (6.171) (adapted to the viscous flow problem) with TOL = 10~°.

In the following, we investigate two items:

e the stability of the method, namely the influence of the value of the constant Cy in (7.67) on the convergence of the
numerical scheme to the stationary solution,

e the accuracy of the method, namely the comparison of the numerical solutions with the exact solution of the incompressible
flow.

Exercise 7.8. Modify the stop criterion (6.171) to the viscous flow problem.

Stability of the method

We compare the NIPG, ITPG, SIPG variants of the DGM using piecewise linear, quadratic and cubic space approximations.
Our aim is to find a suitable value of the constant Cy in (7.67), which ensures the stability of the method and the convergence
to the steady-state solution. First, we carried out computations for the values Cy = 1, 5, 25, 125, 625, 3125 and consequently,
several additional values of Cy were chosen in order to find the limit value of C'y,. These results obtained on the grid B1 are
shown in Table 7.1, where an indication of the convergence of the appropriate variant of the DGM with a given value Cyy is
marked, namely,

e “convergence” (C): the stopping condition (6.171) was achieved after less than 200 time steps,
e “quasiconvergence” (qC): the stopping condition (6.171) was achieved after more than 200 time steps,
e ‘“no-convergence” (NC): the stopping condition (6.171) was not achieved after 500 time steps.

The “quasiconvergence” in fact means that the appropriate value Cyy is just under the limit value ensuring the convergence to
the steady-state solution.
From Table 7.1 we can find that

o NIPG variant converges for any Cy > 1 independently of the degree of polynomial approximation,

e [IPG variant requires higher values of Cy for P, and P; approximations, namely Cy = 5 and Cy = 10 are sufficient,
respectively. On the other hand, P; approximation converges for any Cy > 1.
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NIPG IIPG SIPG
CW P1 P2 P3 P1 P2 Pg Pl P2 P3
1 C C C C NC NC NC NC NC
5 C C C C C NC NC NC NC
10 - - - - C C - - -
25 C C C C C C NC NC NC
100 - - - - - NC - -
125 C C C C C C C NC NC
150 - - - - - - C - -
250 - - - - - - - NC -
300 . . . - . . . qC .
400 - - - - - - - C NC
500 - - - - - - - C NC
625 C C C C C C C C qC
1000 - - - - - - - - C
3125 C C C C C C C C C

Table 7.1: Blasius problem: the convergence (C), non-convergence (NC) or quasiconvergence (qC) of the NIPG, ITPG and SIPG
variants of the DGM for Py, P, and Ps approximations for different values of Cyy (symbol “-” means that the corresponding
case was not tested).

e SIPG variant requires significantly higher values of Cy. We observe that Cy > 125 for P, Cy > 400 for P; and
Cw > 1000 for Ps. This is in a good agreement with theoretical results from [HRS05] carried out for a scalar quasilinear
elliptic problem, where the dependence Cy = cp? with a constant ¢ > 0 is derived (p denotes the degree of the polynomial
approximation).

Figure 7.2 shows the convergence history to the steady-state solution (i.e., the dependence of the steady-state residuum defined
as in (6.170) on the number of time steps) for some interesting cases from Table 7.1.
Accuracy of the method

In order to analyze the accuracy of the method at incompressible limit, we compare the numerical solution of the Blasius problem
for viscous compressible flow with its incompressible analytical solution. To this end, we introduce the dimensionless velocities
in the streamwise direction and in the direction orthogonal to the stream by

vt = “;(’7? and v} = /Re, Ti(”f, (7.94)
respectively, where
n:=+/Re, z—j, Re, := |vw| Re 1, (7.95)

Re is the Reynolds number and v, is the freestream velocity.

Figures 7.3 7.6 show the velocity profiles v and v3 obtained by P;, P> and Ps approximations on the meshes Bl and B2
at xr1 = 0.1, z; = 0.3 and 7 = 0.5 in comparison with the exact solution. We present here results obtained by the NIPG
method with Cy = 25. (The difference between the results obtained by the NIPG, SIPG and IIPG variants are negligible.) We
observe a very accurate capturing of the vi-profile and a reasonable capturing of the v3-profile. An increase of accuracy for an
increasing degree of approximation and a decreasing mesh size is evident.

Moreover, Figure 7.7 shows the comparison of the skin friction coefficient ¢y computed by P;, P» and P3 approximations on
the meshes B1 and B2 with the exact solution given by the Blasius formula. The skin friction coefficient is defined by

2t - (TVn)

cp= 2 7.96
! poc‘voo|2Lref ( )

where po, and v, are the freestream density and velocity, respectively, Lt is the reference length, n and t are the unit normal
and tangential vectors to the wall and TV = (TZ\]/ )?,j:l is the viscous part of the stress tensor. (The components Ti\]( are defined
in (7.8)).

We observe good agreement with the Blasius solution. The FP» and P3; approximations give the same value of cy at the
first element on the flat plate. Similar results were obtained in [BR97a, Fig. 2|, where the improvement of the quality of
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Figure 7.2: Blasius problem: the convergence of the steady-state residuum (6.170) in the logarithmic scale on the number of
time steps for some computations from Table 7.1, (e.g., 'NIPG-625.P3’ means the NIPG variant of the DGM with Cy = 625
and P; approximation).
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the approximate solution on the first cell of the flat plate obtained by increasing the polynomial degree p = 1, 2,3 is almost
negligible. It is caused by the singularity in the solution at the leading edge of the flat plate at the point (x1,x2) = (0,0), which
causes the decrease of the local order of accuracy of the DG method. This phenomenon was numerically verified also for a scalar
nonlinear equation in Chapter 1.

7.4.2 Stationary flow around the NACA 0012 profile

We consider laminar steady-state viscous subsonic flow around the NACA 0012 profile for three different flow regimes charac-
terized by the far-field Mach number M, angle of attack a and the Reynolds number Re:

(C1) My =050, a=2°, Re=500,
(C2) My =050, a=2°, Re=2000,
(C3) My =085 a=2° Re=2000.

We carried out computations on four triangular grids N1—N4. Figure 7.8 shows these grids around the NACA 0012 profile and
their zooms around the trailing and leading edges.

We evaluate the aerodynamic coefficients drag (cp), lift (c) and moment (cpr). The coefficients ¢p and ¢, are defined as
the first and the second components of the vector

1

_ (pI —TV)ndS, (7.97)
%poo|’voo|2chf /Fprof )

where po, and v., are the far-field density and velocity, respectively, L;os is the reference length, I'yof is the profile, p is the
pressure, I is the identity matrix and TV is the viscous part of the stress tensor given by (7.8). Moreover, ¢y is given by

1 %
T lonlPL2, /r(m rt) > (L =T7)m) 4. (7.9%)
where Z,f = (5,0) is the moment reference point. We use the notation = X y = z1y2 — x2y; for © = (z1,32),y = (y1,92) € R

For each flow regime C1, C2 and C3, we carried out computations with polynomial approximation P,, p = 1,3,5, on grids
N1-N4. We apply the stopping criterion (6.174) with tolerance tol = 1074,

Tables 7.2 and 7.4 show the values of the corresponding drag, lift and moment coefficients for each computation. These
tables show also the number Nj, of elements of each mesh and corresponding number of degrees of freedom Nj,. We observe
that the high degree polynomial approximation gives a sufficiently accurate solution even on coarse grids. On the other hand,
P, polynomial approximation is not sufficiently accurate even for the finest mesh.

Further, Figures 7.9—7.14 show Mach number isolines and the distribution of the skin friction coefficient (7.96) obtained for
each flow regime on the meshes N1 and N4.

The presented numerical results of examples C1, C2 and C3 show that the high-order DG method is suitable for the
numerical solution of the compressible viscous flow. With the aid of the P polynomial approximation we obtain the aerodynamic
coefficients with sufficient accuracy even on the coarsest grid.

Finally, we demonstrate the stability of the time discretization schemes with respect to the size of the time steps. According
to (6.150), we define the value

Tk

minger, (K|~ maxrear o(P(wf|r))T)’

CFLy, = k=0,1,...,r (7.99)

which measures how many times the time step is larger in comparison to the time step for an explicit time discretization. Here
o(P(wk|r)) denotes the spectral radius of the matrix P(wf|r) defined by (7.23). Figure 7.15 shows the dependence of CFLj, on
the parameter k for the flow regime C1, C2 and C3 using P; polynomial approximation on grid N4. We observe that very large
values CFLj are attained, and hence the BDF-DGFE method is practically unconditionally stable.

7.4.3 Unsteady flow

We consider a transonic flow around the NACA 0012 profile with the far-field Mach number M., = 0.85, angle of attack o@ = 0°
and the Reynolds number Re = 10000. In this case the flow is unsteady with a periodic propagation of vortices behind the
profile, see [Mit98].

In the numerical simulation of nonstationary processes, it is necessary to use a sufficiently small time step in order to
guarantee accuracy with respect to time. In our computations the time step was chosen adaptively with the aid of the adaptive
algorithm presented in Section 6.4.6 with the tolerance w = 1072 in (6.148).

We applied the 3-step BDF-DGM with the P, polynomial approximation on the mesh from Figure 7.16. The computation
was carried out for the dimensionless time ¢ € (0,90). Figure 7.17 shows the dependence of the lift, drag and moment coefficients
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Figure 7.3: Blasius problem: mesh B1, velocity profiles v} = vi(n) for P, P, and Ps approximations at 1 = 0.1, z; = 0.3 and
x1 = 0.5 in comparison with the exact solution.

06
04
0.2 -
// Pg, x4=0.1 ——
0K exact ------- i
TR R R TR R R S [T
0o 1 2 3 4 5 & 0 1 2 3 4 5 & 0 1 2 3 4 5 6

Figure 7.4: Blasius problem: mesh B1, velocity profiles v = v3(n) for Py, P, and P3 approximations at x; = 0.1, 1 = 0.3 and
x1 = 0.5 in comparison with the exact solution.
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Figure 7.5: Blasius problem: mesh B2, velocity profiles v} = vi(n) for P, P, and Ps approximations at 1 = 0.1, z; = 0.3 and

x1 = 0.5 in comparison with the exact solution.
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Figure 7.6: Blasius problem: mesh B2, velocity profiles v = v3(n) for Py, P, and P3 approximations at x; = 0.1, 1 = 0.3 and

x1 = 0.5 in comparison with the exact solution.
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D Np Nhp )] cr 9

1 782 9384 1.7416E-01 1.0260E-01 -3.3278E-03
1 1442 17304 1.7632E-01 1.1225E-01 -2.8440E-03
1 2350 28200 1.7767E-01 1.1291E-01 -2.8089E-03
1 3681 44172 1.7775E-01 1.1338E-01 -2.8734E-03
3 782 31280 1.8086E-01 1.1283E-01 -3.1439E-03
3 1442 57680 1.8093E-01 1.1284E-01 -3.1186E-03
3 2350 94000 1.8080E-01 1.1322E-01 -3.0036E-03
3 3681 147240 1.8085E-01 1.1302E-01 -3.0590E-03
5 782 65688 1.8077E-01 1.1269E-01 -3.1054E-03
5 1442 121128 1.8085E-01 1.1299E-01 -3.0896E-03
5 2350 197400 1.8087E-01 1.1310E-01 -3.0601E-03
5 3681 309204 1.8088E-01 1.1304E-01 -3.0719E-03

Table 7.2: NACA 0012 (M, = 0.5, @ = 0°, Re = 500): the values of the drag, lift and moment coefficient obtained by the
BDF-DGM for P,, p =1, 3,5, polynomial approximations on grids N1-N4.

D Np Ny J)) cr 9

1 782 9384 8.5405E-02 9.0263E-02 -6.7673E-03
1 1442 17304 8.5231E-02 8.2415E-02 -9.7498E-03
1 2350 28200 8.6387E-02 8.0999E-02 -1.0283E-02
1 3681 44172 8.6219E-02 8.2633E-02 -1.0149E-02
3 782 31280 8.7319E-02 8.5077E-02 -1.0116E-02
3 1442 57680 8.8193E-02 8.4048E-02 -1.0124E-02
3 2350 94000 8.8148E-02 8.4091E-02 -1.0079E-02
3 3681 147240 8.8264E-02 8.4082E-02 -1.0094E-02
5 782 65688 8.8124E-02 8.4008E-02 -1.0048E-02
5 1442 121128 8.8281E-02 8.4201E-02 -1.0091E-02
5 2350 197400 8.8283E-02 8.4290E-02 -1.0075E-02
5 3681 309204 8.8284E-02 8.4317E-02 -1.0068E-02

Table 7.3: NACA 0012 (Mo = 0.5, « = 0°, Re = 2000): the values of the drag,
BDF-DGM for P,, p =1, 3,5, polynomial approximations on grids N1-N4.

liftt and moment coefficient obtained by the

D Np Ny F)) cr 9

1 782 9384 1.1610E-01 4.4091E-02 -1.4702E-02
1 1442 17304 1.1444E-01 3.8107E-02 -1.5934E-02
1 2350 28200 1.1605E-01 3.4837E-02 -1.6923E-02
1 3681 44172 1.1566E-01 3.3338E-02 -1.7027E-02
3 782 31280 1.1809E-01 3.1726E-02 -1.7463E-02
3 1442 57680 1.1892E-01 3.1212E-02 -1.7163E-02
3 2350 94000 1.1887E-01 3.0834E-02 -1.7164E-02
3 3681 147240 1.1898E-01 3.0918E-02 -1.7142E-02
5 782 65688 1.1885E-01 3.1034E-02 -1.7048E-02
5 1442 121128 1.1899E-01 3.1056E-02 -1.7128E-02
5 2350 197400 1.1899E-01 3.0971E-02 -1.7154E-02
5 3681 309204 1.1899E-01 3.0981E-02 -1.7148E-02

Table 7.4: NACA 0012 (M, = 0.85, « = 0°, Re = 2000): the values of the drag, lift and moment coefficient obtained by the
BDF-DGM for P,, p =1, 3,5, polynomial approximations on grids N1—-N4.
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Figure 7.9: NACA 0012 (M. = 0.5, @« = 2°, Re = 500): Mach number isolines for P;, P; and Ps polynomial approximations
on grids N1 and N4.
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Figure 7.10: NACA 0012 (M« = 0.5, @ = 2°, Re = 500): distribution of the skin friction coefficient for Py, P3 and Ps polynomial
approximations on grids N1 and N4.
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Figure 7.11: NACA 0012 (M, = 0.5, a = 2°, Re = 2000): Mach number isolines for P;, P; and Ps polynomial approximations

on grids N1 and N4.
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Figure 7.12: NACA 0012 (M., = 0.5, a = 2°, Re = 2000): distribution of the skin friction coeflicient for P;, P3 and P
polynomial approximations on grids N1 and N4.
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Figure 7.13: NACA 0012 (M.
on grids N1 and N4.

Figure 7.14: NACA 0012 (
polynomial approximations on grids N1 and N4.

0o = 0.85, a = 2°, Re = 2000): Mach number isolines for Py, P; and Ps polynomial approximations

My = 0.85, a = 2°, Re = 2000):
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on time ¢t € (80,90). We observe periodic oscillations of ¢, and cp; with period At ~ 0.7. Figure 7.18 shows the Mach number
isolines at time instants ¢; = 89.3 + iAt/7, ¢ = 1,2,...7, demonstrating the periodic propagation of vortices behind the profile.
These results are in a good agreement with results from [Dol08b] and [Mit98].

This example demonstrates that the presented BDF-DGM is able to resolve steady as well as unsteady flow without any
modification of the scheme. It is very important in the case, when it is not a priori known, whether the considered flow is steady
or unsteady.

7.4.4 Steady vs. unsteady flow

The numerical examples presented in the previous sections lead us to the conclusion that the presented BDF-DGM is robust
with respect to the magnitude of the Mach number and is practically unconditionally stable. This means that large time steps
can be used, cf. Figure 7.15. However, there is a danger that the use of too long time steps can lead to qualitatively different
results.

As an example we consider a laminar viscous subsonic flow around the NACA 0012 profile with the far-field Mach number
My = 0.5, angle of attack « = 2° and the Reynolds number Re = 5000. This flow is close to a limit between the steady
and unsteady flow regimes. In [Dol08b] and [DHH11], we presented steady-state solutions for this flow regime computed using
several degrees of polynomial approximation and several grids.

Here we present computations carried out by the 3-step BDF-DGM with P3 and P, polynomial approximation, applied on
an unstructured mesh shown in Figure 7.19. The time steps were chosen adaptively with the aid of the adaptive algorithm
presented in Section 6.4.6 with two different tolerances w = 1 and w = 10~ in (6.148). This means that in the former case we
do not take care of the accuracy with respect to time. In the latter case, the problem was solved with a high accuracy with
respect to time. Of course, the computation needs much longer CPU time.

Figure 7.20 shows the convergence of the steady-state residuum (cf. the criterion (6.171) adapted to the viscous flow problem)
and the corresponding value CFLy (cf. (7.99)) for both settings w = 1 and w = 10~%.

It can be seen that for w = 1 a steady-state solution is obtained. On the other hand, for w = 10~* the resolution in time is
much more accurate and an unsteady solution is obtained. Moreover, Figure 7.21 shows the dependence of the lift coefficient ¢y,
on the dimensionless time for P3 and P; polynomial approximations with w = 10~* in (6.148). The constant value cr-’steady’
was obtained with the same method but with w = 1. Finally, Figure 7.22 shows Mach number isolines for P; and P, polynomial
approximations and for w =1 and w = 107

These experiments indicate that an insufficiently accurate resolution with respect to time can lead to different flow regimes
(steady vs. unsteady). These results are in agreement with [KBD¥10], where this example was solved by several research groups.
They achieved mostly the steady state solution using steady-state solvers or implicit time discretizations with large time steps.
Ounly a sufficiently accurate (explicit) time discretization (carried out at the University of Stuttgart) gave the unsteady flow
regime, see [KBDT10, Chapter 5].

7.4.5 Viscous shock-vortex interaction

This example represents a challenging unsteady viscous flow simulation. Similarly as in [DT04], [Fiir01] and [TGS00], we
consider the viscous interaction of a plane weak shock wave with a single isentropic vortex. During the interaction, acoustic
waves are produced, and we investigate the ability of the numerical scheme to capture these waves. The computational domain
is © = (0,2) x (0,2) with the periodic extension in the xo-direction. A stationary plane shock wave is located at z; = 1. The
prescribed pressure jump through the shock is pgr — pr = 0.4, where py and pr are the pressure values from the left and right
of the shock wave, respectively, corresponding to the inlet (left) Mach number My, = 1.1588. The reference density and velocity
are those of the free uniform flow at infinity. In particular, we define the initial density, x1-component of velocity and pressure
by

pr =1, up = My"? pr =1, pr=pKi, up =urK;"', pr=piKo, (7.100)
where
1 M? 2 -1
K=t L g, = M2 -T2 (7.101)
2 1+ 5 Mm? T+1 2

Here, the subscripts 1 and p denote the quantities at * < 1 and x > 1, respectively, v = 1.4 is the Poisson constant. The
Reynolds number is 2000. An isolated isentropic vortex centered at (0.5,1) is added to the basic flow. The angular velocity in
the vortex is given by

vg = crrexp(—cor?), 1 =ue/re, co=1.2/2, (7.102)
r=((x; —0.5)% — (z2 — 1)%)1/2,

where we set . = 0.075 and u,. = 0.5. Computations are stopped at the dimensionless time 7" = 0.7.
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Figure 7.16: NACA 0012 , M., = 0.85, a = 0° and Re = 10000: triangular grid.
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Figure 7.17: NACA 0012 , M, = 0.85, a = 0° and Re = 10000: dependence of the drag coefficient cp, lift coefficient c¢;, and
moment coefficient ¢p; on the dimensionless time ¢ € (80, 90).
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Figure 7.18: NACA 0012, M., = 0.85, a = 0° and Re = 10000: Mach number isolines at the time instants ¢; = 89.3 4+ iAt/7,
i=1,...,7, in one period.

Figure 7.19: NACA 0012, M, = 0.5, a = 0°and Re = 5000: computational grid, around the profile (left) and a detail at the
leading edge (right).
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Figure 7.21: NACA 0012, M = 0.5, « = 0°and Re = 5000: P; (top) and P, (bottom) approximation, time evolution of the
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Figure 7.22: NACA 0012, M, = 0.5, a = 0°and Re = 5000 for P3 and P, polynomial approximations and for w = 1 and
w = 10~*: Mach number isolines.
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Figure 7.23: Viscous shock-vortex interaction: the used grid (left) and pressure isolines (right) at ¢ = 0, the total view (top),
its details near the vortex (center) and the shock wave (bottom).

We solved this problem with the aid of the 3-steps BDF-DGM (7.74) with P, polynomial approximation in space. The
computational grid with 3072 triangles was a priori refined in the vicinity of the stationary shock wave, see Figure 7.23. This
figure shows also the initial setting of the shock wave and the isentropic vortex with their details.

Figures 7.24 and 7.25 show the results of the simulation of viscous shock-vortex interaction, namely, the isolines of the
pressure and the pressure distribution along zo = 1 at several time instants. We observe a capturing of the shock-vortex
interaction with the appearance of incident and reflected acoustic waves. These results are in agreement with results presented
in [DT04], [Fiir01] and [TGS00]. Hence, we can conclude that the DGM is able to capture such complicated physical phenomena
as shock-vortex interaction.
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Figure 7.24: Viscous shock-vortex interaction: pressure isolines at ¢ = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7.
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