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0.1 Some mathematical concepts

In this section for the reader’s convenience, we recall some basic tools of mathematical analysis, which are frequently used in
the book. We assume that the reader is familiar with mathematical analysis, including the theory of the Lebesgue integral, and
elements of functional analysis, see, for example, [Rud87].

If X is a set or space and n > 0 is an integer, then the symbol Xn = (X)n denotes the Cartesian product X × · · · × X
(n-times). This means that

Xn = (X)n = {(x1, . . . , xn); x1, . . . , xn ∈ X}. (1)

By R and N we denote the set of all real numbers and the set of all positive integers, respectively. In the Euclidean space
Rd (d ∈ N) we use a Cartesian coordinate system with axes denoted by x1, . . . , xd. Points from Rd will usually be denoted by

x = (x1, . . . , xd), y = (y1, . . . , yd), etc. By | · | we denote the Euclidean norm in Rd. Thus, |x| =
(∑d

i=1 |xi|2
)1/2

.

Now we introduce some function spaces and their properties, which will be used in the sequel. For deeper results and proofs,
we refer the reader to the monographs [AF03], [KJk77], [Žen90].

0.1.1 Spaces of continuous functions

Let us assume that d ∈ N and M ⊂ Rd is a domain (i.e., an open connected set). By ∂M and M we denote its boundary
and closure, respectively. By C(M) (or C0(M)) we denote the linear space of all functions continuous in M . For k ∈ N and a
domain M ⊂ Rd, Ck(M) denotes the linear space of all functions which have continuous partial derivatives up to the order k
in M . The space Ck(M) is formed by all functions from Ck(M) whose all derivatives up to the order k can be continuously
extended onto M .

Let M ⊂ Rd. A function f : M → R is µ-Hölder-continuous with µ ∈ (0, 1], if there exists a constant L such that

|f(x)− f(y)| ≤ L|x− y|µ ∀x, y ∈M. (2)

If µ = 1, we speak of a Lipschitz-continuous (or simply Lipschitz) function. If M ⊂ Rd is a domain, then Ck,µ(M) denotes the
set of all functions whose derivatives of order k are µ-Hölder-continuous in M .

Let us put

C∞(M) =

∞⋂
k=1

Ck(M) and C∞(M) =

∞⋂
k=1

Ck(M). (3)

By C∞0 (M) we denote the linear space of all functions v ∈ C∞(M), whose support

supp v = {x ∈M ; v(x) 6= 0} (4)

is a compact (i.e. bounded and closed) subset of the domain M .

If αi ≥ 0, i = 1, . . . , d, are integers, then we call α = (α1, . . . , αd) a multi-index, and define its length as |α| = ∑d
i=1 αi. By

Dα we denote the multidimensional derivative of order |α|:

Dα =
∂|α|

∂xα1
1 . . . ∂xαdd

. (5)

The linear space Ck(M), k = 0, 1, . . ., equipped with the norm

‖u‖Ck(M) =
∑
|α|≤k

sup
x∈M
|Dαu(x)| (6)

is a Banach space. This space is separable but not reflexive.
The linear space Ck,µ(M), where k = 0, 1, . . ., and µ ∈ (0, 1], equipped with the norm

‖u‖Ck,µ(M) = ‖u‖Ck(M) +
∑
|α|=k

sup
x,y∈M,x6=y

|(Dαu)(x)− (Dαu)(y)|
|x− y|µ (7)

is a Banach space. It is called the Hölder space. This space is neither separable nor reflexive.
Finally, the symbols ∇ and ∇· mean the gradient and divergence operators, respectively, i.e.,

∇u = grad u =

(
∂u

∂x1
, . . . ,

∂u

∂xd

)T

∈ Rd for u : M → R (8)
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and

∇ · u = div u =

d∑
i=1

∂ui
∂xi
∈ R, for u = (u1, . . . , ud) : M → Rd, (9)

where the superscript
T

denotes the transposed vector.
The symbols Dα, ∇ and ∇· are also used for the distributional derivatives; see Section 0.1.3.

0.1.2 Lebesgue spaces

First we recall some standard notation and results from the Lebesgue theory of measure and integral, see, e.g., [Rud87]. Let
M ⊂ Rd, d = 1, 2, . . . , be a Lebesgue-measurable set. Its d-dimensional Lebesgue measure will be denoted by meas(M) or for
short |M |. We recall that two measurable functions are equivalent if they differ at most on a set of zero Lebesgue measure.
Then we say that these functions are equal almost everywhere (a.e.) in M .

For s ∈ [1,∞) the Lebesgue space Ls(M) is the linear space of all functions measurable on M (more precisely, of classes of
equivalent measurable functions) such that ∫

M

|u|s dx < +∞. (10)

The space Ls(M) is equipped with the norm

‖u‖Ls(M) =

(∫
M

|u|s dx

)1/s

. (11)

In case that s =∞, the space L∞(M) consists of such measurable functions on M for which the norm

‖u‖L∞(M) = ess sup
M
|u| = inf

{
sup

x∈M\Z
|u(x)|;Z ⊂M,meas(Z) = 0

}
(12)

is finite. The space Ls(M) is a Banach space for 1 ≤ s ≤ ∞. Moreover, it is separable if and only if 1 ≤ s <∞ and reflexive if
and only if 1 < s <∞. The space L2(M) is a Hilbert space with the scalar product

(u, v)L2(M) =

∫
M

uv dx. (13)

The Cauchy inequality holds in L2(M):

|(u, v)L2(M)| ≤ ‖u‖L2(M)‖v‖L2(M), u, v ∈ L2(M). (14)

0.1.3 Sobolev spaces

Let M ⊂ Rd, d = 1, 2, . . . , be a domain, let k ≥ 0 be an arbitrary integer and 1 ≤ s ≤ ∞. We define the Sobolev space W k,s(M)
as the space of all functions from the space Ls(M) whose distributional derivatives Dαu, up to the order k, also belong to
Ls(M), i.e.,

W k,s(M) = {u ∈ Ls(M);Dαu ∈ Ls(M) ∀α, |α| ≤ k} , (15)

(See e.g. [KJk77], [Fei93], [Leo09].)
The Sobolev space is equipped with the norm

‖u‖Wk,s(M) =

∑
|α|≤k

‖Dαu‖sLs(M)

1/s

for 1 ≤ s <∞, (16)

‖u‖Wk,∞(M) = max
|α|≤k

{
‖Dαu‖L∞(M)

}
for s =∞,

and the seminorm

|u|Wk,s(M) =

∑
|α|=k

‖Dαu‖sLs(M)

1/s

for 1 ≤ s <∞, (17)

|u|Wk,∞(M) = max
|α|=k

{
‖Dαu‖L∞(M)

}
for s =∞.
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For 1 ≤ s ≤ ∞, the space W k,s(M) is a Banach space; it is separable if and only if 1 ≤ s < ∞ and reflexive if and only if
1 < s <∞. For s = 2, the space W k,2(M) is a Hilbert space and we denote it by Hk(M). Moreover, we put

‖u‖Hk(M) = ‖u‖Wk,2(M) and |u|Hk(M) = |u|Wk,2(M). (18)

If k = 0, then we set W 0,s(M) = Ls(M), H0(M) = L2(M) and

| · |W 0,s(M) = ‖ · ‖W 0,s(M) = ‖ · ‖Ls(M). (19)

For vector-valued functions v = (v1, . . . , vn) ∈ (Hs(Ω))n, we put

‖v‖Hk(M) =
( n∑
i=1

‖vi‖2Hk(M)

)1/2

. (20)

Moreover, with respect to (8), (17), (18) and (20), we write

‖∇v‖L2(M) = |v|H1(M), v ∈ H1(M), |∇v|H1(M) = |v|H2(M), v ∈ H2(M). (21)

0.1.4 Theorems on traces and embeddings

In the modern theory of partial differential equations the concept of a bounded domain M ⊂ Rd with Lipschitz boundary ∂M
plays an important role. For the definition of a Lipschitz boundary, see, e.g., [KJk77], [Fei93], [Žen90] or Section 2.3.2. It is
possible to say that such a boundary ∂M is formed by a finite number of parts expressed as graphs of Lipschitz-continuous
functions in local Cartesian coordinate systems. On this boundary, the (d − 1)-dimensional Lebesgue measure measd−1 and
integral are defined and also an outer unit normal vector exists at a.e. point x ∈ ∂M . Moreover, Lebesgue spaces Ls(∂M) are
defined over ∂M .

Theorem 0.1 (Theorem on traces). Let 1 ≤ s ≤ ∞ and let M ⊂ Rd be a domain with Lipschitz boundary. Then there exists a
uniquely determined continuous linear mapping γM0 : W 1,s(M)→ Ls(∂M) such that

γM0 (u) = u|∂M for all u ∈ C∞(M). (22)

Moreover, if 1 ≥ s ≤ ∞, then Green’s formula∫
M

(
u
∂v

∂xi
+ v

∂u

∂xi

)
dx =

∫
∂M

γM0 (u)γM0 (v)ni dS, (23)

u ∈W 1,s(M), v ∈W 1,s′(M), i = 1, . . . , d,

holds, where s′ = s/(s− 1) and n = (n1, . . . , nd) denotes the outer unit normal to ∂M .

The function γM0 (u) ∈ Ls(∂M) is called the trace of the function u ∈ W 1,s(M) on the boundary ∂M . For simplicity, when
there is no confusion, the notation u|∂M = γM0 (u) is used not only for u ∈ C∞(M) but also for u ∈ W 1,s(M). The continuity
of the mapping γM0 is equivalent to the existence of a constant c > 0 such that

‖u|∂M‖Ls(∂M) = ‖γM0 (u)‖Ls(∂M) ≤ c‖u‖W 1,s(M), u ∈W 1,s(M). (24)

Let k ≥ 1 be an integer and 1 ≤ s < ∞. We define the Sobolev space W k,s
0 (M) as the closure of the space C∞0 (M) in the

topology of the space W k,s(M). If M is a domain with Lipschitz boundary, then W 1,s
0 (M) = {v ∈W 1,s(M); v|∂M = 0}.

The space of traces on ∂Ω of all functions u ∈ H1(Ω) is denoted by H1/2(∂Ω). Hence, we can write

H1/2(∂Ω) = {γΩ
0 u;u ∈ H1(Ω)}. (25)

If k ∈ N, we define the space

Hk−1/2(∂Ω) = {γΩ
0 u;u ∈ Hk(Ω)}. (26)

We speak of Sobolev–Slobodetskii spaces on ∂Ω. (See e. g., [FFS03, Section 1.3.3].)
Note that the symbols c and C will often denote a positive generic constant, attaining, in general, different values in different

places.
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Embedding theorems

Definition 0.2. Let X, Y be Banach spaces. We say that X is continuously embedded into Y (we write X ↪→ Y ), if X is a
subspace of Y and the identity operator I : X → Y defined by Ix = x for all x ∈ X is continuous, i.e., there exists C > 0 such
that

‖Iv‖Y ≤ C‖v‖X ∀v ∈ X.

We say that X is compactly embedded into Y (X ↪→↪→ Y ) if the embedding operator I is compact.

Theorem 0.3. The following properties are valid:
(i) Let k ≥ 0, 1 ≤ s ≤ ∞ and let M ⊂ Rd be a bounded domain with Lipschitz boundary. Then

W k,s(M) ↪→ Lq(M) where
1

q
=

1

s
− k

d
, if k <

d

s
, (27)

W k,s(M) ↪→ Lq(M) for all q ∈ [1,∞), if k =
d

s
,

W k,s(M) ↪→ C0,k−d/s(M), if
d

s
< k <

d

s
+ 1,

W k,s(M) ↪→ C0,α(M) for all α ∈ (0, 1), if k =
d

s
+ 1,

W k,s(M) ↪→ C0,1(M), if k >
d

s
+ 1.

(ii) Let k > 0, 1 ≤ s ≤ ∞. Then

W k,s(M) ↪→↪→ Lq(M) for all q ∈ [1, s∗) with
1

s∗
=

1

s
− k

d
, if k <

d

s
,

W k,s(M) ↪→↪→ Lq(M) for all q ∈ [1,∞), if k =
d

s
,

W k,s(M) ↪→↪→ C(M), if k >
d

s
.

(We set 1/∞ := 0.)

(iii) Let 1 ≤ s <∞. Then C∞(M) is dense in W k,s(M) and C∞0 (M) is dense in W k,s
0 (M).

d) By [Leo09, Exercise 1146, page 342], if the domain M is bounded, then the space W 1,∞(M) can be identified with the space
C0,1(M).

Remark 0.4. In some cases, it is suitable to use the concept of the domain with boundary having the cone property. This is
more general than the concept of the Lipschitz boundary, but the above definitions and results remain valid. See [AF03].

0.1.5 Bochner spaces

In the investigation of nonstationary problems we shall work with functions which depend on time and have values in a Banach
space. Such functions are elements of the so-called Bochner spaces. If u(x, t) is a function of the space variable x and time
t, then it is sometimes suitable to separate these variables and consider u as a function u(t) = u(·, t), which, for each t under
consideration, attains a value u(t) that is a function of x and belongs to a suitable space of functions depending on x. This
means that u(t) represents the mapping “x→ (u(t)) (x) = u(x, t)”.

Let a, b ∈ R, a < b, and let X be a Banach space with norm ‖·‖. By a function defined in the interval [a, b] with its values
in the space X we understand any mapping u : [a, b]→ X.

We say that a function u : [a, b]→ X is continuous at a point t0 ∈ [a, b], if

lim
t→t0
t∈[a,b]

‖u(t)− u(t0)‖ = 0. (28)

By the symbol C([a, b]; X) we denote the space of all functions continuous in the interval [a, b] (i.e., continuous at each t ∈ [a, b])
with values in X). The space C([a, b]; X) equipped with the norm

‖u‖C([a,b];X) = max
t∈[a,b]

‖u(t)‖ (29)

is a Banach space.
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For s ∈ [1,∞], we denote by Ls(a, b;X) the space of (classes of equivalent) strongly measurable functions u : (a, b) → X
such that

‖u‖Ls(a,b;X) =

[∫ b

a

‖u(t)‖sX dt

]1/s

<∞, if 1 ≤ s <∞, (30)

and

‖u‖L∞(a,b;X) = ess sup
t∈(a,b)

‖u(t)‖X (31)

= inf

{
sup

t∈(a,b)\N
‖u(t)‖X ;N ⊂ (a, b),meas(N) = 0

}
< +∞, if s =∞.

We speak of Bochner spaces. It can be proved that Ls(a, b;X) is a Banach space. (The definition of a strongly measurable
function u : (a, b)→ X can be found in [KJk77] or [Fei93, Chapter 8].)

If the space X is reflexive, so is Ls(a, b;X) for s ∈ (1,∞). Let 1 ≤ s <∞. Then the dual of Ls(a, b;X) is Lq(a, b;X∗), where
1/s+ 1/q = 1 and X∗ is the dual of X (for s = 1 we set q =∞). The duality between Lq(a, b;X∗) and Ls(a, b;X) becomes

〈f, v〉 =

∫ b

a

〈f(t), v(t)〉X∗,X dt, f ∈ Lq(a, b;X∗), v ∈ Ls(a, b;X). (32)

The symbol 〈f(t), v(t)〉X∗,X denotes the value of the functional f(t) ∈ X∗ at v(t) ∈ X.
If X is a separable Banach space, then Ls(a, b;X) is also separable, provided s ∈ [1,∞). (See, for example, [Edw65, Section

8.18.1].)
Let | · |X denote a seminorm in the space X. Then a seminorm in Ls(a, b;X) is defined as

|f |Ls(a,b;X) =

(∫ b

a

|f(t)|sX dt

)1/s

for 1 ≤ s < +∞, (33)

and

|f |L∞(a,b;X) = ess supt∈(a,b) |f(t)|X . (34)

Similarly we define Sobolev spaces of functions with values in X:

W k,s(a, b;X) =
{
f ∈ Ls(a, b;X);

djf

dtj
∈ Ls(a, b;X), j = 1, . . . , k

}
, (35)

where k ∈ N, s ∈ [1,∞] and djf
dtj are distributional derivatives. The norm of f ∈W k,s(a, b;X) is defined by

‖f‖Wk,s(a,b;X) =

 k∑
j=0

∥∥∥djf

dtj

∥∥∥s
Ls(a,b;X)

1/s

(36)

for s ∈ [1,∞) and

‖f‖Wk,∞(a,b;X) = maxj=0,...k

∥∥∥djf

dtj

∥∥∥
L∞(a,b;X)

. (37)

If s = 2, we often use the notation Hk(a, b;X) = W k,2(a, b;X).
Let | · |X denote a seminorm in the space X. Then a seminorm in W k,s(a, b;X) is defined as

|f |Wk,s(a,b;X) =

(∫ b

a

∣∣∣∣dkfdtk
(t)

∣∣∣∣s
X

dt

)1/s

for 1 ≤ s < +∞, (38)

and

|f |Wk,∞(a,b;X) = ess supt∈(a,b)

∣∣∣∣dkfdtk
(t)

∣∣∣∣
X

. (39)
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For example,

|f |Hk(a,b;H1(M)) =

(∫ b

a

∣∣∣∣dkfdtk
(t)

∣∣∣∣2
H1(M)

dt

)1/2

. (40)

We also define spaces of continuously differentiable functions on an interval I = [a, b] with values in X:

Ck(I;X) =
{
f ∈ C(I;X);

djf

dtj
∈ C(I;X) for all j = 1, . . . , k

}
. (41)

The norm of f ∈ Ck(I;X), k = 0, 1, . . . , is defined by

‖f‖Ck(I;X) = max
{∥∥∥djf

dtj

∥∥∥
C(I;X)

; j = 0, . . . , k
}
. (42)

These spaces are nonreflexive Banach spaces. They are separable if X is separable.
If X is a Banach space with norm ‖ · ‖X , then by X∗ we denote its dual space (simply dual), i.e., the space of all continuous

linear functionals on X. The space X∗ is also a Banach space with norm

‖f‖X∗ = supv∈X
|f(v)|
‖v‖X

∀f ∈ X∗. (43)

Finally, if p ≥ 0 is an integer and ω ⊂ Rn, then by Pp(ω) we denote the space of the restrictions on ω of all polynomials of
degree ≤ p depending on x ∈ Rn. We simply speak of polynomials of degree ≤ p on ω.

For nonstationary problems, we shall use spaces of polynomial functions with respect to time. Let −∞ < a < b <∞. If X
is a Banach space, then we put

Pq(a, b;X) =

{
v ∈ C(a, b;X); v(t) =

q∑
i=0

tiϕi, ϕi ∈ X, i = 0, . . . , q, t ∈ [a, b]

}
. (44)

0.1.6 Useful theorems and inequalities

Lemma 0.5 (Young’s inequality). If s, q ∈ (1,+∞), 1/s+ 1/q = 1 and a, b ≥ 0, then

ab ≤ as

s
+
bq

q
. (45)

In particular, if s = q = 2 and λ > 0, then

ab ≤ 1

2λ
a2 +

λ

2
b2. (46)

Proof. See, e.g., [FHH+11, Lemma 1.11.]

Lemma 0.6 (Lax–Milgram). Let V be a Hilbert space with norm ‖ · ‖, let f : V → R be a continuous linear functional on V ,
and let a : V × V → R be a bilinear form on V × V that is coercive, i.e., there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2 ∀u ∈ V, (47)

and continuous (also called bounded) and, hence, there exists a constant CB > 0 such that

|a(u, v)| ≤ CB‖u‖‖v‖ ∀u, v ∈ V. (48)

Then there exists a unique solution u0 ∈ V of the problem

a(u0, v) = f(v) ∀v ∈ V. (49)

Proof. See [Cia79, Theorem 1.1.3].

Corollary 0.7. Let VN be a finite-dimensional Hilbert space with norm ‖ · ‖, let f : VN → R be a linear functional on VN , and
let a : VN × VN → R be a bilinear form on VN × VN which is coercive, i.e., there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2 ∀u ∈ VN . (50)

Then there exists a unique solution u0 ∈ VN of the problem

a(u0, v) = f(v) ∀v ∈ VN . (51)
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Proof. Since the space VN is finite dimensional, the bilinear form a and the functional f are continuous. Then the application
of the Lax–Milgram Lemma 0.6 gives the assertion. Let us note that all norms on the finite-dimensional space are equivalent.

Lemma 0.8 (Discrete Cauchy inequality). Let {ai}ni=1 and {bi}ni=1 be two sequences of real numbers. Then∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

. (52)

In the analysis of nonstationary problems, the following versions of Gronwall’s lemma will be applied.

Lemma 0.9 (Gronwall’s lemma). Let y, q, z, r ∈ C([0, T ]), r ≥ 0, and let

y(t) + q(t) ≤ z(t) +

∫ t

0

r(s) y(s) ds, t ∈ [0, T ]. (53)

Then

y(t) + q(t) +

∫ t

0

r(ϑ) q(ϑ) exp

(∫ t

ϑ

r(s) ds

)
dϑ (54)

≤z(t) +

∫ t

0

r(ϑ) z(ϑ) exp

(∫ t

ϑ

r(s) ds

)
dϑ, t ∈ [0, T ].

Proof. Inequality (53) can be written in the form

y(t) ≤ h(t) +

∫ t

0

r(s) y(s) ds, (55)

where

h(t) = z(t)− q(t). (56)

Let us set

z1(t) =

∫ t

0

r(s) y(s) ds. (57)

Then z′1(t) = r(t) y(t), z1(0) = 0. Since r(t) ≥ 0, it follows from (55) that

z′1(t) ≤ h(t) r(t) + r(t) z1(t). (58)

If we set

w(t) = z1(t) exp

(
−
∫ t

0

r(s) ds

)
, (59)

then, by (58),

w′(t) = z′1(t) exp

(
−
∫ t

0

r(s) ds

)
− z1(t) r(t) exp

(
−
∫ t

0

r(s) ds

)
(60)

≤ (h(t) r(t) + r(t) z1(t)) exp

(
−
∫ t

0

r(s) ds

)
− r(t) z1(t) exp

(
−
∫ t

0

r(s) ds

)
= h(t) r(t) exp

(
−
∫ t

0

r(s) ds

)
.

Taking into account that w(0) = 0 and integrating (60) from 0 to t, we get

w(t) ≤
∫ t

0

h(ϑ) r(ϑ) exp

(
−
∫ ϑ

0

r(s) ds

)
dϑ.
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This and (59) imply that

z1(t) ≤ exp

(∫ t

0

r(s) ds

)∫ t

0

h(ϑ) r(ϑ) exp

(
−
∫ ϑ

0

r(s) ds

)
dϑ (61)

=

∫ t

0

h(ϑ) r(ϑ) exp

(∫ t

ϑ

r(s) ds

)
dϑ.

Hence, by (53), (55), (61) and (56), we have

y(t) + q(t) ≤ z(t) + z1(t) ≤ z(t) +

∫ t

0

h(ϑ) r(ϑ) exp

(∫ t

ϑ

r(s) ds

)
dϑ

= z(t) +

∫ t

0

z(ϑ) r(ϑ) exp

(∫ t

ϑ

r(s) ds

)
dϑ

−
∫ t

0

q(ϑ) r(ϑ) exp

(∫ t

ϑ

r(s) ds

)
,

which immediately yields inequality (54).

Lemma 0.10 (Gronwall’s modified lemma). Suppose that for all t ∈ [0, T ] we have

χ2(t) +R(t) ≤ A(t) + 2

t∫
0

B(ϑ)χ(ϑ) dϑ, (62)

where R,A,B, χ ∈ C([0, T ]) are nonnegative functions. Then for any t ∈ [0, T ]

√
χ2(t) +R(t) ≤ max

ϑ∈[0,t]

√
A(ϑ) +

t∫
0

B(ϑ) dϑ. (63)

Proof. For any ϑ ∈ [0, T ] we set

ϕ(ϑ) = 2

∫ ϑ

0

B(s)χ(s) ds.

Then ϕ(0) = 0 and

ϕ′(ϑ) = 2B(ϑ)χ(ϑ). (64)

Let us consider an arbitrary fixed t ∈ [0, T ] and denote

St = max
s∈[0,t]

A(s).

It is clear that if St = 0 for some t ∈ [0, T ], then Sτ = 0 for all τ ∈ [0, t]. Similarly, the condition ϕ(ϑ) = 0 for some ϑ ∈ [0, T ]
implies that ϕ(τ) = 0 for all τ ∈ [0, ϑ]. Let us set t1 = 0, provided St 6= 0 for all t ∈ [0, T ], and

t1 = max{t ∈ [0, T ];St = 0}, t2 = max{ϑ ∈ [0, T ];ϕ(ϑ) = 0}, t3 = min(t1, t2).

By (64) and (62),

ϕ′(ϑ) ≤ 2B(ϑ)
√
St + ϕ(ϑ).

Then for t ∈ (t3, T ] we have ∫ t

t3

ϕ′(ϑ) dϑ

2
√
St + ϕ(ϑ)

≤
∫ t

0

B(ϑ) dϑ

and thus,

√
St + ϕ(ϑ)

∣∣∣t
ϑ=t3

=
√
St + ϕ(t)−

√
St ≤

∫ t

0

B(ϑ) dϑ.
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This implies that

√
St + ϕ(t) ≤

√
St +

∫ t

0

B(ϑ) dϑ. (65)

Now, by virtue of (62) and (65),

√
χ2(t) +R(t) ≤

√
St + ϕ(t) ≤

√
St +

∫ t

0

B(ϑ) dϑ. (66)

Taking into account that √
St =

√
max
s∈[0,t]

A(s) = max
s∈[0,t]

√
A(s),

from (66) we immediately get (63). Finally, it is obvious that (63) also holds for all t ∈ [0, t3].

Lemma 0.11 (Gronwall’s discrete lemma). Let xm, bm, cm ≥ 0 and am > 0 for m = 0, 1, 2, . . ., and let the sequence am be
nondecreasing. Then, if

x0 + c0 ≤a0,

xm + cm ≤am +

m−1∑
j=0

bjxj for m ≥ 1, (67)

we have

xm + cm ≤am
m−1∏
j=0

(1 + bj) for m ≥ 0. (68)

Proof. We start from inequality (67), divided by am, and use the assumption that the sequence am is nondecreasing. We get

xm
am

+
cm
am
≤1 +

m−1∑
j=0

bj
xj
am
≤ 1 +

m−1∑
j=0

bj
xj
aj
. (69)

Let us set v0 = 1 and vm = 1 +
∑m−1
j=0 bj

xj
aj

for m ≥ 1. Then by (67) and the inequality cm−1/am−1 ≥ 0, we have

vm − vm−1 = bm−1
xm−1

am−1
≤bm−1

(
xm−1

am−1
+
cm−1

am−1

)
≤ bm−1vm−1, m ≥ 1.

This implies that

vm ≤(1 + bm−1)vm−1 ≤ v0

m−1∏
j=0

(1 + bj) =

m−1∏
j=0

(1 + bj).

Now from (69) we get (68).
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Chapter 1

DGM for elliptic problems

This chapter conserns in basic aspects of the discontinuous Galerkin method (DGM), which will be treated in an example of a
simple problem for the Poisson equation with mixed Dirichlet–Neumann boundary conditions. We introduce the discretization
of this problem with the aid of several variants of the DGM. Further, we prove the existence of the approximate solution and
derive error estimates. Finally, several numerical examples are presented.

The book contains a detailed analysis of qualitative properties of DG techniques. It is based on a number of estimates with
various constants. We denote by CA, CB , CC , . . . , Ca, Cb, Cc, . . . positive constants arising in the formulation of results that
can be simply named (e.g., A corresponds to approximation properties, B - boundedness, C - coercivity, etc.) Otherwise, we
use symbols C, C1, C2, . . . . These constants are always independent of the parameters of the discretization (i.e., the space
mesh-size h, time step τ in the case of nonstationary problems, and also the degree p of polynomial approximation in the
case of the hp-methods), but they may depend on the data in problems. They are often “autonomous” in individual chapters
or sections. Some constants are sometimes defined in a complicated way on the basis of a number of constants appearing in
previous considerations. For an example, see Remark 2.13.

1.1 Model problem

Let Ω be a bounded domain in Rd, d = 2, 3, with Lipschitz boundary ∂Ω. We denote by ∂ΩD and ∂ΩN parts of the boundary
∂Ω such that ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD 6= ∅.

We consider the following model problem for the Poisson equation: Find a function u : Ω→ R such that

−∆u = f in Ω, (1.1a)

u = uD on ∂ΩD, (1.1b)

n · ∇u = gN on ∂ΩN , (1.1c)

where f, uD and gN are given functions. Let us note that n · ∇u = ∂u
∂n is the derivative of the function u in the direction n,

which is the outer unit normal to ∂Ω. A function u ∈ C2(Ω) satisfying (1.1) pointwise is called a classical solution. It is suitable
to introduce a weak formulation of the above problem. Let us define the space

V = {v ∈ H1(Ω); v|∂ΩD = 0}.

Assuming thet u is a classical solution, we multiply (1.1a) by any function v ∈ V , integrate over Ω and use Green’s theorem.
Taking into account the boundary condition (1.1c), we obtain the identity∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx+

∫
∂ΩN

gN v dS ∀ v ∈ V. (1.2)

We can introduce the following definition.

Definition 1.1. Let us assume the existence of u∗ ∈ H1(Ω) such that u∗|∂ΩD = uD and let f ∈ L2(Ω), gN ∈ L2(∂ΩN ). Now
we say that a function u is a weak solution of problem (1.1), if
(a) u− u∗ ∈ V ,
(b) u satisfies identity (1.2).

Using the Lax–Milgram Lemma 0.6, we can prove that there exists a unique weak solution of (1.1), see, e.g., [QV99, Section
6.1.2]. In the following, we shall deal with numerical solution of problem (1.1) with the aid of discontinuous piecewise polynomial
approximations.
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1.2 Abstract numerical method and its theoretical analysis

In order to better understand theoretical foundations of the DGM, we shall describe a possible general approach to deriving
error estimates. (Readers familiar with concepts of a priori error estimates in the finite element method can skip this section.)

Let u ∈ V be a weak solution of a given problem. Let Vh denote a finite-dimensional space, where an approximate solution
uh is sought. The subscript h > 0 (usually chosen as h ∈ (0, h) with h > 0) denotes the parameter of the discretization. Further,
we introduce an infinitely dimensional function space Wh such that V ⊂ Wh and Vh ⊂ Wh. (If Vh ⊂ V , then we usually put
Wh := V and thus, Wh is independent of h.) Finally, let ‖·‖Wh

be a suitable norm in Wh. As we shall see later, the spaces Vh and
Wh will be constructed over a suitable mesh in the computational domain, and hence the norm ‖ · ‖Wh

may be mesh-dependent.
An abstract numerical method reads: Find uh ∈ Vh such that

Ah(uh, vh) = F (vh) ∀ vh ∈ Vh, (1.3)

where Ah : Wh ×Wh → R is a bilinear form and F : Wh → R is a linear functional.
In the numerical analysis, we want to reach the following goals:

• the approximate solution uh of (1.3) exists and is unique,

• the approximate solution uh converges to the exact solution u in the ‖·‖Wh
-norm as h→ 0, i.e.,

lim
h→0
‖u− uh‖Wh

= 0, (1.4)

• a priori error estimate, i.e., we seek α > 0 independent of h such that

‖u− uh‖Wh
≤ Chα, h ∈ (0, h), (1.5)

where C > 0 is a constant, independent of h (but may depend on u), and α is the order of convergence.

Obviously, an a priori error estimate implies the convergence.
The existence and uniqueness of the approximate solution is a consequence of the coercivity of Ah, i.e., there exists Cc > 0

such that

Ah(vh, vh) ≥ Cc‖vh‖2Wh
∀ vh ∈ Vh. (1.6)

Then Corollary 0.7 implies the existence and uniqueness of the approximate solution uh.
In order to derive a priori error estimates, we prove the consistency of the method,

Ah(u, vh) = F (vh) ∀ vh ∈ Vh (1.7)

which, together with (1.3), immediately gives the Galerkin orthogonality of the error eh = uh − u to the space Vh:

Ah(eh, vh) = 0 ∀ vh ∈ Vh. (1.8)

Further, we introduce an interpolation operator (usually defined as a suitable projection) Πh : V → Vh and prove its
approximation property, namely existence of a constant α > 0 such that

‖v −Πhv‖Wh
≤ C̃(v)hα ∀ v ∈ V, h ∈ (0, h), (1.9)

where C̃(v) > 0 is a constant independent of h but dependent on v. A further step is the derivation of the inequality

Ah(u−Πhu, vh) ≤ R(u−Πhu)‖vh‖Wh
∀ vh ∈ Vh, (1.10)

where R depends on suitable norms of the interpolation error u−Πhu.
Finally, the error estimate is derived in the following way: for each h ∈ (0, h) we decompose the error eh by

eh = uh − u = ξ + η, (1.11)

where ξ := uh −Πhu ∈ Vh and η := Πhu− u ∈Wh. Putting vh := ξ in (1.8), we get

Ah(eh, ξ) = Ah(ξ, ξ) +Ah(η, ξ) = 0. (1.12)

It follows from the coercivity (1.6) and estimate (1.10) that

Cc‖ξ‖2Wh
≤ Ah(ξ, ξ) = −Ah(η, ξ) ≤ R(η)‖ξ‖Wh

, (1.13)
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which immediately implies the inequality

‖ξ‖Wh
≤ R(η)

Cc
. (1.14)

Now, the triangle inequality, relations (1.11) and (1.14) give the error estimate in the form

‖eh‖Wh
≤ ‖ξ‖Wh

+ ‖η‖Wh
≤ R(η)

Cc
+ ‖η‖Wh

. (1.15)

This is often called the abstract error estimate, which represents an error bound in terms of the interpolation error η.
The last aim is to use the approximation property (1.9) of the operator Πh and to estimate the expression R(η) in terms of

the mesh-size h in the form

R(η) ≤ C̃1(u)hα, (1.16)

which together with (1.15) immediately imply the error estimate

‖eh‖Wh
≤
(
C−1
c C̃1(u) + C̃(u)

)
hα, (1.17)

valid for all h ∈ (0, h). We say that the numerical scheme has the order of convergence in the norm ‖·‖Wh
equal to α.

This concept of numerical analysis is applied in this chapter. (Among other, we specify there the spaces Wh and Vh.) For
time dependent problems, treated in Chapters 2 – 4, the analysis is more complicated and the previous technique has to be
modified. However, in some parts of the book, error estimates are derived in a different way.

Remark 1.2. As was mentioned above, we are interested here in deriving of a priori error estimates (simply called error
estimates). We shall not deal with a posteriori error estimates, when the error is bounded in a suitable norm in terms of the
approximate solution and data of the problem. The subject of a posteriori error estimates plays an important role in practical
computations, but is out of the scope of this book. For some results in this direction for the DGM we can refer, e.g., to the
papers [AEV11], [DEV13], [EV10], [GHH07], [HH06b], [HSW08], [JSV10] and the references cited therein.

1.3 Spaces of discontinuous functions

The subject of this section is the construction of DG space partitions of the bounded computational domain Ω and the specifi-
cation of their properties which are used in the theoretical analysis. Further, function spaces over these meshes are defined.

1.3.1 Partition of the domain

Let Th (h > 0 is a parameter) be a partition of the closure Ω of the domain Ω into a finite number of closed d-dimensional
simplexes K with mutually disjoint interiors such that

Ω =
⋃

K∈Th
K. (1.18)

This assumption means that the domain Ω is polygonal (if d = 2) or polyhedral (if d = 3). The case of a 2D nonpolygonal
domain is considered, e.g., in [Sob11], where curved elements are used. See also Chapter 6, where curved elements are treated
from the implementation point of view. We call Th a triangulation of Ω and do not require the standard conforming properties
from the finite element method, introduced e.g., in [Cia79], [BS94b], [EEHJ96], [Sch00] or [Žen90]. In two-dimensional problems
(d = 2) we choose K ∈ Th as triangles and in three-dimensional problems (d = 3) the elements K ∈ Th are tetrahedra. As we
see, we admit that in the finite element mesh the so-called hanging nodes (and in 3D also hanging edges) appear; see Figure 1.1.

In general, the discontinuous Galerkin method can handle with more general elements as quadrilaterals and convex or even
nonconvex star-shaped polygons in 2D and hexahedra, pyramids and convex or nonconvex star-shaped polyhedra in 3D. As an
example, we can consider the so-called dual finite volumes constructed over triangular (d = 2) or tetrahedral (d = 3) meshes
(cf., e.g., [FFLMW99]). A use of such elements will be discussed in Section ??.

In our further considerations we shall use the following notation. By ∂K we denote the boundary of an element K ∈ Th and
set hK = diam(K) = diameter of K, h = maxK∈ThhK . By ρK we denote the radius of the largest d-dimensional ball inscribed
into K and by |K| we denote the d-dimensional Lebesgue measure of K.

Let K,K ′ ∈ Th. We say that K and K ′ are neighbouring elements (or simply neighbours) if the set ∂K ∩ ∂K ′ has positive
(d− 1)-dimensional measure. We say that Γ ⊂ K is a face of K, if it is a maximal connected open subset of either ∂K ∩ ∂K ′,
where K ′ is a neighbour of K, or ∂K∩∂ΩD or ∂K∩∂ΩN . The symbol |Γ| will denote the (d−1)-dimensional Lebesgue measure
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nΓ7
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Figure 1.1: Example of elements Kl, l = 1, . . . , 5, and faces Γl, l = 1, . . . , 8, with the corresponding normals nΓl . The triangle
K5 has a hanging node. Its boundary is formed by four edges: ∂K5 = Γ1 ∪ Γ4 ∪ Γ7 ∪ Γ5.

of Γ. Hence, if d = 2, then |Γ| is the length of Γ and for d = 3, |Γ| denotes the area of Γ. By Fh we denote the system of all
faces of all elements K ∈ Th. Further, we define the set of all boundary faces by

FBh = {Γ ∈ Fh; Γ ⊂ ∂Ω} ,

the set of all “Dirichlet” boundary faces by

FDh = {Γ ∈ Fh; Γ ⊂ ∂ΩD} ,

the set of all “Neumann” boundary faces by

FNh = {Γ ∈ Fh, Γ ⊂ ∂ΩN}

and the set of all inner faces

FIh = Fh \ FBh .

Obviously, Fh = FIh ∪ FDh ∪ FNh and FBh = FDh ∪ FNh . For a shorter notation we put

FIDh = FIh ∪ FDh .

For each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FBh the normal nΓ has the same orientation
as the outer normal to ∂Ω. For each face Γ ∈ FIh the orientation of nΓ is arbitrary but fixed. See Figure 1.1.

For each Γ ∈ FIh there exist two neighbouring elements K
(L)
Γ ,K

(R)
Γ ∈ Th such that Γ ⊂ ∂K

(L)
Γ ∩ ∂K(R)

Γ . (This means that

the elements K
(L)
Γ ,K

(R)
Γ are adjacent to Γ and they share this face.) We use the convention that nΓ is the outer normal to

∂K
(L)
Γ and the inner normal to ∂K

(R)
Γ ; see Figure 1.2.

Moreover, if Γ ∈ FBh , then there exists an element K
(L)
Γ ∈ Th such that Γ ⊂ K(L)

Γ ∩ ∂Ω.

1.3.2 Assumptions on meshes

Let us consider a system {Th}h∈(0,h̄), h̄ > 0, of triangulations of the domain Ω (Th = {K}K∈Th). In our further considerations
we shall meet various assumptions on triangulations. The first is usual in the theory of the finite element method:

• The system {Th}h∈(0,h̄) of triangulations is shape-regular: there exists a positive constant CR such that

hK
ρK
≤ CR ∀K ∈ Th ∀h ∈ (0, h̄). (1.19)

Moreover, for each face Γ ∈ Fh, h ∈ (0, h̄), we need to introduce a quantity hΓ > 0, which represents a “one-dimensional”
size of the face Γ. We require that
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K
(L)
Γ

K
(R)
Γ

Γ

nΓ

Figure 1.2: Interior face Γ, elements K
(L)
Γ and K

(R)
Γ and the orientation of nΓ.

• the quantity hΓ, Γ ∈ Fh, h ∈ (0, h̄), satisfy the equivalence condition with hK , i.e., there exist constants CT , CG > 0
independent of h, K and Γ such that

CThK ≤ hΓ ≤ CGhK , ∀K ∈ Th, ∀Γ ∈ Fh, Γ ⊂ ∂K, ∀h ∈ (0, h̄). (1.20)

The equivalence condition can be fulfilled by additional assumptions on the system of triangulations {Th}h∈(0,h̄) and by a

suitable choice of the quantity hΓ, Γ ∈ Fh, h ∈ (0, h̄). We introduce some assumptions on triangulations and several choices of
the quantity hΓ. Then we discuss how the equivalence condition (1.20) is satisfied.

In literature we can find the following assumptions on the system of triangulations:

(MA1) The system {Th}h∈(0,h̄) is locally quasi-uniform: there exists a constant CQ > 0 such that

hK ≤ CQhK′ ∀K, K ′ ∈ Th, K, K ′ are neighbours, ∀h ∈ (0, h̄). (1.21)

(MA2) The faces Γ ⊂ ∂K do not degenerate with respect to the diameter of K if h→ 0: there exists a constant Cd > 0 such
that

hK ≤ Cddiam(Γ) ∀K ∈ Th ∀Γ ∈ Fh, Γ ⊂ ∂K, ∀h ∈ (0, h̄). (1.22)

(MA3) The system {Th}h∈(0,h̄) is quasi-uniform: there exists a constant CU > 0 such that

h ≤ CUhK ∀K ∈ Th ∀h ∈ (0, h̄). (1.23)

(MA4) The triangulations Th, h ∈ (0, h̄), are conforming. This means that for two elements K, K ′ ∈ Th, K 6= K ′, either
K ∩K ′ = ∅ or K ∩K ′ is a common vertex or K ∩K ′ is a common face (or for d = 3, when K ∩K ′ is a common edge) of
K and K ′.

If condition (MA4) is not satisfied, then the triangulations Th are called nonconforming.

Remark 1.3. There are some relations among the mesh assumptions (MA1) – (MA4) mentioned above. Obviously, (MA3) ⇒
(MA1) . Moreover, if the system of triangulation is shape-regular (i.e., (1.19) is fulfilled) then (MA4) ⇒ (MA1) & (MA2) .

Exercise 1.4. Prove the implications in Remark 1.3.

Concerning the choice of the quantity hΓ, Γ ∈ Fh, h ∈ (0, h̄), in literature we can find the following basic possibilities:

(i) hΓ = diam(Γ), Γ ∈ FIDh , (1.24)

(ii) hΓ =

{
1
2

(
h
K

(L)
Γ

+ h
K

(R)
Γ

)
for Γ ∈ FIh

h
K

(L)
Γ

for Γ ∈ FBh ,
(1.25)

(iii) hΓ =

{
max

(
h
K

(L)
Γ

, h
K

(R)
Γ

)
for Γ ∈ FIh

h
K

(L)
Γ

for Γ ∈ FBh ,
(1.26)

(iv) hΓ =

{
min

(
h
K

(L)
Γ

, h
K

(R)
Γ

)
for Γ ∈ FIh

h
K

(L)
Γ

for Γ ∈ FBh ,
(1.27)

where K
(L)
Γ ,K

(R)
Γ ∈ Th are the elements adjacent to Γ ∈ FIh , see Figure 1.2, and K

(L)
Γ ∈ Th is the element adjacent to Γ ∈ FBh .

The following lemma characterizes assumptions on computational grids and the choice of hΓ, which guarantee the equivalence
condition (1.20).
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Lemma 1.5. Let {Th}h∈(0,h̄) be a system of triangulations of the domain Ω satisfying the shape-regularity assumption (1.19).
Then the equivalence condition (1.20) is satisfied in the following cases:

(i) The triangulations Th, h ∈ (0, h̄), are conforming (i.e., assumption (MA4) is satisfied) and hΓ are defined by (1.24) or
(1.25) or (1.26) or (1.27) .

(ii) The triangulations Th, h ∈ (0, h̄), are, in general, nonconforming; assumption (MA2) (i.e., (1.22)) is satisfied and hΓ are
defined by (1.24).

(iii) The triangulations Th, h ∈ (0, h̄), are, in general, nonconforming; assumption (MA1) is satisfied (i.e., the system
{Th}h∈(0,h̄) is locally quasi-uniform) and hΓ are defined by (1.25) or (1.26) or (1.27).

Exercise 1.6. Prove the above lemma and find the constants CT and CG. For example, in the case (c), when hΓ is given by
(1.25), we have

CT = (1 + C−1
Q )/2, CG = (1 + CQ)/2, (1.28)

where CQ is the constant from the local quasi-uniformity condition (1.21).

1.3.3 Broken Sobolev spaces

The discontinuous Galerkin method is based on the use of discontinuous approximations. This is the reason that over a
triangulation Th, for any k ∈ N, we define the so-called broken Sobolev space

Hk(Ω, Th) = {v ∈ L2(Ω); v|K ∈ Hk(K) ∀ K ∈ Th}, (1.29)

which consists of functions, whose restrictions on K ∈ Th belong to the Sobolev space Hk(K). On the other hand, functions
from Hk(Ω, Th) are, in general, discontinuous on inner faces of elements K ∈ Th. For v ∈ Hk(Ω, Th), we define the norm

‖v‖Hk(Ω,Th) =

( ∑
K∈Th

‖v‖2Hk(K)

)1/2

(1.30)

and the seminorm

|v|Hk(Ω,Th) =

( ∑
K∈Th

|v|2Hk(K)

)1/2

. (1.31)

Let Γ ∈ FIh and let K
(L)
Γ ,K

(R)
Γ ∈ Th be elements adjacent to Γ. For v ∈ H1(Ω, Th) we introduce the following notation:

v
(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, (1.32)

v
(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ =
1

2

(
v

(L)
Γ + v

(R)
Γ

)
(mean value of the traces of v on Γ),

[v]Γ =v
(L)
Γ − v(R)

Γ (jump of v on Γ).

The value [v]Γ depends on the orientation of nΓ, but [v]ΓnΓ is independent of this orientation.

Moreover, let Γ ∈ FBh and K
(L)
Γ ∈ Th be the element such that Γ ⊂ ∂K

(L)
Γ ∩ ∂Ω. Then for v ∈ H1(Ω, Th) we introduce the

following notation:

v
(L)
Γ =the trace of v|

K
(L)
Γ

on Γ, (1.33)

〈v〉Γ = [v]Γ = v
(L)
Γ .

If Γ ∈ FBh , then by v
(R)
Γ we formally denote the exterior trace of v on Γ given either by a boundary condition or by an

extrapolation from the interior of Ω.
In case that Γ ∈ Fh and [·]Γ, 〈 · 〉Γ and nΓ appear in integrals

∫
Γ
. . . dS, then we usually omit the subscript Γ and simply

write [·], 〈 · 〉 and n, respectively.
The discontinuous Galerkin method can be characterized as a finite element technique using piecewise polynomial approx-

imations, in general discontinuous on interfaces between neighbouring elements. Therefore, we introduce a finite-dimensional
subspace of Hk(Ω, Th), where the approximate solution will be sought.
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Let Th be a triangulation of Ω introduced in Section 1.3.1 and let p ≥ 0 be an integer. We define the space of discontinuous
piecewise polynomial functions

Shp = {v ∈ L2(Ω); v|K ∈ Pp(K) ∀K ∈ Th}, (1.34)

where Pp(K) denotes the space of all polynomials of degree ≤ p on K. We call the number p the degree of polynomial
approximation. Obviously, Shp ⊂ Hk(Ω, Th) for any k ≥ 1 and its dimension dimShp <∞.

1.4 DGM based on a primal formulation

In this section we shall introduce the so-called discontinuous Galerkin method (DGM) based on a primal formulation for the
solution of problem (1.1). The approximate solution will be sought in the space Shp ⊂ H1(Ω, Th). In contrast to the standard
(conforming) finite element method, the weak formulation (1.2) given in Section 1.1 is not suitable for the derivation of the
DGM, because (1.2) does not make sense for u ∈ H1(Ω, Th) 6⊂ H1(Ω). Therefore, we shall introduce a “weak form of (1.1) in
the sense of broken Sobolev spaces”.

Let us assume that u is a sufficiently regular solution of (1.1), namely, let u ∈ H2(Ω). Then we speak of a strong solution.
In deriving the DGM we proceed in the following way. We multiply (1.1a) by a function v ∈ H1(Ω, Th), integrate over K ∈ Th
and use Green’s theorem. Summing over all K ∈ Th, we obtain the identity∑

K∈Th

∫
K

∇u · ∇v dx−
∑
K∈Th

∫
∂K

(nK · ∇u) v dS =

∫
Ω

f v dx, (1.35)

where nK denotes the outer unit normal to ∂K. The surface integrals over ∂K make sense due to the regularity of u. (Since
u ∈ H2(K), the derivatives ∂u/∂xi have the trace on ∂K and ∂u/∂xi|∂K ∈ L2(∂K) for i = 1, . . . , d; see Theorem 0.1 on traces.)
We rewrite the surface integrals over ∂K according to the type of faces Γ ∈ Fh that form the boundary of the element K ∈ Th:∑

K∈Th

∫
∂K

(nK · ∇u) v dS =
∑

Γ∈FDh

∫
Γ

(nΓ · ∇u) v dS +
∑

Γ∈FNh

∫
Γ

(nΓ · ∇u) v dS (1.36)

+
∑

Γ∈FIh

∫
Γ

nΓ ·
(

(∇u(L)
Γ ) v

(L)
Γ − (∇u(R)

Γ ) v
(R)
Γ

)
dS.

(There is the sign “−” in the last integral, since nΓ is the outer unit normal to ∂K
(L)
Γ but the inner unit normal to ∂K

(R)
Γ , see

Section 1.3.1 or Figure 1.2.)
Due to the assumption that u ∈ H2(Ω), we have

[u]Γ = [∇u]Γ = 0, ∇u(L)
Γ = ∇u(R)

Γ = 〈∇u〉Γ, Γ ∈ FIh . (1.37)

Thus, the integrand of the last integral in (1.36) can be written in the form

nΓ · (∇u)
(L)
Γ v

(L)
Γ − nΓ · (∇u)

(R)
Γ v

(R)
Γ = nΓ · 〈∇u〉Γ [v]Γ. (1.38)

By virtue of the Neumann boundary condition (1.1c),∑
Γ∈FNh

∫
Γ

(nΓ · ∇u)v dS =

∫
∂ΩN

gNv dS. (1.39)

Now, (1.33) and (1.35) – (1.39) imply that∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIh

∫
Γ

n · 〈∇u〉 [v] dS −
∑

Γ∈FDh

∫
Γ

n · ∇u v dS

=
∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

n · 〈∇u〉 [v] dS (1.40)

=

∫
Ω

f v dx+

∫
∂ΩN

gN v dS, v ∈ H1(Ω, Th).

Here and in what follows, in integrals over Γ the symbol n means nΓ.
Relation (1.40) is the basis of the DG discretization of problem (1.1). However, in order to guarantee the existence of the

approximate solution and its convergence to the exact one, some additional terms have to be included in the DG formulation.
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In order to mimic the continuity of the approximate solution in a weaker sense, we define the interior and boundary penalty
bilinear form

Jσh (u, v) =
∑

Γ∈FIh

∫
Γ

σ[u] [v] dS +
∑

Γ∈FDh

∫
Γ

σu v dS (1.41)

=
∑

Γ∈FIDh

∫
Γ

σ[u] [v] dS, u, v ∈ H1(Ω, Th).

The boundary penalty is associated with the boundary linear form

JσD(v) =
∑

Γ∈FDh

∫
Γ

σuD v dS. (1.42)

Here σ > 0 is a penalty weight. Its choice will be discussed in Section 1.6. Obviously, for the exact strong solution u ∈ H2(Ω),

Jσh (u, v) = JσD(v) ∀ v ∈ H1(Ω, Th), (1.43)

since [u]Γ = 0 for Γ ∈ FIh and [u]Γ = uΓ = uD for Γ ∈ FDh .
The interior penalty replaces the continuity of the approximate solution on interior faces, which is required in the standard

conforming finite element method. The boundary penalty introduces the Dirichlet boundary condition in the discrete problem.
Moreover, the left-hand side of (1.40) is not symmetric with respect to u and v. In the theoretical analysis, it is advantageous

to have some type of symmetry. Hence, it is desirable to include some additional term, which “symmetrizes” the left-hand side
of (1.40) and which vanishes for the exact solution. Therefore, let u ∈ H1(Ω) ∩ H2(Ω, Th) be a function which satisfies the
Dirichlet boundary condition (1.1b). Then we use the identity∑

Γ∈FIDh

∫
Γ

n · 〈∇v〉 [u] dS =
∑

Γ∈FDh

∫
Γ

n · ∇v uD dS ∀ v ∈ H2(Ω, Th), (1.44)

which is valid since [u]Γ = 0 for Γ ∈ FIh , [u]Γ = uΓ = uD for Γ ∈ FDh and 〈∇v〉Γ = ∇vΓ for Γ ∈ FDh by definition.
Now, without a deeper motivation, we introduce five variants of the discontinuous Galerkin weak formulation. Each particular

method is commented on in Remark 1.10. Hence, we sum identity (1.40) with −1, 1 or 0-multiple of (1.44) and possibly add
equality (1.43). This leads us to the following notation. For u, v ∈ H2(Ω, Th) we introduce the bilinear diffusion forms

as
h(u, v) =

∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

(n · 〈∇u〉 [v] + n · 〈∇v〉 [u]) dS, (1.45a)

an
h(u, v) =

∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

(n · 〈∇u〉 [v]− n · 〈∇v〉 [u]) dS, (1.45b)

ai
h(u, v) =

∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

n · 〈∇u〉 [v] dS, (1.45c)

and the right-hand side linear forms

F s
h(v) =

∫
Ω

f v dx+
∑

Γ∈FNh

∫
Γ

gN v dS −
∑

Γ∈FDh

∫
Γ

n · ∇v uD dS, (1.46a)

F n
h (v) =

∫
Ω

f v dx+
∑

Γ∈FNh

∫
Γ

gN v dS +
∑

Γ∈FDh

∫
Γ

n · ∇v uD dS, (1.46b)

F i
h(v) =

∫
Ω

f v dx+
∑

Γ∈FNh

∫
Γ

gN v dS. (1.46c)

Moreover, for u, v ∈ H2(Ω, Th) let us define the bilinear forms

As
h(u, v) = as

h(u, v), (1.47a)

An
h(u, v) = an

h(u, v), (1.47b)

As,σ
h (u, v) = as

h(u, v) + Jσh (u, v), (1.47c)

An,σ
h (u, v) = an

h(u, v) + Jσh (u, v), (1.47d)

Ai,σ
h (u, v) = ai

h(u, v) + Jσh (u, v), (1.47e)
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and the linear forms

`sh(v) = F s
h(v), (1.48a)

`nh(v) = F n
h (v), (1.48b)

`s,σh (v) = F s
h(v) + JσD(v), (1.48c)

`n,σh (v) = F n
h (v) + JσD(v), (1.48d)

`i,σh (v) = F i
h(v) + JσD(v). (1.48e)

Since Shp ⊂ H2(Ω, Th), the forms (1.47) make sense for uh, vh ∈ Shp. Consequently, we define five numerical schemes.

Definition 1.7. A function uh ∈ Shp is called a DG approximate solution of problem (1.1), if it satisfies one of the following
identities:

(i) As
h(uh, vh) = `sh(vh) ∀ vh ∈ Shp, (1.49a)

(ii) An
h(uh, vh) = `nh(vh) ∀ vh ∈ Shp, (1.49b)

(iii) As,σ
h (uh, vh) = `s,σh (vh) ∀ vh ∈ Shp, (1.49c)

(iv) An,σ
h (uh, vh) = `n,σh (vh) ∀ vh ∈ Shp, (1.49d)

(v) Ai,σ
h (uh, vh) = `i,σh (vh) ∀ vh ∈ Shp, (1.49e)

where the forms As
h, A

n
h, . . ., and `sh, `

n
h, . . ., are defined by (1.47) and (1.48), respectively.

The diffusion forms as
h, a

n
h, a

i
h defined by (1.45) can be simply written in the form

ah(u, v) =
∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

(n · 〈∇u〉 [v] + Θn · 〈∇v〉 [u]) dS, (1.50)

where Θ = 1 in the case of the form as
h, Θ = −1 for an

h and Θ = 0 for ai
h and the bilinear forms As

h, An
h, As,σ

h , An,σ
h and Ai,σ

h

defined by (1.47) can be written in the form

Ah(u, v) = ah(u, v) + ϑJσh (u, v), (1.51)

where ϑ = 0 for As
h and An

h and ϑ = 1 for As,σ
h , An,σ

h and Ai,σ
h .

Similarly we can write

Fh(v) =

∫
Ω

f v dx+
∑

Γ∈FNh

∫
Γ

gN v dS −Θ
∑

Γ∈FDh

∫
Γ

n · ∇v uD dS, (1.52)

with Θ = 1 for F s
h, Θ = −1 for F n

h and Θ = 0 for F i
h, and then the right-hand side form reads

`h(v) = Fh(v) + ϑJσD(v), (1.53)

where ϑ = 0 for `sh and `nh and ϑ = 1 for `s,σh , `n,σh and `i,σh .
The form an

h (Θ = −1), ai
h (Θ = 0) and as

h (Θ = 1) represents the so-called nonsymmetric, incomplete and symmetric variant
of the diffusion discretization, respectively.

If we denote by Ah any form defined by (1.47) and by `h, we denote the form defined by (1.53), i.e., any form given by
(1.48), the discrete problem (1.49) can be formulated to find uh ∈ Shp satisfying the identity

Ah(uh, vh) = `h(vh) ∀ vh ∈ Shp. (1.54)

The discrete problem (1.54) is equivalent to a system of linear algebraic equations, which can be solved by a suitable direct or
iterative method. Namely, let {ϕi, i = 1, . . . , Nh} be a basis of the space Shp, where Nh = dimShp (= dimension of Shp). The

approximate solution uh is sought in the form uh(x) =
∑Nh
j=1 u

jϕj(x), where uj , j = 1, . . . , Nh, are unknown real coefficients.
Then, due to the linearity of the form Ah, the discrete problem (1.54) is equivalent to the system

Nh∑
j=1

Ah(ϕj , ϕi)u
j = `h(ϕj), j = 1, . . . , Nh. (1.55)

It can be written in the matrix form

AU = L,
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where A = (aij)
Nh
i,j=1 = (Ah(ϕj , ϕi))

Nh
i,j=1, U = (uj)Nhj=1 and L = (`h(ϕj))

Nh
j=1.

From the construction of the forms Ah and `h, one can see that the strong solution u ∈ H2(Ω) of problem (1.1) satisfies the
identity

Ah(u, v) = `h(v) ∀ v ∈ H2(Ω, Th), (1.56)

which represents the consistency of the method. Relations (1.54) and (1.56) imply the so-called Galerkin orthogonality of the
error eh = uh − u of the method:

Ah(eh, vh) = 0 ∀ vh ∈ Shp, (1.57)

which will be used in analysing error estimates.

Remark 1.8. Comparing the above process of the derivation of the DG schemes with the abstract numerical method in Section
1.2, we see that we can define the function spaces

V = H2(Ω), Wh = H2(Ω, Th), Vh = Shp. (1.58)

However, as we shall see later, the space Wh will not be equipped with the norm ‖ · ‖H2(Ω,Th) defined by (1.30), but by another
norm introduced later in (1.103) will be used.

Remark 1.9. The interior and boundary penalty form Jσh together with the form JσD replace the continuity of conforming finite
element approximate solutions and represent Dirichlet boundary conditions. Thus, in contrast to standard conforming finite
element techniques, both Dirichlet and Neumann boundary conditions are included automatically in the formulation (1.54) of the
discrete problem. This is an advantage particularly in the case of nonhomogeneous Dirichlet boundary conditions, because it is
not necessary to construct subsets of finite element spaces formed by functions approximating the Dirichlet boundary condition
in a suitable way.

Remark 1.10. Method (1.49a) was introduced by Delves et al. ([DH79], [DP80], [HD79], [HDP79]), who called it a global
element method. Its advantage is the symmetry of the discrete problem due to the third term on the right-hand side of (1.45a).
On the other hand, a significant disadvantage is that the bilinear form As

h is indefinite. This causes difficulties when dealing
with time-dependent problems, because some eigenvalues of the operator associated with the form Ah can have negative real parts
and then the resulting space-time discrete schemes become unconditionally unstable. Therefore, we prove in Lemma 1.36 the
continuity of the bilinear form As

h, but further on we shall not be concerned with this method any more.
Scheme (1.49b) was introduced by Baumann and Oden in [BBO99], [OBB98] and is usually called the Baumann–Oden

method. It is straightforward to show that the corresponding bilinear form An
h is positive semidefinite due to the third term on

the right-hand side of (1.45b). An interesting property of this method is that it is unstable for piecewise linear approximations,
i.e., for p = 1.

Scheme (1.49c) is called the symmetric interior penalty Galerkin (SIPG) method. It was derived by Arnold ([Arn82]) and
Wheeler ([Whe78]) by adding penalty terms to the form As

h. (In this case ah and Fh are defined by (1.50) and (1.52) with
Θ = 1.) This formulation leads to a symmetric bilinear form, which is coercive, if the penalty parameter σ is sufficiently large.
Moreover, the Aubin–Nitsche duality technique (also called Aubin–Nitsche trick) can be used to obtain an optimal error estimate
in the L2(Ω)-norm.

Method (1.49d), called the nonsymmetric interior penalty Galerkin (NIPG) method, was proposed by Girault, Rivière and
Wheeler in [RWG99]. (Here Θ = −1.) In this case the bilinear form An,σ

h is nonsymmetric and does not allow one to obtain an
optimal error estimate in the L2(Ω)-norm with the aid of the Aubin-Nitsche trick. However, numerical experiments show that
in some situations (for example, if uniform grids are used) the odd degrees of the polynomial approximation give the optimal
order of convergence. On the other hand, a favorable property of the NIPG method is the coercivity of An,σ

h (·, ·) for any penalty
parameter σ > 0.

Finally, method (1.49e), called the incomplete interior penalty Galerkin (IIPG) method (Θ = 0), was studied in [DSW04],

[Sun03], [SW05]. In this case the bilinear form Ai,σ
h is nonsymmetric and does not allow one to obtain an optimal error estimate

in the L2(Ω)-norm. The penalty parameter σ has to be chosen sufficiently large in order to guarantee the coercivity of Ai,σ
h .

The advantage of the IIPG method is the simplicity of the discrete diffusion operator, because the expressions from (1.44) do
not appear in (1.45c). This is particularly advantageous in the case when the diffusion operator is nonlinear with respect to ∇u.
(See, e.g., [Dol08a] or Chapter 7 of this book.)

It would also be possible to define the scheme Ai
h(u, v) = `ih(v) ∀ v ∈ Shp, where Ai

h(u, v) = ai
h(u, v) and `ih(v) = F i

h(v), but
this method does not make sense, because it does not contain the Dirichlet boundary data uD from condition (1.1b).

In the following, we shall deal with the theoretical analysis of the DGM applied to the numerical solution of the model
problem (1.1). Namely, we shall pay attention to the existence and uniqueness of the approximate solution defined by (1.54)
and derive error estimates.
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1.5 Basic tools of the theoretical analysis of DGM

Theoretical analysis of the DG method presented in this book is based on three fundamental tools: the multiplicative trace
inequality, the inverse inequality, and the approximation properties of the spaces of piecewise polynomial functions. In this
section we introduce and prove these important tools under the assumptions about the meshes in Section 1.3.2.

Our first objective will be to summarize some important concepts and results from finite element theory, treated, e.g., in
[Cia79].

Definition 1.11. Let n > 0 be an integer. We say that sets ω, ω̂ ⊂ Rn are affine equivalent, if there exists an invertible affine
mapping Fω : ω̂ → ω such that Fω(ω̂) = ω and

x = Fω(x̂) = Bωx̂+ bω ∈ ω, x̂ ∈ ω̂, (1.59)

where Bω is an n× n nonsingular matrix and bω ∈ Rn.

If v̂ : ω̂ → R, then the inverse mapping F−1
ω allows us to transform the function v̂ to v : ω → R by the relation

v(x) = v̂(F−1
ω (x)), x ∈ ω. (1.60)

Hence,

v = v̂ ◦ F−1
ω , v̂ = v ◦ Fω (1.61)

and
v̂(x̂) = v(x) for all x̂, x in the correspondence (1.59).

If B is an n× n matrix, then its norm associated with the Euclidean norm | · | in Rn is defined as ‖B‖ = supx∈Rn |Bx|/|x|.
The following lemmas give us bounds for the norms of matrices Bω and B−1

ω and the relations between Sobolev seminorms
of functions v and v̂ satisfying (1.61). First, we introduce the following notation for bounded domains ω, ω̂:

hω =diam(ω), hω̂ = diam(ω̂), (1.62)

ρω = radius of the largest ball inscribed into ω, (1.63)

ρω̂ = radius of the largest ball inscribed into ω̂.

Lemma 1.12. Let ω, ω̂ ⊂ Rn be affine-equivalent bounded domains with the invertible mapping Fω(x̂) = Bωx̂ + bω ∈ ω for
x̂ ∈ ω̂. Then

‖Bω‖ ≤
hω
2ρω̂

, ‖B−1
ω ‖ ≤

hω̂
2ρω

. (1.64)

Further, the substitution theorem implies that

|det(Bω)| = |ω|/|ω̂|, (1.65)

where |ω| and |ω̂| denote the n-dimensional Lebesgue measure of ω and ω̂, respectively.

For the proof of (1.64) see [Cia79], Theorem 3.1.3. The proof of (1.65) is a consequence of the substitution theorem. Further,
we cite here Theorem 3.1.2 from [Cia79].

Lemma 1.13. Let ω, ω̂ ⊂ Rn be affine-equivalent bounded domains with the invertible mapping Fω(x̂) = Bωx̂ + bω ∈ ω for
x̂ ∈ ω̂. If v ∈Wm,α(ω) for some integer m ≥ 0 and some α ∈ [1,∞], then the function v̂ = v ◦ Fω ∈Wm,α(ω̂). Moreover, there
exists a constant C depending on m and d only such that

|v̂|Wm,α(ω̂) ≤ C ‖Bω‖m |det(Bω)|−1/α |v|Wm,α(ω), (1.66)

|v|Wm,α(ω) ≤ C ‖B−1
ω ‖m |det(Bω)|1/α |v̂|Wm,α(ω̂). (1.67)

In our finite element analysis, we have n = d and the set ω represents an element K ∈ Th and ω̂ is chosen as a reference
element K̂, i. e., the simplex with vertices

â1 =(0, 0, . . . , 0), â2 = (1, 0, . . . , 0), â3 = (0, 1, 0, . . . , 0), . . . (1.68)

. . . , âd+1 = (0, 0, . . . , 1) ∈ Rd.

The elements K and K̂ are considered as closed sets. The Sobolev spaces over K and K̂ are defined as the spaces over the
interiors of these sets. (In Section ??, we shall also apply the above results to the case with n = 1, ω = Γ ∈ Fh and ω̂ = (0, 1).)

As a consequence of the above results we can formulate the following assertions.
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Corollary 1.14. If K ∈ Th and v ∈ Hm(K), where m ≥ 0 is an integer, then the function v̂(x̂) = v(FK(x̂)) ∈ Hm(K̂) and

|v|Hm(K) ≤ cch
d
2−m
K |v̂|Hm(K̂), (1.69)

|v̂|Hm(K̂) ≤ cch
m− d2
K |v|Hm(K), (1.70)

where cc > 0 depends on the shape regularity constant CR but not on K and v.

Exercise 1.15. Prove (1.69) – (1.70) using the shape-regularity assumption (1.19) and the results of Lemmas 1.12 and 1.13.

In deriving error estimates we shall apply the following important result from [Cia79, Theorem 3.1.4].

Theorem 1.16. Let ω̂ ⊂ Rn be a bounded domain and for some integers p ≥ 0 and m ≥ 0 and some numbers α, β ∈ [1,∞], let
the spaces W p+1,α(ω̂) and Wm,β(ω̂) satisfy the continuous embedding

W p+1,α(ω̂) ↪→Wm,β(ω̂). (1.71)

Let Π̂ be a continuous linear mapping of W p+1,α(ω̂) into Wm,β(ω̂) such that

Π̂φ̂ = φ̂ ∀ φ̂ ∈ Pp(ω̂). (1.72)

Let a set ω be affine-equivalent to the set ω̂. This means that there exists an affine mapping x = Fω, Fω(x̂) = Bωx̂+ bω ∈ ω for
x̂ ∈ ω̂, where Bω is a nonsingular n× n matrix and bω ∈ Rn. Let the mapping Πω be defined by

Πωv(x) = (Π̂v̂)(F−1
ω (x)), (1.73)

for all functions v̂ ∈ W p+1,α(ω̂) and v ∈ W p+1,α(ω) such that v̂(x̂) = v(Fω(x̂)) = v(x). Then there exists a constant C(Π̂, ω̂)
such that

|Π̂v̂ − v̂|Wm,β(ω̂) ≤ C(Π̂, ω̂)|v̂|Wp+1,α(ω̂), (1.74)

and

|v −Πωv|Wm,β(ω) ≤ C(Π̂, ω̂) |ω|(1/β)−(1/α) h
p+1
ω

ρmω
|v|Wp+1,α(ω) (1.75)

∀ v ∈W p+1,α(ω),

with hω = diam(ω), ρω defined as the radius of the largest ball inscribed into ω and |ω| defined as the n-dimensional Lebesgue
measure of the set ω. We set 1/∞ := 0.

Exercise 1.17. Prove (1.75) using (1.74), (1.66), (1.67), (1.64) and (1.65).

Another important result used often in finite element theory is the Bramble–Hilbert lemma (see [Cia79, Theorem 4.1.3] or
[Žen90, Theorem 9.3]).

Theorem 1.18 (Bramble–Hilbert lemma). Let us assume that ω ⊂ Rn is a bounded domain with Lipschitz boundary. Let
p ≥ 0 be an integer and α ∈ [1,∞] and let f be a continuous linear functional on the space W p+1,α(Ω) (i.e., f ∈ (W p+1,α(ω))∗)
satisfying the condition

f(v) = 0 ∀ v ∈ Pp(ω). (1.76)

Then there exists a constant CBH > 0 depending only on ω such that

|f(v)| ≤ CBH‖f‖(Wp+1,α(ω))∗ |v|Wp+1,α(ω) ∀ v ∈W p+1,α(ω). (1.77)

1.5.1 Multiplicative trace inequality

The forms ah and Jσh given by (1.45) and (1.41), respectively, contain several integrals over faces. Therefore, in the theoretical
analysis we need to estimate norms over faces by norms over elements. These estimates are usually obtained using the multi-
plicative trace inequality. In the literature, it is possible to find several variants of the multiplicative trace inequality. Here, we
present the variant, which suits our considerations.

Lemma 1.19 (Multiplicative trace inequality). Let the shape-regularity assumption (1.19) be satisfied. Then there exists a
constant CM > 0 independent of v, h and K such that

‖v‖2L2(∂K) ≤CM
(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2L2(K)

)
, (1.78)

K ∈ Th, v ∈ H1(K), h ∈ (0, h̄).
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xK = 0
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x

nΓ

Γ
ρK

Figure 1.3: Simplex K with its face Γ.

Proof. Let K ∈ Th be arbitrary but fixed. We denote by xK the center of the largest d-dimensional ball inscribed into the
simplex K. Without loss of generality we suppose that xK is the origin of the coordinate system.

Since the space C∞(K) is dense in H1(K), it is sufficient to prove (1.78) for v ∈ C∞(K). We start from the following
relation obtained from Green’s identity (23):∫

∂K

v2x · n dS =

∫
K

∇ · (v2x) dx, v ∈ C∞(K), (1.79)

where n denotes here the outer unit normal to ∂K. Let nΓ be the outer unit normal to K on a side Γ of K. Then

x · nΓ = |x||nΓ| cosα = |x| cosα = ρK , x ∈ Γ, (1.80)

see Figure 1.3. From (1.80) we have∫
∂K

v2x · n dS =
∑

Γ⊂∂K

∫
Γ

v2x · nΓ dS = ρK
∑

Γ⊂∂K

∫
Γ

v2 dS = ρK‖v‖2L2(∂K). (1.81)

Moreover, ∫
K

∇ · (v2x) dx =

∫
K

(
v2∇ · x + x · ∇v2

)
dx (1.82)

= d

∫
K

v2 dx+ 2

∫
K

vx · ∇v dx ≤ d‖v‖2L2(K) + 2

∫
K

|vx · ∇v|dx.

With the aid of the Cauchy inequality, the second term of (1.82) is estimated as

2

∫
K

|vx · ∇v|dx ≤ 2 sup
x∈K
|x|
∫
K

|v||∇v|dx ≤ 2hK‖v‖L2(K)|v|H1(K). (1.83)

Then (1.19), (1.79), (1.81), (1.82) and (1.83) give

‖v‖2L2(∂K) ≤
1

ρK

[
2hK‖v‖L2(K)|v|H1(K) + d‖v‖2L2(K)

]
(1.84)

≤ CR
[
2‖v‖L2(K)|v|H1(K) +

d

hK
‖v‖2L2(K)

]
,

which proves (1.78) with CM = CR max{2, d}.

Exercise 1.20. Prove that the multiplicative trace inequality is valid also for vector-valued functions v : Ω→ Rn, i.e.,

‖v‖2L2(∂K) ≤CM
(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2L2(K)

)
, v ∈ (H1(K))n, K ∈ Th. (1.85)

Hint: Use (1.78) for each component of v = (v1, . . . , vn), sum these inequalities and apply the discrete Cauchy inequality (52).
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1.5.2 Inverse inequality

In deriving error estimates, we need to estimate the H1-seminorm of a polynomial function by its L2-norm, i.e., we apply the
so-called inverse inequality.

Lemma 1.21 (Inverse inequality). Let the shape-regularity assumption (1.19) be satisfied. Then there exists a constant CI > 0
independent of v, h and K such that

|v|H1(K) ≤ CIh−1
K ‖v‖L2(K) ∀ v ∈ Pp(K), ∀K ∈ Th, ∀h ∈ (0, h̄). (1.86)

Proof. Let K̂ be a reference triangle and FK : K̂ → K, K ∈ Th be an affine mapping such that FK(K̂) = K. By (1.69) (for
m = 1) and (1.70) (for m = 0) we have

|v|H1(K) ≤ cch
d
2−1

K |v̂|H1(K̂), ‖v̂‖L2(K̂) ≤ cch
− d2
K ‖v‖L2(K). (1.87)

From [Sch98, Theorem 4.76], we have

|v̂|H1(K̂) ≤ csp2‖v̂‖L2(K̂), v̂ ∈ Pp(K̂), (1.88)

where cs > 0 depends on d but not on v̂ and p. A simple combination of (1.87) – (1.88) proves (1.86) with CI = cs c
2
c p

2. Let us
note that (1.88) is a consequence of the norm equivalence on finite-dimensional spaces.

Other inverse inequalities will appear in Section ??, Lemma ??.

1.5.3 Approximation properties

With respect to the error analysis of the abstract numerical method treated in Section 1.2, a suitable Shp-interpolation has to
be introduced. Let Th be a given triangulation of the domain Ω. Then for each K ∈ Th, we define the mapping πK,p : L2(K)→
Pp(K) such that for every ϕ ∈ L2(K)

πK,pϕ ∈ Pp(K),

∫
K

(πK,pϕ)v dx =

∫
K

ϕv dx ∀ v ∈ Pp(K). (1.89)

On the basis of the mappings πK,p we introduce the Shp-interpolation Πhp, defined for all ϕ ∈ L2(Ω) by

(Πhpϕ)|K = πK,p(ϕ|K) ∀K ∈ Th. (1.90)

It can be easily shown that if ϕ ∈ L2(Ω), then

Πhpϕ ∈ Shp,
∫

Ω

(Πhpϕ)v dx =

∫
Ω

ϕv dx ∀ v ∈ Shp. (1.91)

Hence, Πhp is the L2(Ω)-projection on the space Shp.
The approximation properties of the interpolation operators πK,p and Πhp are the consequence of Theorem 1.16.

Lemma 1.22. Let the shape-regularity assumption (1.19) be valid and let p, q, s be integers, p ≥ 0, 0 ≤ q ≤ µ, where µ =
min(p+ 1, s). Then there exists a constant CA > 0 such that

|πK,pv − v|Hq(K) ≤ CAhµ−qK |v|Hµ(K) ∀ v ∈ Hs(K) ∀K ∈ Th ∀h ∈ (0, h̄). (1.92)

Hence, if p ≥ 1 and s ≥ 2, then

‖πK,pv − v‖L2(K) ≤ CAhµK |v|Hµ(K) ∀ v ∈ Hs(K) ∀K ∈ Th ∀h ∈ (0, h̄), (1.93)

|πK,pv − v|H1(K) ≤ CAhµ−1
K |v|Hµ(K) ∀ v ∈ Hs(K) ∀K ∈ Th ∀h ∈ (0, h̄), (1.94)

|πK,pv − v|H2(K) ≤ CAhµ−2
K |v|Hµ(K) ∀ v ∈ Hs(K) ∀K ∈ Th ∀h ∈ (0, h̄). (1.95)

Moreover, we have

‖πK,1v − v‖L∞(K) ≤ CAhK |v|W 1,∞(K) ∀ v ∈W 1,∞(K) ∀K ∈ Th ∀h ∈ (0, h̄). (1.96)

Exercise 1.23. Prove Lemma 1.22 using Theorem 1.16 and assumption (1.19).

The above results immediately imply the approximation properties of the operator Πhp.
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Lemma 1.24. Let the shape-regularity assumption (1.19) be satisfied and let p, q, s be integers, p ≥ 0, 0 ≤ q ≤ µ, where
µ = min(p+ 1, s). Then

|Πhpv − v|Hq(Ω,Th) ≤ CAhµ−q|v|Hµ(Ω,Th), v ∈ Hs(Ω, Th), h ∈ (0, h̄), (1.97)

where µ = min(p+ 1, s) and CA is the constant from (1.92). Hence, if p ≥ 1 and s ≥ 2, then

‖Πhpv − v‖L2(Ω) ≤ CAhµ|v|Hµ(Ω,Th), v ∈ Hs(Ω, Th), h ∈ (0, h̄), (1.98)

|Πhpv − v|H1(Ω,Th) ≤ CAhµ−1|v|Hµ(Ω,Th), v ∈ Hs(Ω, Th), h ∈ (0, h̄), (1.99)

|Πhpv − v|H2(Ω,Th) ≤ CAhµ−2|v|Hµ(Ω,Th), v ∈ Hs(Ω, Th), h ∈ (0, h̄). (1.100)

Proof. Using (1.90), definition of the seminorm in a broken Sobolev space (1.31) and the approximation properties (1.92), we
obtain (1.97). This immediately implies (1.98) – (1.100).

Moreover, using the combination of the multiplicative trace inequality (1.78) and Lemma 1.22, we can prove the approxima-
tion properties of the operator Πhp in the norms defined over the boundaries of elements.

Lemma 1.25. Let the shape-regularity assumption (1.19) be satisfied and let p ≥ 1, s ≥ 2 be integers and α ≥ −1. Then∑
K∈Th

hαK‖Πhpv − v‖2L2(∂K) ≤2CMC
2
Ah

2µ−1+α|v|2Hµ(Ω,Th), (1.101)

∑
K∈Th

hαK‖∇(Πhpv − v)‖2L2(∂K) ≤2CMC
2
Ah

2µ−3+α|v|2Hµ(Ω,Th), (1.102)

v ∈ Hs(Ω, Th), h ∈ (0, h̄),

where µ = min(p+ 1, s), CM is the constant from (1.78) and CA is the constant from (1.92).

Proof. (i) Let v ∈ Hs(Ω, Th). For simplicity we put η = Πhpv − v. Then relation (1.90) implies that η|K = πK,pv|K − v|K
for K ∈ Th. Using the multiplicative trace inequality (1.78), the approximation property (1.92), and the seminorm definition
(1.31), we have ∑

K∈Th
hαK‖η‖2L2(∂K) ≤ CM

∑
K∈Th

hαK

(
‖η‖L2(K) |η|H1(K) + h−1

K ‖η‖2L2(K)

)
≤ CM

∑
K∈Th

hαKC
2
A

(
hµKh

µ−1
K + h−1

K h2µ
K

)
|v|2Hµ(K)

≤ 2CMC
2
Ah

2µ−1+α|v|2Hµ(Ω,Th).

(ii) Similarly as above, using the vector-valued variant of the multiplicative trace inequality (1.85), identities (21) and the
approximation property (1.92) we get∑

K∈Th
hαK‖∇η‖2L2(∂K) ≤ CM

∑
K∈Th

hαK

(
‖∇η‖L2(K) |∇η|H1(K) + h−1

K ‖∇η‖2L2(K)

)
= CM

∑
K∈Th

hαK

(
|η|H1(K) |η|H2(K) + h−1

K |η|2H1(K)

)
≤ CM

∑
K∈Th

hαKC
2
A

(
hµ−1
K hµ−2

K + h−1
K h

2(µ−1)
K

)
|v|2Hµ(K)

≤ 2CMC
2
Ah

2µ−3+α|v|2Hµ(Ω,Th).

1.6 Existence and uniqueness of the approximate solution

We start with the theoretical analysis of the DGM, namely we prove the existence of a numerical solution defined by (1.54).
Then, in Section 1.7, we derive error estimates. We follow the formal analysis of the abstract numerical methods in Section 1.2.
Therefore, we show the continuity and the coercivity of the form Ah given by (1.47) in a suitable norm. This norm should reflect
the discontinuity of functions from the broken Sobolev spaces H1(Ω, Th). To this end, we define the following mesh-dependent
norm

|||u|||Th =
(
|u|2H1(Ω,Th) + Jσh (u, u)

)1/2

, (1.103)
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where | · |H1(Ω,Th) and Jσh are given by (1.31) and (1.41), respectively.
In what follows, because there is no danger of misunderstanding, we shall omit the subscript Th. This means that we shall

simply write ||| · ||| = ||| · |||Th . We call ||| · ||| the DG-norm.

Exercise 1.26. Prove that ||| · ||| is a norm in the spaces H1(Ω, Th) and Shp.

1.6.1 The choice of penalty weight σ

In the following considerations we shall assume that the system {Th}h∈(0,h̄) of triangulations satisfies the shape-regularity
assumption (1.19) and the equivalence condition (1.20).

We consider the penalty weight σ : ∪Γ∈FIDh → R in the form

σ|Γ = σΓ =
CW
hΓ

, Γ ∈ FIDh , (1.104)

where CW > 0 is the penalization constant and hΓ(∼ h) is the quantity given by one of the possibilities from (1.24) – (1.27) with
respect to the considered mesh assumptions (MA1) – (MA4), see Lemma 1.5. Let us note that in some cases it is possible to
consider a different form of the penalty parameter σ, as mentioned in Remark 1.51.

Under the introduced notation, in view of (1.41), (1.42) and (1.104), the interior and boundary penalty form and the
associated boundary linear form read as

Jσh (u, v) =
∑

Γ∈FIDh

∫
Γ

CW
hΓ

[u] [v] dS, JσD(v) =
∑

Γ∈FDh

∫
Γ

CW
hΓ

uD v dS. (1.105)

In what follows, we shall introduce technical lemmas, which will be useful in the theoretical analysis.

Lemma 1.27. Let (1.20) be valid. Then for each v ∈ H1(Ω, Th) we have∑
Γ∈FIDh

h−1
Γ

∫
Γ

[v]2 dS ≤ 2

CT

∑
K∈Th

h−1
K

∫
∂K

|v|2 dS, (1.106)

∑
Γ∈FIDh

hΓ

∫
Γ

〈v〉2 dS ≤CG
∑
K∈Th

hK

∫
∂K

|v|2 dS. (1.107)

Hence, ∑
Γ∈FIDh

σΓ‖[v]‖2L2(Γ) ≤
2CW
CT

∑
K∈Th

h−1
K ‖v‖2L2(∂K), (1.108)

∑
Γ∈FIDh

1

σΓ
‖〈v〉‖2L2(Γ) ≤

CG
CW

∑
K∈Th

hK‖v‖2L2(∂K). (1.109)

Proof. (i) By definition (1.32), the inequality

(γ + δ)2 ≤ 2(γ2 + δ2), γ, δ ∈ R, (1.110)

and (1.20) we have ∑
Γ∈FIDh

h−1
Γ

∫
Γ

[v]2 dS

=
∑

Γ∈FIh

h−1
Γ

∫
Γ

∣∣∣v(L)
Γ − v(R)

Γ

∣∣∣2 dS +
∑

Γ∈FDh

h−1
Γ

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS

≤ 2
∑

Γ∈FIh

h−1
Γ

∫
Γ

(∣∣∣v(L)
Γ

∣∣∣2 +
∣∣∣v(R)

Γ

∣∣∣2) dS +
∑

Γ∈FDh

h−1
Γ

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS

≤ 2C−1
T

∑
Γ∈FIDh

h−1

K
(L)
Γ

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS + 2C−1
T

∑
Γ∈FIh

h−1

K
(R)
Γ

∫
Γ

∣∣∣v(R)
Γ

∣∣∣2 dS

≤ 2C−1
T

∑
K∈Th

h−1
K

∫
∂K

|v|2 dS.

This and (1.104) immediately imply (1.108).
(ii) In the proof of (1.107) we proceed similarly, using (1.32), (1.20) and (1.110). Inequalities (1.108) and (1.109) are obtained

from (1.106), (1.107) and (1.104).
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1.6.2 Continuity of diffusion bilinear forms

First, we shall prove several auxiliary assertions.

Lemma 1.28. Any form ah defined by (1.45) satisfies the estimate

|ah(u, v)| ≤ ‖u‖1,σ ‖v‖1,σ ∀u, v ∈ H2(Ω, Th), (1.111)

where

‖v‖21,σ =|||v|||2 +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS (1.112)

=|v|2H1(Ω,Th) + Jσh (v, v) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2dS.

Proof. It follows from (1.45) that

|ah(u, v)| ≤
∑
K∈Th

∫
K

|∇u · ∇v| dx︸ ︷︷ ︸
χ1

(1.113)

+
∑

Γ∈FIDh

∫
Γ

|n · 〈∇u〉 [v]| dS

︸ ︷︷ ︸
χ2

+
∑

Γ∈FIDh

∫
Γ

|n · 〈∇v〉 [u]| dS

︸ ︷︷ ︸
χ3

.

(For the form ai
h the term χ3 vanishes, of course.) Obviously, the Cauchy inequality, the discrete Cauchy inequality, and (1.31)

imply that

χ1 ≤
∑
K∈Th

|u|H1(K)|v|H1(K) ≤ |u|H1(Ω,Th)|v|H1(Ω,Th). (1.114)

Further, by the Cauchy inequality,

χ2 ≤
∑

Γ∈FIDh

(∫
Γ

σ−1(n · 〈∇u〉)2 dS

)1/2(∫
Γ

σ[v]2 dS

)1/2

(1.115)

≤

 ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇u〉)2 dS

1/2 ∑
Γ∈FIDh

∫
Γ

σ[v]2 dS

1/2

,

and

χ3 ≤

 ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS

1/2 ∑
Γ∈FIDh

∫
Γ

σ[u]2 dS

1/2

. (1.116)

Using the discrete Cauchy inequality, from (1.114) – (1.116) we derive the bound

|ah(u, v)| ≤ |u|H1(Ω,Th)|v|H1(Ω,Th) (1.117)

+

 ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇u〉)2 dS

1/2 ∑
Γ∈FIDh

∫
Γ

σ[v]2 dS

1/2

+

 ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS

1/2 ∑
Γ∈FIDh

∫
Γ

σ[u]2 dS

1/2

≤

|u|2H1(Ω,Th) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇u〉)2dS + Jσh (u, u)

1/2

×

|v|2H1(Ω,Th) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2dS + Jσh (v.v)

1/2

= ‖u‖1,σ ‖v‖1,σ.
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Exercise 1.29. Prove that ‖ · ‖1,σ introduced by (1.112) defines a norm in the broken Sobolev space H2(Ω, Th).

Corollary 1.30. By virtue of (1.47a) – (1.47b), Lemma 1.28 and Exercise 1.29, the bilinear forms As
h and An

h are bounded with
respect to the norm ‖ · ‖1,σ in the broken Sobolev space H2(Ω, Th).

Exercise 1.31. Prove Corollary 1.30.

Further, we shall pay attention on the expression Jσh (u, v) for u, v ∈ H1(Ω, Th).

Lemma 1.32. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then

|Jσh (u, v)| ≤ Jσh (u, u)1/2Jσh (v, v)1/2 ∀u, v ∈ H1(Ω, Th), (1.118)

and

Jσh (v, v) ≤ 2CWCM
CT

∑
K∈Th

(
h−2
K ‖v‖2L2(K) + h−1

K ‖v‖L2(K)|v|H1(K)

)
(1.119)

≤ CWCM
CT

∑
K∈Th

(
3h−2

K ‖v‖2L2(K) + |v|2H1(K)

)
∀ v ∈ H1(Ω, Th).

Proof. Let u, v ∈ H1(Ω, Th). By the definition (1.41) of the form Jσh and the Cauchy inequality,

|Jσh (u, v)| ≤
∑

Γ∈FIDh

∫
Γ

σ|[u] [v]|dS (1.120)

≤

 ∑
Γ∈FIDh

∫
Γ

σ[u]2 dS

1/2 ∑
Γ∈FIDh

∫
Γ

σ[v]2 dS

1/2

= Jσh (u, u)1/2Jσh (v, v)1/2.

Further, the definition of the form Jσh , (1.104), (1.20) and (1.108) imply that

Jσh (v, v) =
∑

Γ∈FIDh

∫
Γ

σ[v]2 dS =
∑

Γ∈FIDh

CW
hΓ
‖[v]2‖L2(Γ) ≤

2CW
CT

∑
K∈Th

h−1
K ‖v‖2L2(∂K).

Now, using the multiplicative trace inequality (1.78), we get

Jσh (v, v) ≤ 2CWCM
CT

∑
K∈Th

(
h−2
K ‖v‖2L2(K) + h−1

K ‖v‖L2(K)|v|H1(K)

)
. (1.121)

The last relation in (1.119) follows from (1.121) and Young’s inequality.

Lemmas 1.28 and 1.32 immediately imply the boundedness also of the forms As,σ
h , An,σ

h and Ai,σ
h with respect to the norm

‖ · ‖1,σ.

Corollary 1.33. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then the forms Ah defined by (1.47) satisfy the
estimate

|Ah(u, v)| ≤ 2‖u‖1,σ‖v‖1,σ ∀u, v ∈ H2(Ω, Th). (1.122)

Proof. For the boundedness of Ah = As
h and Ah = An

h, see Corollary (1.30). Let Ah = As,σ
h or Ah = An,σ

h or Ah = Ai,σ
h . Then,

by virtue of (1.47c) – (1.47e), Lemmas 1.28 and 1.32 we have

|Ah(u, v)| ≤ |ah(u, v)|+ |Jσh (u, v)| ≤ ‖u‖1,σ ‖v‖1,σ + Jσh (u, u)1/2Jσh (v, v)1/2

≤ ‖u‖1,σ ‖v‖1,σ + ‖u‖1,σ ‖v‖1,σ = 2‖u‖1,σ ‖v‖1,σ.

The following lemma allows us to estimate the expressions with integrals over Γ ∈ Fh in terms of norms over elements
K ∈ Th.
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Lemma 1.34. Let the weight σ be defined by (1.104). Then, under assumptions (1.19) and (1.20), for any v ∈ H2(Ω, Th) the
following estimate holds:∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS ≤ CGCM
CW

∑
K∈Th

(
hK‖∇v‖L2(K) |∇v|H1(K) + ‖∇v‖2L2(K)

)
=
CGCM
CW

∑
K∈Th

(
hK |v|H1(K) |v|H2(K) + |v|2H1(K)

)
≤ CGCM

2CW

∑
K∈Th

(
h2
K |v|2H2(K) + 3|v|2H1(K)

)
. (1.123)

Moreover, if v ∈ Shp, then ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇vh〉)2 dS ≤ CGCM
CW

(CI + 1)|vh|2H1(Ω,Th). (1.124)

Proof. Using (1.109) and the multiplicative trace inequality (1.78), we find that∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS

≤ CG
CW

∑
K∈Th

hK‖∇v‖2L2(∂K)

≤ CGCM
CW

∑
K∈Th

hK

(
‖∇v‖L2(K) |∇v|H1(K) + h−1

K ‖∇v‖2L2(K)

)
,

which is the first inequality in (1.123). The second one directly follows from Young’s inequality.
If v ∈ Shp, then (1.123) and the inverse inequality (1.86) imply that∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇vh〉)2 dS ≤ CGCM
CW

∑
K∈Th

(
CI‖∇vh‖2L2(K) + ‖∇vh‖2L2(K)

)
=
CGCM
CW

(CI + 1)
∑
K∈Th

‖∇vh‖L2(K) =
CGCM
CW

(CI + 1)|vh|2H1(Ω,Th),

which we wanted to prove.

We continue in the derivation of various inequalities based on the estimation of the ‖ · ‖1,σ-norm.

Lemma 1.35. Under assumptions of Lemma 1.34, there exist constants Cσ, C̃σ > 0 such that

Jσh (u, u)1/2 ≤ |||u||| ≤ ‖u‖1,σ ≤ Cσ Ra(u) ∀u ∈ H2(Ω, Th), h ∈ (0, h̄), (1.125)

Jσh (vh, vh)1/2 ≤ |||vh||| ≤ ‖vh‖1,σ ≤ C̃σ|||vh||| ∀ vh ∈ Shp, h ∈ (0, h̄), (1.126)

where

Ra(u) =

( ∑
K∈Th

(
|u|2H1(K) + h2

K |u|2H2(K) + h−2
K ‖u‖2L2(K)

))1/2

, u ∈ H2(Ω, Th). (1.127)

Proof. The first two inequalities in (1.125) as well as in (1.126) follow immediately from the definition of the DG-norm (1.103)
and the ‖·‖1,σ-norm (1.112). Moreover, in view of (1.123) and (1.119), for u ∈ H2(Ω, Th) we have

‖u‖21,σ =|u|2H1(Ω,Th) + Jσh (u, u) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇uv〉)2dS

≤
∑
K∈Th

|u|2H1(K) +
CW CM
CT

∑
K∈Th

(
3h−2

K ‖u‖2L2(K) + |u|2H1(K)

)
+
CG CM
2CW

∑
K∈Th

(
h2
K |u|2H2(K) + 3|u|2H1(K)

)
.
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Now, after a simple manipulation, we get

‖u‖21,σ ≤
∑
K∈Th

(
|u|2H1(K)

(
1 +

3CG CM
2CW

+
CW CM
CT

)
+ |u|2H2(K) h

2
K

CG CM
2CW

+ ‖u‖2L2(K) h
−2
K

3CW CM
CT

)
.

Hence, (1.125) holds with

Cσ =

(
max

(
1 +

3CG CM
2CW

+
CW CM
CT

,
CG CM
2CW

,
3CW CM
CT

))1/2

.

Further, if vh ∈ Shp, then (1.112), (1.124) and (1.103) immediately imply (1.126) with C̃σ = (1 + CG CM (CI + 1)/CW )1/2.

In what follows, we shall be concerned with properties of the bilinear forms Ah defined by (1.47). First, we prove the
continuity of the bilinear forms Ah defined by (1.47) in the space Shp with respect to the norm ||| · |||.

Lemma 1.36. Let assumptions (1.104), (1.19) and (1.20) be satisfied. Then there exists a constant CB > 0 such that the form
Ah defined by (1.47) satisfies the estimate

|Ah(uh, vh)| ≤CB |||uh||| |||vh||| ∀uh, vh ∈ Shp. (1.128)

Proof. Estimates (1.122) and (1.126) give (1.128) with CB = 2C̃2
σ.

Further, we shall prove an inequality similar to (1.128) replacing uh ∈ Shp by u ∈ H2(Ω, Th).

Lemma 1.37. Let assumptions (1.19), (1.20) and (1.104) be satisfied. Then there exists a constant C̃B > 0 such that

|Ah(u, vh)| ≤C̃B Ra(u) |||vh||| ∀ u ∈ H2(Ω, Th) ∀ vh ∈ Shp ∀ h(0, h̄), (1.129)

where Ra is defined by (1.127).

Proof. By (1.122) and (1.125),

|Ah(u, vh)| ≤ 2‖u‖1,σ‖vh‖1,σ ≤ 2CσC̃σRa(u)|||vh|||,

which is (1.129) with C̃B = 2CσC̃σ.

1.6.3 Coercivity of diffusion bilinear forms

Lemma 1.38 (NIPG coercivity). For any CW > 0 the bilinear form An,σ
h defined by (1.47d) satisfies the coercivity condition

An,σ
h (v, v) ≥ |||v|||2 ∀ v ∈ H2(Ω, Th). (1.130)

Proof. From (1.45b) and (1.47d) it immediately follows that

An,σ
h (v, v) = an

h(v, v) + Jσh (v, v) = |v|2H1(Ω,Th) + Jσh (v, v) = |||v|||2, (1.131)

which we wanted to prove.

The proof of the coercivity of the symmetric bilinear form As,σ
h is more complicated.

Lemma 1.39 (SIPG coercivity). Let assumptions (1.19) and (1.20) be satisfied, let

CW ≥ 4CGCM (1 + CI), (1.132)

where CM , CI and CG are the constants from (1.78), (1.86) and (1.20), respectively, and let the penalty parameter σ be given
by (1.104) for all Γ ∈ FIDh . Then

As,σ
h (vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Shp ∀h ∈ (0, h̄).
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Proof. Let δ > 0. Then from (1.41), (1.104), (1.45a) and the Cauchy and Young’s inequalities it follows that

as
h(vh, vh) = |vh|2H1(Ω,Th) − 2

∑
Γ∈FIDh

∫
Γ

n · 〈∇vh〉[vh] dS (1.133)

≥ |vh|2H1(Ω,Th) − 2

1

δ

∑
Γ∈FIDh

∫
Γ

hΓ(n · 〈∇vh〉)2 dS


1
2
δ ∑

Γ∈FIDh

∫
Γ

1

hΓ
[vh]2 dS


1
2

≥ |vh|2H1(Ω,Th) − ω −
δ

CW
Jσh (vh, vh),

where

ω =
1

δ

∑
Γ∈FIDh

∫
Γ

hΓ|〈∇vh〉|2 dS. (1.134)

Further, from assumption (1.20), inequality (1.107), the multiplicative trace inequality (1.78) and the inverse inequality (1.86)
we get

ω ≤ CG
δ

∑
K∈Th

hK‖∇vh‖2L2(∂K) (1.135)

≤ CGCM
δ

∑
K∈Th

hK

(
|vh|H1(K)|∇vh|H1(K) + h−1

K |vh|2H1(K)

)
≤ CGCM (1 + CI)

δ
|vh|2H1(Ω,Th).

Now let us choose

δ = 2CGCM (1 + CI). (1.136)

Then it follows from (1.132) and (1.133) – (1.136) that

as
h(vh, vh) ≥ 1

2

(
|vh|2H1(Ω,Th) −

4CGCM (1 + CI)

CW
Jσh (vh, vh)

)
(1.137)

≥ 1

2

(
|vh|2H1(Ω,Th) − Jσh (vh, vh)

)
.

Finally, definition (1.47c) of the form As,σ
h and (1.137) imply that

As,σ
h (vh, vh) = as

h(vh, vh) + Jσh (vh, vh) (1.138)

≥ 1

2

(
|vh|2H1(Ω,Th) + Jσh (vh, vh)

)
=

1

2
|||vh|||2,

which we wanted to prove.

Lemma 1.40 (IIPG coercivity). Let assumptions (1.19) and (1.20) be satisfied, let

CW ≥ CGCM (1 + CI), (1.139)

where CM , CI and CG are constants from (1.78), (1.86) and (1.20), respectively, and let the penalty parameter σ be given by
(1.104) for all Γ ∈ FIDh . Then

Ai,σ
h (vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Shp.

Proof. The proof is almost identical with the proof of the previous lemma.

Corollary 1.41. We can summarize the above results in the following way. We have

Ah(vh, vh) ≥ CC |||vh|||2 ∀ vh ∈ Shp, (1.140)

with

CC = 1 for Ah = An,σ
h if CW > 0,

CC = 1/2 for Ah = As,σ
h if CW ≥ 4CGCM (1 + CI),

CC = 1/2 for Ah = Ai,σ
h if CW ≥ CGCM (1 + CI).

Corollary 1.42. By virtue of Corollary 0.7, the coercivity of the forms Ah implies the existence and uniqueness of the solution
of the discrete problems (1.49c) – (1.49e) (SIPG, NIPG and IIPG method).
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1.7 Error estimates

In this section, we derive error estimates of the SIPG, NIPG and IIPG variants of the DGM applied to the numerical solution
of the Poisson problem (1.1). Namely, the error uh − u will be estimated in the DG-norm and the L2(Ω)-norm.

1.7.1 Estimates in the DG-norm

Let u ∈ H2(Ω) denote the exact strong solution of problem (1.1) and let and uh ∈ Shp be the approximate solution obtained by
method (1.54), where the forms Ah and `h are defined by (1.47c) – (1.47e) and (1.48c) – (1.48e), respectively. The error of the
method is defined as the function eh = uh − u ∈ H2(Ω, Th). It can be written in the form

eh = ξ + η, with ξ = uh −Πhpu ∈ Shp, η = Πhpu− u ∈ H2(Ω, Th), (1.141)

where Πhp is the Shp-interpolation defined by (1.90). Hence, we split the error into two parts ξ and η. The term η represents the
error of the Shp-interpolation of the function u. (It is possible to say that η approximates the distance of the exact solution from
the space Shp, where the approximate solution is sought.) The term η can be simply estimated on the basis of the approximation
properties (1.92) and (1.97). On the other hand, the term ξ represents the distance between the approximate solution uh and
the projection of the exact solution on the space Shp. The estimation of ξ is sometimes more complicated.

We shall suppose that the system of triangulations {Th}h∈(0,h̄) satisfies the shape-regularity assumptions (1.19) and that the
equivalence condition (1.20) holds.

First, we shall prove the so-called abstract error estimate, representing a bound of the error in terms of the Shp-interpolation
error η.

Theorem 1.43. Let assumptions (1.19) and (1.20) be satisfied and let the exact solution of problem (1.1) satisfy the condition
u ∈ H2(Ω). Then there exists a constant CAE > 0 such that

|||eh||| ≤ CAERa(η) = CAERa(Πhpu− u), h ∈ (0, h̄), (1.142)

where Ra(η) is given by (1.127).

Proof. We express the error by (1.141), i.e., eh = uh − u = ξ + η. The error eh satisfies the Galerkin orthogonality condition
(1.57), which is equivalent to the relation

Ah(ξ, vh) = −Ah(η, vh) ∀ vh ∈ Shp. (1.143)

If we set vh := ξ ∈ Shp in (1.143) and use (1.47c) – (1.47e) and the coercivity (1.140), we find that

CC |||ξ|||2 ≤ Ah(ξ, ξ) = −Ah(η, ξ). (1.144)

Now we apply Lemma 1.37 and get

|Ah(η, ξ)| ≤ C̃B Ra(η) |||ξ|||.

The above and (1.144) already imply that

|||ξ||| ≤ C̃B
CC

Ra(η). (1.145)

Obviously,

|||eh||| ≤ |||ξ|||+ |||η|||. (1.146)

Finally, (1.125) gives

|||η||| ≤CσRa(η). (1.147)

Hence, (1.146), (1.145) and (1.147) yield the abstract error estimate (1.142) with CAE = Cσ + C̃B/CC .

The abstract error estimate is the basis for estimating the error eh in terms of the mesh-size h.

Theorem 1.44 (DG-norm error estimate). Let us assume that s ≥ 2, p ≥ 1, are integers, u ∈ Hs(Ω) is the solution of
problem (1.1), {Th}h∈(0,h̄) is a system of triangulations of the domain Ω satisfying the shape-regularity condition (1.19), and
the equivalence condition (1.20) (cf. Lemma 1.5). Moreover, let the penalty constant CW satisfy the conditions from Corollary
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1.41. Let uh ∈ Shp be the approximate solution obtained by using of the SIPG, NIPG or IIPG method (1.49c) – (1.49e). Then
the error eh = uh − u satisfies the estimate

|||eh||| ≤ C1h
µ−1|u|Hµ(Ω), h ∈ (0, h̄), (1.148)

where µ = min(p+ 1, s) and C1 is a constant independent of h and u. Hence, if s ≥ p+ 1, we get the error estimate

|||eh||| ≤C1h
p|u|Hp+1(Ω).

Proof. It is enough to use the abstract error estimate (1.142), where the expressions |η|H1(K), |η|H2(K) and ‖η‖L2(K), K ∈ Th,
are estimated on the basis of the approximation properties (1.93) – (1.95), rewritten for η|K = (Πhpu− u)|K = πK,p(u|K)− u|K
and K ∈ Th:

‖η‖L2(K) ≤ CA hµK |u|Hµ(K), (1.149)

|η|H1(K) ≤ CA hµ−1
K |u|Hµ(K),

|η|H2(K) ≤ CA hµ−2
K |u|Hµ(K).

Thus, the inequality hK ≤ h and the relation
∑
K∈Th |u|2Hµ(K) = |u|2Hµ(Ω) imply

Ra(η) =

( ∑
K∈Th

(
|η|2H1(K) + h2

K |η|2H2(K) + h−2
K ‖η‖L2(K)

))1/2

(1.150)

≤
√

3CAh
µ−1|u|Hµ(Ω),

which together with (1.142) gives (1.148) with the constant C1 =
√

3CAE CA.

In order to derive an error estimate in the L2(Ω)-norm we present the following result.

Lemma 1.45 (Broken Poincaré inequality). Let the system {Th}h∈(0,h̄) of triangulations satisfy the shape-regularity assumption
(1.19). Then there exists a constant C > 0 independent of h and vh such that

‖vh‖2L2(Ω) ≤ C

 ∑
K∈Th

|vh|2H1(K) +
∑

Γ∈FIDh

1

diam(Γ)
‖[vh]‖2L2(Γ)

 (1.151)

∀ vh ∈ Shp ∀h ∈ (0, h̄).

The proof of the broken Poincaré inequality (1.151) was carried out in [Arn82] in the case where Ω is a convex polygonal
domain, ∂ΩD = ∂Ω and the assumption (MA2) in Section 1.3.2 is satisfied. The proof of inequality (1.151) in a general case
with the nonempty Neumann part of the boundary can be found in [Bre03].

From Theorem 1.44 and (1.151) we obtain the following result.

Corollary 1.46 (L2(Ω)-(suboptimal) error estimate). Let the assumptions of
Theorem 1.44 be satisfied. Then

‖eh‖L2(Ω) ≤ C2h
µ−1|u|Hµ(Ω), h ∈ (0, h̄), (1.152)

where C2 is a constant independent of h. Hence, if s ≥ p+ 1, we get the error estimate

‖eh‖L2(Ω) ≤C2h
p|u|Hp+1(Ω). (1.153)

Remark 1.47. The error estimate (1.153), which is of order O(hp), is suboptimal with respect to the approximation property
(1.97) with q = 0, µ = p+ 1 ≤ s of the space Shp giving the order O(hp+1). In the next section we shall prove an optimal error
estimate in the L2(Ω)-norm for SIPG method using the Aubin–Nitsche technique.

1.7.2 Optimal L2(Ω)-error estimate

Our further aim is to derive the optimal error estimate in the L2(Ω)-norm. It will be based on the duality technique sometimes
called the Aubin–Nitsche trick. Since this approach requires the symmetry of the corresponding bilinear form and the regularity
of the exact solution to the dual problem, we shall consider the SIPG method applied to problem (1.1) with ∂ΩD = ∂Ω and
∂ΩN = ∅. This means that we seek u satisfying

−∆u = f in Ω, (1.154a)

u = uD on ∂Ω. (1.154b)
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Moreover, for an arbitrary z ∈ L2(Ω), we shall consider the dual problem: Given z ∈ L2(Ω), find ψ such that

−∆ψ = z in Ω, ψ = 0 on ∂Ω. (1.155)

Under the notation

V = H1
0 (Ω) =

{
v ∈ H1(Ω); v = 0 on ∂Ω

}
, (1.156)

the weak formulation of (1.155) reads: Find ψ ∈ V such that∫
Ω

∇ψ · ∇v dx =

∫
Ω

zv dx = (z, v)L2(Ω) ∀ v ∈ V. (1.157)

Let us assume that ψ ∈ H2(Ω) and that there exists a constant CD > 0, independent of z, such that

‖ψ‖H2(Ω) ≤ CD‖z‖L2(Ω). (1.158)

This is true provided the polygonal (polyhedral) domain Ω is convex, as follows from [Gri92]. (See Remark 1.50.) Let us note
that H2(Ω) ⊂ C(Ω), if d ≤ 3.

Let Ah be the symmetric bilinear form given by (1.47c), i.e.,

Ah(u, v) = as
h(u, v) + Jσh (u, v), u, v ∈ H2(Ω, Th), (1.159)

where as
h and Jσh are defined by (1.45a) and (1.105), respectively.

First, we shall prove the following auxiliary result.

Lemma 1.48. Let ψ ∈ H2(Ω) be the solution of problem (1.155). Then

Ah(ψ, v) = (v, z)L2(Ω) ∀ v ∈ H2(Ω, Th). (1.160)

Proof. The function ψ ∈ H2(Ω) satisfies the conditions

[ψ]Γ = 0 ∀Γ ∈ FIh , ψ|∂Ω = 0. (1.161)

Let v ∈ H2(Ω, Th). Using (1.155), (1.161) and Green’s theorem, we obtain

(v, z)L2(Ω) =

∫
Ω

zv dx = −
∫

Ω

∆ψv dx

=
∑
K∈Th

∫
K

∇ψ · ∇v dx−
∑
K∈Th

∫
∂K

∇ψ · n v dS

=
∑
K∈Th

∫
K

∇ψ · ∇v dx

−

∑
Γ∈FIh

∫
Γ

〈∇ψ〉 · n [v] dS +
∑

Γ∈FIh

∫
Γ

〈∇v〉 · n [ψ] dS


−

 ∑
Γ∈FBh

∫
Γ

∇ψ · n v dS +
∑

Γ∈FBh

∫
Γ

∇v · nψ dS


+

∑
Γ∈FIh

∫
Γ

σ [ψ] [v] dS +
∑

Γ∈FBh

∫
Γ

σ ψ v dS

 .

Hence, in view of the definition of the form Ah, we have (1.160).

Theorem 1.49 (L2(Ω)-optimal error estimate). Let us assume that s ≥ 2, p ≥ 1, are integers, Ω is a bounded convex polyhedral
domain, u ∈ Hs(Ω) is the solution of problem (1.1), {Th}h∈(0,h̄) is a system of triangulations of the domain Ω satisfying the
shape-regularity condition (1.19), and the equivalence condition (1.20) (cf. Lemma 1.5). Moreover, let the penalty constant CW
satisfy the condition from Corollary 1.41. Let uh ∈ Shp be the approximate solution obtained using the SIPG method (1.49c)
(i.e., Θ = 1 and the form Ah = Aσ,sh is given by (1.45a) and (1.47c). Then

‖eh‖L2(Ω) ≤ C3h
µ|u|Hµ(Ω), (1.162)

where eh = uh − u, µ = min{p+ 1, s} and C3 is a constant independent of h and u.
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Proof. Let ψ ∈ H2(Ω) be the solution of the dual problem (1.157) with z := eh = uh − u ∈ L2(Ω) and let Πh1ψ ∈ Sh1 be the
approximation of ψ defined by (1.90) with p = 1. By (1.160), we have

Ah(ψ, v) = (eh, v)L2(Ω) ∀ v ∈ H2(Ω, Th). (1.163)

The symmetry of the form Ah, the Galerkin orthogonality (1.57) of the error and (1.163) with v := eh yield

‖eh‖2L2(Ω) = Ah(ψ, eh) = Ah(eh, ψ) (1.164)

= Ah(eh, ψ −Πh1ψ).

Moreover, from (1.122), it follows that

Ah(eh, ψ −Πh1ψ) ≤ 2‖eh‖1,σ ‖ψ −Πh1ψ‖1,σ, (1.165)

where, by (1.112),

‖v‖21,σ = |||v|||2 +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS. (1.166)

By (1.125) and (1.150) (with µ = 2), we have

‖ψ −Πh1ψ‖1,σ ≤ Cσ Ra(ψ −Πh1ψ) ≤
√

3CσCAh|ψ|H2(Ω). (1.167)

Now, the inverse inequality (1.86) and estimates (1.100), (1.99) imply that

|∇eh|H1(K) = |∇(u− uh)|H1(K) (1.168)

≤ |∇(u−Πhpu)|H1(K) + |∇(Πhpu− uh)|H1(K)

≤ |u−Πhpu|H2(K) + CIh
−1
K ‖∇(Πhpu− uh)‖L2(K)

≤ CAhµ−2
K |u|Hµ(K) + CIh

−1
K

(
‖∇(Πhpu− u)‖L2(K) + ‖∇(u− uh)‖L2(K)

)
≤ CA(1 + CI)h

µ−2
K |u|Hµ(K) + CIh

−1
K ‖∇eh‖L2(K).

By (1.123), (1.168) and the discrete Cauchy inequality,∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇eh〉)2 dS (1.169)

≤ CGCM
CW

∑
K∈Th

(
hK‖∇eh‖L2(K) |∇eh|H1(K) + ‖∇eh‖2L2(K)

)
≤ CGCM

CW

{
CA(1 + CI)h

µ−1|eh|H1(Ω,Th)|u|Hµ(Ω) + (1 + CI)|eh|2H1(Ω,Th)

}
.

Since |eh|H1(Ω,Th) ≤ |||eh|||, using (1.148) and (1.169), we have∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇eh〉)2 dS ≤ CGCM
CW

C1(1 + CI)(C1 + CA)h2(µ−1)|u|2Hµ(Ω).

Thus, (1.148) and (1.166) yield the estimate

‖eh‖21,σ ≤ C5h
2(µ−1)|u|2Hµ(Ω) (1.170)

with C5 = C1

{
1 + CGCMC

−1
W (1 + CI)(C1 + CA)

}
. It follows from (1.165), (1.167), and (1.170) that

Ah(eh, ψ −Πh1ψ) ≤ C6h
µ|ψ|H2(Ω) |u|Hµ(Ω), (1.171)

where C6 = 2
√

3CσCA
√
C5.

Finally, by (1.164), (1.171), and (1.158) with z = eh,

‖eh‖2L2(Ω) ≤ CDC6h
µ|u|Hµ(Ω)‖eh‖L2(Ω), (1.172)

which already implies estimate (1.162) with C3 = CDC6.
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Remark 1.50. As we see from the above results, if the exact solution u ∈ Hp+1(Ω) and the finite elements of degree p are used,
the error is of the optimal order O(hp+1) in the L2(Ω)-norm. In the case, when the polygonal domain is not convex and/or the
Neumann and Dirichlet parts of the boundary ΩN 6= ∅ and ΩD 6= ∅, the exact solution ψ of the dual problem (1.155) is not
an element of the space H2(Ω). Then it is necessary to work in the Sobolev–Slobodetskii spaces of functions with noninteger
derivatives and the error in the L2(Ω)-norm is not of the optimal order O(hp+1). The analysis of error estimates for the DG
discretization of boundary value problems with boundary singularities is the subject of works [Wih02] and [FS12], where optimal
error estimates were obtained with the aid of a suitable graded mesh refinement. The main tools are here the Sobolev–Slobodetskii
spaces and weighted Sobolev spaces. For the definitions and properties of these spaces, see [BS94b] and [KS87].

Remark 1.51. In [RWG01] the Neumann problem (i.e., ∂Ω = ∂ΩN ) was solved by the NIPG approach, where the penalty
coefficient σ was chosen in the form

σ|Γ =
CW

hβΓ
, Γ ∈ Fh, (1.173)

instead of (1.104), where β ≥ 1/2. If triangular grids do not contain any hanging nodes (i.e., the triangulations Th are
conforming), then an optimal error estimate in the L2(Ω)-norm of this analogue of the NIPG method was proven provided
that β ≥ 3 for d = 2 and β ≥ 3/2 for d = 3. In this case the interior penalty is so strong that the DG methods behave
like the standard conforming (i.e., continuous) finite element schemes. On the other hand, the stronger penalty causes worse
computational properties of the corresponding algebraic system, see [Cas02].

1.8 Numerical examples

In this section, we demonstrate by numerical experiments the error estimates (1.148), (1.152) and (1.162). In the first example,
we assume that the exact solution is sufficiently regular. We show that the use of a higher degree of polynomial approximation
increases the rate of convergence of the method. In the second example, the exact solution has a singularity. Then the order of
convergence does not increase with the increasing degree of the polynomial approximation used. The computational results are
in agreement with theory and show that the accuracy of the method is determined by the degree of the polynomial approximation
as well as the regularity of the solution.

1.8.1 Regular solution

Let us consider the problem of finding a function u : Ω = (0, 1)× (0, 1)→ R such that

−∆u = 8π2 sin(2πx1) sin(2πx2) in Ω, (1.174)

u = 0 on ∂Ω.

It is easy to verify that the exact solution of (1.174) has the form

u = sin(2πx1) sin(2πx2), (x1, x2) ∈ Ω. (1.175)

Obviously, u ∈ C∞(Ω).
We investigate the experimental order of convergence (EOC) of the SIPG, NIPG and IIPG methods defined by (1.49c) –

(1.49e). We assume that a (semi)norm ‖eh‖ of the computational error behaves according to the formula

‖eh‖ = ChEOC, (1.176)

where C > 0 is a constant, h = maxK∈ThhK , and EOC ∈ R is the experimental order of convergence. Since the exact solution is
known and therefore ‖eh‖ can be exactly evaluated, it is possible to evaluate EOC in the following way. Let ‖eh1

‖ and ‖eh2
‖ be

computational errors of the numerical solutions obtained on two different meshes Th1
and Th2

, respectively. Then from (1.176),
eliminating the constant C, we obtain

EOC =
log(‖eh1‖/‖eh2‖)

log(h1/h2)
. (1.177)

Moreover, we evaluate the global experimental order of convergence (GEOC) from the approximation of (1.176) with the aid of
the least squares method, where all computed pairs [h, eh] are taken into account simultaneously.

We used a set of four uniform triangular grids having 128, 512, 2048, and 8192 elements, shown in Figure 1.4. The meshes
consist of right-angled triangles with the diameter h =

√
2/
√

#Th/2, where #Th is the number of elements of Th. EOC is
evaluated according to (1.177) for all pairs of “neighbouring” grids. Tables 1.1 – 1.2 show the computational errors in the
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Figure 1.4: Computational grids used for the numerical solution of problems (1.174) and (1.179).

L2(Ω)-norm and the H1(Ω, Th)-seminorm and EOC obtained by the SIPG, NIPG and IIPG methods using the Pp, p = 1, . . . , 6,
polynomial approximations. These results are also visualized in Figure 1.5.

We observe that EOC of the SIPG technique are in a good agreement with the theoretical ones, i.e., O(hp+1) in the L2(Ω)-
norm (estimate (1.162)) and O(hp) in the H1(Ω, Th)-seminorm (estimate (1.148)). On the other hand, the experimental order
of convergence of the NIPG and IIPG techniques measured in the L2(Ω)-norm is better than the theoretical estimate (1.152).
We deduce that

‖eh‖L2(Ω) = O(hp̄), p̄ =

{
p+ 1 for p odd,
p for p even.

(1.178)

This interesting property of the NIPG and IIPG techniques was observed by many authors (cf. [OBB98] and [HSS02]), but up
to now a theoretical justification has been missing, see Section 1.8.3 for some comments. The EOC in the H1(Ω, Th)-seminorm
of NIPG and IIPG methods is in agreement with (1.148).

1.8.2 Singular case

In the domain Ω = (0, 1)× (0, 1) we consider the Poisson problem

−∆u = g in Ω, (1.179)

u = 0 on ∂Ω,

with the right-hand side g chosen in such a way that the exact solution has the form

u(x1, x2) =2rαx1x2(1− x1)(1− x2) = rα+2 sin(2ϕ)(1− x1)(1− x2), (1.180)

where r, ϕ are the polar coordinates (r = (x2
1 + x2

2)1/2) and α ∈ R is a constant. The function u is equal to zero on ∂Ω and its
regularity depends on the value of α. Namely, by [BS90],

u ∈ Hβ(Ω) ∀β ∈ (0, α+ 3), (1.181)

where Hβ(Ω) denotes the Sobolev–Slobodetskii space of functions with noninteger derivatives.
We present numerical results obtained for α = −3/2 and α = 1/2. If α = −3/2, then u ∈ Hβ(Ω) for all β ∈ (0, 3/2), whereas

for the value α = 1/2, we have u ∈ Hβ(Ω) for all β ∈ (0, 7/2). Figure 1.6 shows the function u for both values of α.
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SIPG NIPG IIPG

p h/
√

2 ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC

1 1/8 6.7452E-02 – 2.9602E-02 – 6.3939E-02 –
1 1/16 1.8745E-02 1.85 7.6200E-03 1.96 1.7383E-02 1.88
1 1/32 4.8463E-03 1.95 1.9292E-03 1.98 4.4579E-03 1.96
1 1/64 1.2252E-03 1.98 4.8536E-04 1.99 1.1239E-03 1.99

GEOC 1.93 1.98 1.95

2 1/8 3.9160E-03 – 1.0200E-02 – 4.7447E-03 –
2 1/16 4.9164E-04 2.99 2.5723E-03 1.99 8.4877E-04 2.48
2 1/32 6.1644E-05 3.00 6.4259E-04 2.00 1.8081E-04 2.23
2 1/64 7.7184E-06 3.00 1.6032E-04 2.00 4.2670E-05 2.08

GEOC 3.00 2.00 2.26

3 1/8 3.1751E-04 – 5.5550E-04 – 3.2684E-04 –
3 1/16 1.9150E-05 4.05 3.4481E-05 4.01 2.0077E-05 4.02
3 1/32 1.1775E-06 4.02 2.1333E-06 4.01 1.2414E-06 4.02
3 1/64 7.3124E-08 4.01 1.3250E-07 4.01 7.7176E-08 4.01

GEOC 4.03 4.01 4.02

4 1/8 2.3496E-05 – 3.7990E-05 – 2.7046E-05 –
4 1/16 7.5584E-07 4.96 2.4304E-06 3.97 1.2929E-06 4.39
4 1/32 2.3824E-08 4.99 1.5512E-07 3.97 7.2190E-08 4.16
4 1/64 7.4627E-10 5.00 9.7626E-09 3.99 4.3310E-09 4.06

GEOC 4.98 3.97 4.20

5 1/8 1.4133E-06 – 2.3017E-06 – 1.6501E-06 –
5 1/16 2.2193E-08 5.99 3.6590E-08 5.98 2.6160E-08 5.98
5 1/32 3.4686E-10 6.00 5.7147E-10 6.00 4.0753E-10 6.00
5 1/64 5.4139E-12 6.00 8.8468E-12 6.01 6.3670E-12 6.00

GEOC 6.00 6.00 6.00

6 1/8 7.3313E-08 – 1.1239E-07 – 9.5990E-08 –
6 1/16 5.8381E-10 6.97 1.5138E-09 6.21 1.1620E-09 6.37
6 1/32 4.5855E-12 6.99 2.2864E-11 6.05 1.6380E-11 6.15
6 1/64 3.8771E-14 6.89 3.5354E-13 6.02 2.4417E-13 6.07

GEOC 6.95 6.09 6.19

Table 1.1: Computational error and EOC in the L2(Ω)-norm for the regular solution of problem (1.174).
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SIPG NIPG IIPG

p h/
√

2 |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC

1 1/8 1.5018E+00 – 1.2423E+00 – 1.4946E+00 –
1 1/16 7.7679E-01 0.95 6.4615E-01 0.94 7.7519E-01 0.95
1 1/32 3.9214E-01 0.99 3.2741E-01 0.98 3.9181E-01 0.98
1 1/64 1.9666E-01 1.00 1.6450E-01 0.99 1.9658E-01 1.00

GEOC 0.98 0.97 0.98

2 1/8 2.4259E-01 – 1.9985E-01 – 2.1634E-01 –
2 1/16 6.2760E-02 1.95 5.0217E-02 1.99 5.5693E-02 1.96
2 1/32 1.5849E-02 1.99 1.2536E-02 2.00 1.4053E-02 1.99
2 1/64 3.9743E-03 2.00 3.1305E-03 2.00 3.5244E-03 2.00

GEOC 1.98 2.00 1.98

3 1/8 2.5610E-02 – 2.4029E-02 – 2.3425E-02 –
3 1/16 3.2202E-03 2.99 3.0531E-03 2.98 2.9699E-03 2.98
3 1/32 4.0238E-04 3.00 3.8298E-04 2.99 3.7253E-04 3.00
3 1/64 5.0260E-05 3.00 4.7890E-05 3.00 4.6607E-05 3.00

GEOC 3.00 2.99 2.99

4 1/8 2.2049E-03 – 2.2096E-03 – 2.0645E-03 –
4 1/16 1.4023E-04 3.97 1.3801E-04 4.00 1.3039E-04 3.98
4 1/32 8.8035E-06 3.99 8.5962E-06 4.00 8.1650E-06 4.00
4 1/64 5.5077E-07 4.00 5.3601E-07 4.00 5.1038E-07 4.00

GEOC 3.99 4.00 3.99

5 1/8 1.5680E-04 – 1.6457E-04 – 1.5090E-04 –
5 1/16 4.9305E-06 4.99 5.1666E-06 4.99 4.7527E-06 4.99
5 1/32 1.5413E-07 5.00 1.6126E-07 5.00 1.4865E-07 5.00
5 1/64 4.8146E-09 5.00 5.0316E-09 5.00 4.6439E-09 5.00

GEOC 5.00 5.00 5.00

6 1/8 9.5245E-06 – 1.0198E-05 – 9.3719E-06 –
6 1/16 1.5092E-07 5.98 1.5951E-07 6.00 1.4762E-07 5.99
6 1/32 2.3666E-09 5.99 2.4862E-09 6.00 2.3083E-09 6.00
6 1/64 3.7008E-11 6.00 3.8770E-11 6.00 3.6051E-11 6.00

GEOC 5.99 6.00 6.00

Table 1.2: Computational error and EOC in the H1(Ω, Th)-seminorm for the regular solution of problem (1.174).
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Figure 1.5: Computational error and EOC in the L2(Ω)-norm (left) and in the H1(Ω, Th)-seminorm (right) for the regular
solution of problem (1.174).
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Figure 1.6: Exact solution (1.180) for α = −3/2 (left) and α = 1/2 (right).

We carried out computations on 4 triangular grids introduced in Section 1.8.1 by the SIPG, NIPG and IIPG technique with
the aid of Pp, p = 1, . . . , 6, polynomial approximations. Tables 1.3 – 1.4 and Tables 1.5 – 1.6 show the computational errors in
the L2(Ω)-norm as well as the H1(Ω, Th)-seminorm, and the corresponding experimental orders of convergence for α = 1/2 and
α = −3/2, respectively. These values are visualized in Figures 1.7 – 1.8 in which the achieved experimental order of convergence
is easy to observe.

These results lead us to the proposition that for the SIPG method the error behaves like

‖u− uh‖L2(Ω) = O(hµ), u ∈ Hβ(Ω) (1.182)

|u− uh|H1(Ω) = O(hµ−1), u ∈ Hβ(Ω),

where µ = min(p+ 1, β), and for the IIPG and NIPG methods like

‖u− uh‖L2(Ω) = O(hµ̄), u ∈ Hβ(Ω) (1.183)

|u− uh|H1(Ω) = O(hµ−1), u ∈ Hβ(Ω),

where µ = min(p + 1, β), µ̄ = min(p̄, β), and p̄ is given by (1.178). The statements (1.182) – (1.183) are in agreement with
numerical experiments (not presented here) carried out by other authors for additional values of α.

Moreover, the experimental order of convergence of the SIPG technique given by (1.182) corresponds to the result in [Fei89],
where for any β ∈ (1, 3/2) we get

‖v − Ihv‖L2(Ω) ≤ C(β)hµ‖v‖Hβ(Ω), v ∈ Hβ(Ω), (1.184)

|v − Ihv|H1(Ω) ≤ C(β)hµ−1‖v‖Hβ(Ω), v ∈ Hβ(Ω),

where Ihv is a piecewise polynomial Lagrange interpolation to v of degree ≤ p, µ = min(p + 1, β) and C(β) is a constant
independent of h and v. By [BS01, Section 3.3] and the references therein, where the interpolation in the so-called Besov
spaces is used, the precise error estimate of order O(h3/2) in the L2(Ω)-norm and O(h1/2) in the H1(Ω, Th)-seminorm can be
established, which corresponds to our numerical experiments.

Finally, the experimental order of convergence of the NIPG and IIPG techniques given by (1.183) corresponds to (1.184)
and results (1.178).

1.8.3 A note on the L2(Ω)- optimality of NIPG and IIPG

Numerical experiments from Section 1.8.1 lead us to the observation (1.178), which was presented, e.g., in [BBO99], [Riv08] and
the references cited therein. The optimal order of convergence for the odd degrees of approximation was theoretically justified in
[LN04], where NIPG and IIPG methods were analyzed for uniform partitions of the one-dimensional domain. See also [Che06],
where similar results were obtained.

On the other hand, several examples of 1D special non-uniform (but quasi-uniform) meshes were presented in [GR09], where
the NIPG method gives the error in the L2(Ω)-norm of order O(hp) even for odd p. A suboptimal EOC can also be obtained
for the IIPG method using these meshes, see [Riv08], Section 1.5, Table 1.2.

In [DH10], it was shown that the use of odd degrees of polynomial approximation of IIPG method leads to the optimal order
of convergence in the L2(Ω)-norm on 1D quasi-uniform grids if and only if the penalty parameter (of order O(h−1)) is chosen
in a special way. These results lead us to the hypothesis that the observation (1.178) is not valid in general.
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SIPG NIPG IIPG

p h/
√

2 ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC

1 1/8 2.1789E-03 – 8.1338E-04 – 1.8698E-03 –
1 1/16 5.7581E-04 1.92 2.1069E-04 1.95 4.8403E-04 1.95
1 1/32 1.4740E-04 1.97 5.3806E-05 1.97 1.2267E-04 1.98
1 1/64 3.7248E-05 1.98 1.3609E-05 1.98 3.0848E-05 1.99

GEOC 1.96 1.97 1.97

2 1/8 5.7796E-05 – 1.0098E-04 – 5.9762E-05 –
2 1/16 7.2545E-06 2.99 2.6758E-05 1.92 1.1004E-05 2.44
2 1/32 9.1150E-07 2.99 6.9525E-06 1.94 2.4341E-06 2.18
2 1/64 1.1434E-07 2.99 1.7734E-06 1.97 5.8760E-07 2.05

GEOC 2.99 1.94 2.22

3 1/8 2.6233E-06 – 4.0597E-06 – 2.7474E-06 –
3 1/16 1.9366E-07 3.76 3.3583E-07 3.60 2.1985E-07 3.64
3 1/32 1.4898E-08 3.70 2.8012E-08 3.58 1.7889E-08 3.62
3 1/64 1.1930E-09 3.64 2.3717E-09 3.56 1.4838E-09 3.59

GEOC 3.70 3.58 3.62

4 1/8 2.6498E-07 – 4.1937E-07 – 3.0663E-07 –
4 1/16 2.1097E-08 3.65 3.4292E-08 3.61 2.4522E-08 3.64
4 1/32 1.7819E-09 3.57 2.8705E-09 3.58 2.0460E-09 3.58
4 1/64 1.5429E-10 3.53 2.4482E-10 3.55 1.7516E-10 3.55

GEOC 3.58 3.58 3.59

5 1/8 5.8491E-08 – 9.3494E-08 – 7.2011E-08 –
5 1/16 4.9611E-09 3.56 8.1022E-09 3.53 6.1832E-09 3.54
5 1/32 4.2999E-10 3.53 7.0989E-10 3.51 5.3944E-10 3.52
5 1/64 3.7656E-11 3.51 6.2465E-11 3.51 4.7387E-11 3.51

GEOC 3.53 3.52 3.52

6 1/8 1.9318E-08 – 2.9767E-08 – 2.6495E-08 –
6 1/16 1.6677E-09 3.53 2.6000E-09 3.52 2.3079E-09 3.52
6 1/32 1.4570E-10 3.52 2.2856E-10 3.51 2.0259E-10 3.51
6 1/64 1.2809E-11 3.51 2.0149E-11 3.50 1.7847E-11 3.50

GEOC 3.52 3.51 3.51

Table 1.3: Computational error and EOC in the L2(Ω)-norm for the solution of problem (1.179) with α = 1/2.
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SIPG NIPG IIPG

p h/
√

2 |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC

1 1/8 5.0805E-02 – 4.2283E-02 – 5.0531E-02 –
1 1/16 2.5722E-02 0.98 2.1564E-02 0.97 2.5653E-02 0.98
1 1/32 1.2919E-02 0.99 1.0877E-02 0.99 1.2902E-02 0.99
1 1/64 6.4715E-03 1.00 5.4607E-03 0.99 6.4674E-03 1.00

GEOC 0.99 0.98 0.99

2 1/8 4.0313E-03 – 3.2281E-03 – 3.5738E-03 –
2 1/16 1.0230E-03 1.98 8.0878E-04 2.00 9.0960E-04 1.97
2 1/32 2.5750E-04 1.99 2.0223E-04 2.00 2.2938E-04 1.99
2 1/64 6.4585E-05 2.00 5.0547E-05 2.00 5.7592E-05 1.99

GEOC 1.99 2.00 1.99

3 1/8 2.2371E-04 – 2.2267E-04 – 2.0664E-04 –
3 1/16 3.2897E-05 2.77 3.2455E-05 2.78 3.0237E-05 2.77
3 1/32 5.0341E-06 2.71 4.9281E-06 2.72 4.5992E-06 2.72
3 1/64 8.0276E-07 2.65 7.8150E-07 2.66 7.2933E-07 2.66

GEOC 2.71 2.72 2.72

4 1/8 2.8019E-05 – 2.6863E-05 – 2.3759E-05 –
4 1/16 4.5630E-06 2.62 4.3388E-06 2.63 3.8426E-06 2.63
4 1/32 7.7950E-07 2.55 7.3892E-07 2.55 6.5504E-07 2.55
4 1/64 1.3572E-07 2.52 1.2850E-07 2.52 1.1398E-07 2.52

GEOC 2.56 2.57 2.57

5 1/8 8.0765E-06 – 8.3686E-06 – 7.0904E-06 –
5 1/16 1.3891E-06 2.54 1.4415E-06 2.54 1.2239E-06 2.53
5 1/32 2.4249E-07 2.52 2.5191E-07 2.52 2.1413E-07 2.51
5 1/64 4.2611E-08 2.51 4.4293E-08 2.51 3.7673E-08 2.51

GEOC 2.52 2.52 2.52

6 1/8 3.2423E-06 – 3.4916E-06 – 2.9734E-06 –
6 1/16 5.6456E-07 2.52 6.0843E-07 2.52 5.1885E-07 2.52
6 1/32 9.9090E-08 2.51 1.0684E-07 2.51 9.1177E-08 2.51
6 1/64 1.7456E-08 2.50 1.8826E-08 2.50 1.6072E-08 2.50

GEOC 2.51 2.51 2.51

Table 1.4: Computational error and EOC in the H1(Ω, Th)-seminorm for the solution of problem (1.179) with α = 1/2.
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Figure 1.7: Computational error and EOC in the L2(Ω)-norm (left) and the H1(Ω, Th)-seminorm (right) for the the solution of
problem (1.179) with α = 1/2.
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SIPG NIPG IIPG

p h/
√

2 ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖L2(Ω) EOC

1 1/8 9.2233E-03 – 1.4850E-02 – 7.9896E-03 –
1 1/16 3.2898E-03 1.49 5.3458E-03 1.47 2.8145E-03 1.51
1 1/32 1.1569E-03 1.51 1.8699E-03 1.52 9.8230E-04 1.52
1 1/64 4.0594E-04 1.51 6.5039E-04 1.52 3.4327E-04 1.52

GEOC 1.50 1.51 1.51

2 1/8 2.3410E-03 – 4.6812E-03 – 1.7779E-03 –
2 1/16 8.1979E-04 1.51 1.6138E-03 1.54 6.0110E-04 1.56
2 1/32 2.8885E-04 1.50 5.6696E-04 1.51 2.0820E-04 1.53
2 1/64 1.0199E-04 1.50 2.0059E-04 1.50 7.2989E-05 1.51

GEOC 1.51 1.51 1.53

3 1/8 9.7871E-04 – 3.1394E-03 – 1.0279E-03 –
3 1/16 3.4597E-04 1.50 1.1136E-03 1.50 3.6119E-04 1.51
3 1/32 1.2235E-04 1.50 3.9426E-04 1.50 1.2736E-04 1.50
3 1/64 4.3269E-05 1.50 1.3948E-04 1.50 4.4971E-05 1.50

GEOC 1.50 1.50 1.50

4 1/8 6.4002E-04 – 1.6788E-03 – 7.8547E-04 –
4 1/16 2.2608E-04 1.50 5.9262E-04 1.50 2.7649E-04 1.51
4 1/32 7.9902E-05 1.50 2.0934E-04 1.50 9.7529E-05 1.50
4 1/64 2.8245E-05 1.50 7.3980E-05 1.50 3.4442E-05 1.50

GEOC 1.50 1.50 1.50

5 1/8 3.8770E-04 – 1.1048E-03 – 6.0190E-04 –
5 1/16 1.3695E-04 1.50 3.9046E-04 1.50 2.1214E-04 1.50
5 1/32 4.8400E-05 1.50 1.3801E-04 1.50 7.4886E-05 1.50
5 1/64 1.7109E-05 1.50 4.8784E-05 1.50 2.6455E-05 1.50

GEOC 1.50 1.50 1.50

6 1/8 2.7881E-04 – 7.5211E-04 – 5.2298E-04 –
6 1/16 9.8519E-05 1.50 2.6580E-04 1.50 1.8457E-04 1.50
6 1/32 3.4822E-05 1.50 9.3954E-05 1.50 6.5195E-05 1.50
6 1/64 1.2310E-05 1.50 3.3215E-05 1.50 2.3039E-05 1.50

GEOC 1.50 1.50 1.50

Table 1.5: Computational error and EOC in the L2(Ω)-norm for the solution of problem (1.179) with α = −3/2.
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SIPG NIPG IIPG

p h/
√

2 |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC |eh|H1(Ω,Th) EOC

1 1/8 4.0604E-01 – 3.9606E-01 – 4.0035E-01 –
1 1/16 2.8999E-01 0.49 2.8508E-01 0.47 2.8631E-01 0.48
1 1/32 2.0555E-01 0.50 2.0312E-01 0.49 2.0309E-01 0.50
1 1/64 1.4539E-01 0.50 1.4413E-01 0.50 1.4370E-01 0.50

GEOC 0.49 0.49 0.49

2 1/8 1.9294E-01 – 2.3736E-01 – 1.8460E-01 –
2 1/16 1.3627E-01 0.50 1.6750E-01 0.50 1.3052E-01 0.50
2 1/32 9.6419E-02 0.50 1.1842E-01 0.50 9.2389E-02 0.50
2 1/64 6.8224E-02 0.50 8.3741E-02 0.50 6.5385E-02 0.50

GEOC 0.50 0.50 0.50

3 1/8 1.4304E-01 – 2.3656E-01 – 1.5217E-01 –
3 1/16 1.0145E-01 0.50 1.6731E-01 0.50 1.0794E-01 0.50
3 1/32 7.1853E-02 0.50 1.1833E-01 0.50 7.6459E-02 0.50
3 1/64 5.0852E-02 0.50 8.3679E-02 0.50 5.4113E-02 0.50

GEOC 0.50 0.50 0.50

4 1/8 9.4937E-02 – 1.7438E-01 – 1.0791E-01 –
4 1/16 6.7297E-02 0.50 1.2334E-01 0.50 7.6474E-02 0.50
4 1/32 4.7649E-02 0.50 8.7229E-02 0.50 5.4139E-02 0.50
4 1/64 3.3715E-02 0.50 6.1686E-02 0.50 3.8306E-02 0.50

GEOC 0.50 0.50 0.50

5 1/8 7.8490E-02 – 1.4046E-01 – 9.6583E-02 –
5 1/16 5.5605E-02 0.50 9.9348E-02 0.50 6.8396E-02 0.50
5 1/32 3.9357E-02 0.50 7.0261E-02 0.50 4.8400E-02 0.50
5 1/64 2.7843E-02 0.50 4.9686E-02 0.50 3.4238E-02 0.50

GEOC 0.50 0.50 0.50

6 1/8 6.4288E-02 – 1.2563E-01 – 9.3368E-02 –
6 1/16 4.5518E-02 0.50 8.8855E-02 0.50 6.6077E-02 0.50
6 1/32 3.2208E-02 0.50 6.2836E-02 0.50 4.6744E-02 0.50
6 1/64 2.2782E-02 0.50 4.4434E-02 0.50 3.3060E-02 0.50

GEOC 0.50 0.50 0.50

Table 1.6: Computational error and EOC in the H1(Ω, Th)-seminorm for the solution of problem (1.179) with α = −3/2.
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Figure 1.8: Computational error and EOC in the L2(Ω)-norm (left) and the H1(Ω, Th)-seminorm (right) for the the solution of
problem (1.179) with α = −3/2.
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However, extending theoretical results either to NIPG method or to higher dimensions is problematic. Some attempt was
presented in [dDBHM12], where the optimal order of convergence in the L2(Ω)-norm on equilateral triangular grids was proved
for the IIPG method with reduced interior and boundary penalties.
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Chapter 2

DGM for convection-diffusion problems

The next chapters 2–4 will be devoted to the DGM for the solution of nonstationary, in general nonlinear, convection-diffusion
initial-boundary value problems. Some equations treated here can serve as a simplified model of the Navier–Stokes system
describing compressible flow, but the subject of convection-diffusion problems is important for a number of areas in science and
technology, as is mentioned in the introduction.

In this chapter we shall be concerned with the analysis of the DGM applied to the space discretization of nonstationary
linear and nonlinear convection-diffusion equations. The time variable will be left as continuous. This means that we deal with
the so-called space semidiscretization, also called the method of lines. The full space-time discretization will be the subject of
Chapters ?? and 4.

The diffusion terms are discretized by interior penalty Galerkin techniques (SIPG, NIPG and IIPG) introduced in Chapter
1. A special attention is paid to the discretization of convective terms, where the concept of the numerical flux (well-known
from the finite volume method) is used. We derive error estimates for a nonlinear equation discretized by all three mentioned
techniques. These estimates are suboptimal in the L∞(L2)-norm and they are not uniform with respect to the diffusion
coefficient. However, for the symmetric SIPG variant, the optimal error estimate in the L∞(L2)-norm is derived. Finally, for a
linear convection-diffusion equation, we derive error estimates uniform with respect to the diffusion coefficient.

2.1 Scalar nonlinear nonstationary convection-diffusion equation

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz boundary ∂Ω =
∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, and T > 0. We shall assume that the (d − 1)-dimensional measure of ∂ΩD is positive. Let us
denote QT = Ω× (0, T ).

We are concerned with the following nonstationary nonlinear convection-diffusion problem with initial and mixed Dirichlet–
Neumann boundary conditions: Find u : QT → R such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs
= ε∆u+ g in QT , (2.1a)

u
∣∣
∂ΩD×(0,T )

= uD, (2.1b)

ε
∂u

∂n

∣∣
∂ΩN×(0,T )

= gN , (2.1c)

u(x, 0) = u0(x), x ∈ Ω. (2.1d)

We assume that the data satisfy the following conditions:

f = (f1, . . . , fd), fs ∈ C1(R), f ′s are bounded, fs(0) = 0, s = 1, . . . , d, (2.2a)

ε > 0, (2.2b)

g ∈ C([0, T ];L2(Ω)), (2.2c)

uD = trace of some u∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(QT ) on ∂ΩD × (0, T ), (2.2d)

gN ∈ C([0, T ];L2(∂ΩN )), (2.2e)

u0 ∈ L2(Ω). (2.2f)

The constant ε is a diffusion coefficient, fs, s = 1, . . . , d, are nonlinear convective fluxes and g is a source term. It can be seen
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that the assumption that fs(0) = 0 is not limiting. If u satisfies (2.1a), then it also satisfies the equation

∂u

∂t
+

d∑
s=1

∂(fs(u)− fs(0))

∂xs
= ε∆u+ g,

and the new convective fluxes f̃s := fs(u) − fs(0), s = 1, . . . , d, satisfy (2.2a). Let us note that in Section 4.2 we shall be
concerned with more complicated situation, where both convection and diffusion terms are nonlinear.

It is suitable to introduce the concept of a weak solution. To this end, we define the space

H1
0D(Ω) = {v ∈ H1(Ω); v|∂ΩD = 0},

and the following forms:

(u, v) = (u, v)L2(Ω) =

∫
Ω

uv dx, u, v ∈ L2(Ω),

a(u, v) = ε

∫
Ω

∇u · ∇v dx, u, v ∈ H1(Ω),

b(u, v) =

∫
Ω

d∑
s=1

∂fs(u)

∂xs
v dx, u ∈ H1(Ω) ∩ L∞(Ω), v ∈ L2(Ω),

(u, v)N =

∫
∂ΩN

u v dS, u, v ∈ L2(∂ΩN ).

Definition 2.1. A function u is called the weak solution of problem (2.1), if it satisfies the conditions

u− u∗ ∈ L2(0, T ;H1
0D(Ω)), u ∈ L∞(QT ), (2.3a)

d

dt
(u(t), v) + b(u(t), v) + a(u(t), v) = (g(t), v) + (gN (t), v)N ∀ v ∈ H1

0D(Ω) (2.3b)

(in the sense of distributions in (0, T )),

u(0) = u0 in Ω. (2.3c)

Let us recall that by u(t) we denote the function in Ω such that u(t) (x) = u(x, t), x ∈ Ω.

With the aid of techniques from [Rek82], [Lio96] or [Rou05], it is possible to prove that for a function u satisfying (2.3a) –
(2.3b) we have u ∈ C([0, T ];L2(Ω)), which means that condition (2.3c) makes sense, and that there exists a unique solution of
problem (2.3). Moreover, it satisfies the condition ∂u/∂t ∈ L2(QT ). Then (2.3b) can be rewritten as(

∂u(t)

∂t
, v

)
+ b(u(t), v) + a(u(t), v) = (g(t), v) + (gN (t), v)N (2.4)

∀ v ∈ H1
0D(Ω) and almost every t ∈ (0, T ).

We say that u satisfying (2.3) is a strong solution, if

u ∈ L2(0, T ;H2(Ω)),
∂u

∂t
∈ L2(0, T ;H1(Ω)). (2.5)

It is possible to show that the strong solution u satisfies equation (2.1) pointwise (almost everywhere) and u ∈ C([0, T ], H1(Ω)).

2.2 Discretization

In this section we introduce a DG space semidiscretization of problem (2.1). We use the notation and auxiliary results from
Sections 1.3–1.5.

By Th (h > 0) we denote a triangulation of the domain Ω introduced in Section 1.3.1. We start from the strong solution u
satisfying (2.5), multiply equation (2.1a) by an arbitrary v ∈ H2(Ω, Th), integrate over each K ∈ Th, and apply Green’s theorem.
We obtain the identity ∫

K

∂u(t)

∂t
v dx+

∫
∂K

d∑
s=1

fs(u(t))nsv dS −
∫
K

d∑
s=1

fs(u(t))
∂v

∂xs
dx (2.6)

+ ε

∫
K

∇u(t) · ∇v dx− ε
∫
∂K

(∇u(t) · n) v dS =

∫
K

g(t) v dx.
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Here n = (n1, . . . , nd) denotes the outer unit normal to ∂K. It is possible to write

d∑
s=1

fs(u)ns = f(u) · n,
d∑
s=1

fs(u)
∂v

∂xs
= f(u) · ∇v. (2.7)

Summing (2.6) over all K ∈ Th, using the technique introduced in Section 1.4 for the discretization of the diffusion term, we
obtain the identity (

∂u(t)

∂t
, v

)
+Ah(u(t), v) + b̃h(u(t), v) = `h(v)(t), (2.8)

where

Ah(w, v) = εah(w, v) + εJσh (w, v), (2.9)

ah(u, v) =
∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

(〈∇u〉 · n[v] + Θ〈∇v〉 · n[u]) dS, (2.10)

Jσh (u, v) =
∑

Γ∈FIDh

∫
Γ

σ[u] [v] dS, (2.11)

b̃h(u, v) =
∑
K∈Th

{∫
∂K

d∑
s=1

fs(u(t))nsv dS −
∫
K

d∑
s=1

fs(u(t))
∂v

∂xs
dx

}
, (2.12)

`h(v) (t) = (g(t), v) + (gN (t), v)N + ε
∑

Γ∈FDh

∫
Γ

(
σv −Θ(∇v · n)

)
uD(t) dS. (2.13)

(The symbols 〈 · 〉, [·] are defined in (1.32) and (1.33).) We call ah and Jh the diffusion form and the interior and boundary
penalty form, respectively. Similarly as in (1.104), the penalty weight σ is given by

σ|Γ = σΓ =
CW
hΓ

, Γ ∈ FIDh , (2.14)

where hΓ characterizes the “size” of Γ ∈ Fh defined in Section 1.6 and CW > 0 is a suitable constant. The symbol b̃h corresponds
to the convection terms. It will be further discretized.

Similarly, as in Section 1.4, for Θ = −1, Θ = 0 and Θ = 1 the form ah (together with the form Jσh ) represents the
nonsymmetric variant (NIPG), incomplete variant (IIPG) and symmetric variant (SIPG), respectively, of the diffusion form.

Remark 2.2. Let us note that in contrast to Chapter 1, the form Ah contains the diffusion coefficient ε, compare (1.45a) –
(1.45c) with (2.9). Therefore, the estimates from Chapter 1, which will be used here, have to be equipped with the multiplication
factor ε > 0. We do not emphasize it in the following.

Now we shall pay a special attention to the approximation of the convective terms represented by the form b̃h. The integrals∫
∂K

∑d
s=1 fs(u(t))nsv dS can be expressed in terms of the expressions

∫
Γ

∑d
s=1 fs(u(t))nsv dS, which will be approximated with

the aid of the so-called numerical flux H(u,w,n):∫
Γ

d∑
s=1

fs(u(t))nsv dS ≈
∫

Γ

H(u
(L)
Γ , u

(R)
Γ ,n) v

(L)
Γ dS, Γ ∈ Fh. (2.15)

Here H : R× R× B1 → R is a suitably defined function and B1 = {n ∈ Rd; |n| = 1} is the unit sphere in Rd. The simplest are
the central numerical fluxes given by

H(v1, v2,n) =

d∑
s=1

fs

(
v1 + v2

2

)
ns, H(v1, v2,n) =

d∑
s=1

fs(v1) + fs(v2)

2
ns.

However, in the most of applications it is suitable to use upwinding 1 numerical fluxes as, for example,

H(u1, u2,n) =

{ ∑d
s=1 fs(u1)ns, if P > 0∑d
s=1 fs(u2)ns, if P ≤ 0

, where P =

d∑
s=1

f ′s

(
u1 + u2

2

)
ns, (2.16)

1The concept of upwinding is based on the idea that the information on properties of a quantity u is propagated in the flow direction. Therefore,
discretization of convective terms is carried out with the aid of data located in the upwind direction from the points in consideration.
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or the Lax–Friedrichs numerical flux

H(v1, v2,n) =

d∑
s=1

fs(v1) + fs(v2)

2
ns − λ|v1 − v2|,

where λ > 0 has to be chosen in an appropriate way. For more examples and theoretical background of numerical fluxes we
refer to [FFS03].

If Γ ∈ FBh , then it is necessary to specify the meaning of u
(R)
Γ in (2.15). It is possible to use the extrapolation from the

interior of the computational domain

u
(R)
Γ := u

(L)
Γ , Γ ∈ FBh . (2.17)

In the theoretical analysis, we shall assume that the numerical flux satisfies the following properties:

1. continuity: H(u, v,n) is Lipschitz-continuous with respect to u, v: there exists a constant LH > 0 such that

|H(u, v,n)−H(u∗, v∗,n)| ≤ LH(|u− u∗|+ |v − v∗|), (2.18)

u, v, u∗, v∗ ∈ R, n ∈ B1.

2. consistency:

H(u, u,n) =

d∑
s=1

fs(u)ns, u ∈ R, n = (n1, . . . , nd) ∈ B1. (2.19)

3. conservativity:

H(u, v,n) = −H(v, u,−n), u, v ∈ R, n ∈ B1. (2.20)

By virtue of (2.18) and (2.19), the functions fs, s = 1, . . . , d, are Lipschitz-continuous with constant Lf = 2LH . From (2.2a)
and (2.19) we see that

H(0, 0,n) = 0 ∀n ∈ B1. (2.21)

Using the conservativity (2.20) of H and notation (1.32) – (1.33), we find that∑
K∈Th

∑
Γ⊂∂K,Γ∈Fh

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,n) v

(L)
Γ dS (2.22)

=
∑

Γ∈FIh

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,n)

(
v

(L)
Γ − v(R)

Γ

)
dS +

∑
Γ∈FBh

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,n) v

(L)
Γ dS

=
∑

Γ∈Fh

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,n) [v] dS

Let us recall that in integrals
∫

Γ
the symbol n denotes the normal nΓ.

Then, by virtue of (2.15) and (2.22), we define the convection form bh(u, v) approximating b̃h(u, v):

bh(u, v) =
∑

Γ∈Fh

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,n) [v] dS −

∑
K∈Th

∫
K

f(u) · ∇v dx, (2.23)

u, v ∈ H1(Ω, Th), u ∈ L∞(Ω).

By the definitions (2.12), (2.23) and the consistency (2.19), we have

bh(u, v) = b̃h(u, v) ∀u ∈ H2(Ω) ∀v ∈ H2(Ω, Th). (2.24)

Let Shp be the space of discontinuous piecewise polynomial functions (1.34). Since Shp ⊂ H2(Ω, Th) ∩ L∞(Ω), the forms
(2.10), (2.11), (2.13) and (2.23) make sense for u := uh, v := vh ∈ Shp. Then, we introduce the space DG-discretization of (2.1).
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Definition 2.3. We define the semidiscrete approximate solution as a function uh : QT → R satisfying the conditions

uh ∈ C1([0, T ];Shp), (2.25a)(
∂uh(t)

∂t
, vh

)
+Ah(uh(t), vh) + bh(uh(t), vh) = `h(vh) (t) (2.25b)

∀ vh ∈ Shp, ∀ t ∈ [0, T ],

(uh(0), vh) = (u0, vh) ∀ vh ∈ Shp. (2.25c)

We see that the initial condition (2.25c) can be written as uh(0) = Πhpu
0, where Πhp is the operator of the L2(Ω)-projection

on the space Shp (cf. (1.90)).
The discrete problem (2.25) is equivalent to an initial value problem for a system of ordinary differential equations (ODEs).

Namely, let {ϕi, i = 1, . . . , Nh} be a basis of the space Shp, where Nh = dimShp. The approximate solution uh is sought in the
form

uh(x, t) =

Nh∑
j=1

uj(t)ϕj(x), (2.26)

where uj(t) : [0, T ]→ R, j = 1, . . . , Nh, are unknown functions. For simplicity, we put

Bh(uh, vh) = `h(vh)−Ah(uh, vh)− bh(uh, vh), uh, vh ∈ Shp.
Now, substituting (2.26) into (2.25b) and putting vh := ϕi, we get

Nh∑
j=1

duj(t)

dt
(ϕj , ϕi) = Bh

Nh∑
j=1

uj(t)ϕj , ϕi

 , i = 1, . . . , Nh, (2.27)

which is the system of the ODEs for the unknown functions uj , j = 1, . . . , Nh. This approach to the numerical solution of initial
boundary value problems via the space semidiscretization is called the method of lines.

If we apply some ODE solver to problem (2.27), we obtain a fully discrete problem. In Chapter ?? we shall pay attention
to some full space-time discretization techniques. In what follows we shall be concerned with the analysis of the semidiscrete
problem (2.25).

Taking into account that the exact solution with property (2.5) satisfies [u]Γ = 0 for Γ ∈ FIh , u|∂ΩD×(0,T ) = uD and using
(2.8) and (2.24), we find that u satisfies the consistency identity(

∂u(t)

∂t
, vh

)
+Ah(u(t), vh) + bh(u(t), vh) = `h(vh) (t) (2.28)

for all vh ∈ Shp and almost all t ∈ (0, T ). This will be used in the error analysis.

Exercise 2.4. Verify the relation (2.28).

2.3 Abstract error estimate

In this section we shall analyze the behaviour of the error in method (2.25). We shall use results derived in Sections 1.6 and 1.7
dealing with the properties of the diffusion form ah and the penalty form Jσh . Similarly as in (1.103), we use the DG-norm

|||v||| =
(
|v|2H1(Ω,Th) + Jσh (v, v)

)1/2

, v ∈ H1(Ω, Th). (2.29)

In the error analysis we shall suppose that the following basic assumptions are satisfied.

Assumptions 2.5. Let the following assumptions be satisfied:

• assumptions (2.2) on data of problem (2.1),

• properties (2.18) – (2.20) of the numerical flux H,

• {Th}h∈(0,h̄) is a system of triangulations of the domain Ω satisfying the shape-regularity assumption (1.19) and the equiv-
alence condition (1.20) of hΓ and hK (cf. Lemma 1.5),

• the penalization constant CW satisfies the conditions from Corollary 1.41 for SIPG, NIPG and IIPG versions of the
diffusion form ah.

We shall again apply the multiplicative trace inequality (1.78), the inverse inequality (1.86) and the approximation properties
(1.93) – (1.95) and (1.98) – (1.100).
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2.3.1 Consistency of the convection form in the case of the Dirichlet boundary condition

We shall be concerned with Lipschitz-continuity and consistency of the form bh. The consistency analysis is split in two cases. In
this section we consider the case when the Dirichlet boundary condition is considered on the whole boundary ∂Ω, i.e., ∂ΩD = ∂Ω
and ∂ΩN = ∅. Analyzing the consistency of the form bh in the case of mixed boundary conditions is more complicated and is
presented in Section 2.3.2.

In what follows we shall assume that s ≥ 2, p ≥ 1 are integers.

Lemma 2.6. Let ΓN = ∅ (then Fh = FIDh ). Then there exist constants Cb1, . . . , Cb4 > 0 such that

|bh(u, v)− bh(ū, v)| ≤ Cb1|||v|||
(
‖u− ū‖2L2(Ω) +

∑
K∈Th

hK‖u− ū‖2L2(∂K)

)1/2

, (2.30)

u, ū ∈ H1(Ω, Th) ∩ L∞(Ω), v ∈ H1(Ω, Th), h ∈ (0, h̄),

|bh(uh, vh)− bh(ūh, vh)| ≤ Cb2|||vh||| ‖uh − ūh‖L2(Ω), (2.31)

uh, ūh, vh ∈ Shp, h ∈ (0, h̄).

If Πhpu is the Shp-interpolant of u ∈ Hs(Ω) defined by (1.90) and we put η = u−Πhpu, then

|bh(u, vh)− bh(Πhpu, vh)| ≤ Cb3Rb(η)|||vh|||, vh ∈ Shp, h ∈ (0, h̄), (2.32)

where

Rb(η) =
( ∑
K∈Th

(
‖η‖2L2(K) + h2

K |η|2H1(K)

))1/2

. (2.33)

Moreover, if ξ = uh −Πhpu, then under the above assumptions,

|bh(u, vh)− bh(uh, vh)| ≤ Cb4|||vh|||
(
Rb(η) + ‖ξ‖L2(Ω)

)
, vh ∈ Shp, h ∈ (0, h̄). (2.34)

Proof. (i) By (2.23), for u, ū, v ∈ H1(Ω, Th),

bh(u, v)− bh(ū, v) =−
∑
K∈Th

∫
K

(f(u)− f(ū)) · ∇v dx︸ ︷︷ ︸
=:σ1

(2.35)

+
∑

Γ∈Fh

∫
Γ

(
H(u

(L)
Γ , u

(R)
Γ ,n)−H(ū

(L)
Γ , ū

(R)
Γ ,n)

)
[v] dS︸ ︷︷ ︸

=:σ2

.

Let us recall that for Γ ∈ FBh we define the functions u
(R)
Γ and ū

(R)
Γ by extrapolation: u

(R)
Γ = u

(L)
Γ and ū

(R)
Γ = ū

(L)
Γ .

From the Lipschitz-continuity of the functions fs, s = 1, . . . , d, and the discrete Cauchy inequality we have

|σ1| ≤ Lf
∑
K∈Th

∫
K

d∑
s=1

|u− ū|
∣∣∣∣ ∂v∂xs

∣∣∣∣ dx ≤
√
dLf‖u− ū‖L2(Ω)|v|H1(Ω,Th). (2.36)

Relation (2.35), the Lipschitz-continuity (2.18) of H, the Cauchy inequality, (1.20), (2.11) and (2.14) imply that

|σ2| ≤ LH
∑

Γ∈Fh

∫
Γ

(∣∣∣u(L)
Γ − ū(L)

Γ

∣∣∣+
∣∣∣u(R)

Γ − ū(R)
Γ

∣∣∣) |[v]|dS (2.37)

≤ LH
(∑

Γ∈Fh

∫
Γ

[v]2

hΓ
dS

) 1
2
(∑

Γ∈Fh

∫
Γ

hΓ

(∣∣∣u(L)
Γ − ū(L)

Γ

∣∣∣+
∣∣∣u(R)

Γ − ū(R)
Γ

∣∣∣)2

dS

) 1
2

≤ LH
√
CG
CW

Jσh (v, v)1/2

( ∑
K∈Th

∫
∂K

2hK |u− ū|2 dS

)1/2

= LH

√
2CG
CW

Jσh (v, v)1/2

( ∑
K∈Th

hK‖u− ū‖2L2(∂K)

)1/2

.
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(Let us note that the third inequality in (2.37) is valid only if Fh = FIDh .) Taking into account (2.35) – (2.37) and using the
discrete Cauchy inequality, we get

|bh(u, v)− bh(ū, v)| (2.38)

≤
√
dLf‖u− ū‖L2(Ω)|v|H1(Ω,Th) + LH

√
2CG
CW

Jσh (v, v)1/2

( ∑
K∈Th

hK‖u− ū‖2L2(∂K)

) 1
2

≤
(
dL2

f‖u− ū‖2L2(Ω) + L2
H

2CG
CW

∑
K∈Th

hK‖u− ū‖2L2(∂K)

) 1
2 (
|v|2H1(Ω,Th) + Jσh (v, v)

) 1
2

.

This immediately implies (2.30) with Cb1 =
(

max(dL2
f , 2L

2
HCG/CW )

)1/2

.

(ii) Further, let uh, ūh, vh ∈ Shp. Using the multiplicative trace inequality (1.78) and the inverse inequality (1.86), for
ϕ ∈ Shp we obtain ∑

K∈Th
hK‖ϕ‖2L2(∂K) ≤ CM

∑
K∈Th

(
‖ϕ‖2L2(K) + hK‖ϕ‖L2(K) |ϕ|H1(K)

)
(2.39)

≤ CM
∑
K∈Th

(
‖ϕ‖2L2(K) + CI‖ϕ‖2L2(K)

)
= CM (1 + CI)‖ϕ‖2L2(Ω).

Now, if we set ϕ := uh− ūh and use (2.30) with u := uh, ū := ūh and v := vh, we get (2.31) with Cb2 = Cb1(1 +CM (1 +CI))
1/2.

(iii) In order to prove (2.32), we start from (2.30) with u ∈ Hs(Ω), ū := Πhp u and v := vh ∈ Shp. Using the multiplicative
trace inequality (1.78) and Young’s inequality, we find that∑

K∈Th
hK‖u−Πhpu‖2L2(∂K) =

∑
K∈Th

hK‖η‖2L2(∂K) (2.40)

≤ CM
∑
K∈Th

(
‖η‖2L2(K) + hK‖η‖L2(K)|η|H1(K)

)
≤ CM

∑
K∈Th

(
‖η‖2L2(K) +

1

2
‖η‖2L2(K) +

1

2
h2
K |η|2H1(K)

)
≤ 3

2
CMRb(η)2,

where Rb(η) is defined in (2.33). Consequently,

‖u−Πhp‖2L2(Ω) +
∑
K∈Th

hK‖u−Πhpu‖2L2(∂K) ≤ (1 +
3

2
CM )Rb(η)2,

which together with (2.30) immediately yield (2.32) with Cb3 = Cb1(1 + 3CM/2)1/2.
(iv) The triangle inequality gives

|bh(u, vh)− bh(uh, vh)| ≤ |bh(u, vh)− bh(Πhpu, vh)|+ |bh(Πhpu, vh)− bh(uh, vh)|.

From relations (2.32) and (2.31) with ūh = Πhpu and ξ = uh −Πhpu, we get (2.34) with Cb4 = max(Cb2, Cb3).

2.3.2 Consistency of the convective form in the case of mixed boundary conditions

Since Lemma 2.6 is valid only if a Dirichlet boundary condition is prescribed on ∂Ω, we shall be concerned here with the
consistency of the form bh in the case of a nonempty Neumann part ∂ΩN of the boundary ∂Ω. We shall start from several
auxiliary results.

The first lemma shows the existence of a vector-valued function with suitable properties. Its proof is based on the usual
definition of a domain with the Lipschitz boundary.

Lemma 2.7. There exists a vector-valued function ϕϕϕ ∈ (W 1,∞(Ω))d such that

ϕϕϕ · n ≥ 1 on ∂Ω, (2.41)

where n is the unit outer normal to ∂Ω.
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Proof. By [KJk77] or [Neč67], it follows from the Lipschitz-continuity of ∂Ω that there exist numbers α, β > 0, Cartesian
coordinate systems

Xr = (xr,1, . . . , xr,d−1, xr,d)
T

= (x′r, xr,d)
T

, (2.42)

Lipschitz-continuous functions

ar : ∆r =
{
x′r = (xr,1, . . . , xr,d−1)

T

; |xr,i| < α, i = 1, . . . , d− 1
}
→ R (2.43)

with a Lipschitz constant L > 0, and orthogonal transformations Ar : Rd → Rd, r = 1, . . . ,m, such that

∀x ∈ ∂Ω ∃ r ∈ {1, . . . ,m} ∃x′r ∈ ∆r : x = A−1
r (x′r, ar(x

′
r)) . (2.44)

Under the notation

V̂ +
r =

{
(x′r, xr,d) ∈ Rd; ar(x′r) < xr,d < ar(x

′
r) + β, x′r ∈ ∆r

}
, (2.45)

V̂ −r =
{

(x′r, xr,d) ∈ Rd; ar(x′r)− β < xr,d < ar(x
′
r), x

′
r ∈ ∆r

}
,

Λ̂r = {(x′r, xr,d);xr,d = ar(x
′
r) ∈ R, x′r ∈ ∆r} ,

we have

V̂ +
r ⊂ Ar(Ω), Λ̂r ⊂ Ar(∂Ω), V̂ −r ⊂ Ar(Rd \ Ω), ∂Ω ⊂

m⋃
r=1

Ur, (2.46)

where the sets Ur are defined by the relations

Ûr = V̂ +
r ∪ Λ̂r ∪ V̂ −r , Ur = A−1

r (Ûr). (2.47)

The mappings Ar can be written in the form

Ar(x) = Qrx+ x0
r, x ∈ Rd, (2.48)

where x0
r ∈ Rd and Qr are orthogonal d×d matrices, i. e., QrQ

T

r = I = unit matrix. Then the transformation of a d-dimensional
vector y ∈ Rd reads as

y ∈ Rd → Qry ∈ Rd. (2.49)

The sets Ur are open. There exists an open set U0 such that

U0 ⊂ Ω, Ω ⊂
m⋃
r=0

Ur. (2.50)

By the theorem on partition of unity ([KJk77]), there exist functions ϕr ∈ C∞0 (Ur), r = 0, . . . ,m, such that 0 ≤ ϕr ≤ 1 and

m∑
r=0

ϕr(x) = 1 for x ∈ Ω and

m∑
r=1

ϕr(x) = 1 for x ∈ ∂Ω. (2.51)

Since the functions ar are Lipschitz-continuous in ∆r, they are differentiable almost everywhere in ∆r. Hence, there exists
the gradient

∇ar(x′r) =

(
∂ar
∂xr,1

(x′r), . . . ,
∂ar

∂xr,d−1
(x′r)

)T

for a. e. x′r ∈ ∆r, (2.52)

and

|∇ar| ≤ L a. e. in ∆r, r = 1, . . . ,m. (2.53)

(Here a. e. is meant with respect to (d− 1)-dimensional measure.) Then there exists an outer unit normal

nr (x′r, ar(x
′
r)) =

1√
1 + |∇ar(x′r)|2

(∇ar(x′r), −1) (2.54)
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to ∂V̂ +
r for a. e. Xr = (x′r, ar(x

′
r)) ∈ Λ̂r (with respect to (d− 1)-dimensional measure defined on Λ̂r – cf. [KJk77]) and

n(x) = Q
T

rnr(Ar(x)), a. e. x ∈ ∂Ω, Ar(x) ∈ Λ̂r, (2.55)

is the outer unit normal to ∂Ω.
If we set ed = (0, . . . , 0,−1)

T ∈ Rd, then by (2.52) and (2.53)

nr(Xr) · ed =
1√

1 + |∇ar(x′r)|2
≥ 1√

1 + L2
, Xr ∈ Λ̂r, r = 1, . . . ,m. (2.56)

By virtue of the orthogonality of Qr, for a. e. x ∈ ∂Ω, with Ar(x) ∈ Λ̂r, we have

n(x) · (QT

r ed) =
(
Q

T

r nr(Ar(x))
)
·
(
Q

T

r ed

)
(2.57)

=
(
Q

T

r nr(Ar(x))
)T

·
(
Q

T

r ed

)
=
(
nr(Ar(x))

T

Qr
)
·
(
Q

T

r ed

)
= nr(Ar(x)) · ed ≥

1√
1 + L2

, r = 1, . . . ,m.

Now we define the function ϕϕϕ by

ϕϕϕ(x) =
√

1 + L2

m∑
r=1

ϕr(x)QTr ed, x ∈ Rd. (2.58)

Obviously, ϕϕϕ ∈ (C∞0 (Rd))d and thus ϕϕϕ ∈W 1,∞(Ω)d. Moreover, by (2.51), (2.57) and (2.58),

ϕϕϕ(x) · n(x) ≥
m∑
r=1

ϕr(x) = 1, x ∈ ∂Ω,

what we wanted to prove.

Now we shall prove a “global version” of the multiplicative trace inequality.

Lemma 2.8. There exists a constant C ′M > 0 such that

‖v‖2L2(∂Ω) ≤ C ′M

|||v|||
(
‖v‖2L2(Ω) +

∑
K∈Th

hK‖v‖2L2(∂K)

)1/2

+ ‖v‖2L2(Ω)

 ,

v ∈ H1(Ω, Th), h ∈ (0, h̄). (2.59)

Proof. Let v ∈ H1(Ω, Th), h ∈ (0, h̄) and K ∈ Th. Let ϕϕϕ ∈ (W 1,∞(Ω))d be the function from Lemma 2.7. By Green’s theorem,∫
∂K

v2ϕϕϕ · ndS =

∫
K

∇ · (v2ϕϕϕ) dx =

∫
K

(v2∇ ·ϕϕϕ+ 2vϕϕϕ · ∇v) dx.

The summation over all K ∈ Th implies that∫
∂Ω

v2ϕϕϕ · ndS +
∑

Γ∈FIh

∫
Γ

[v2]ϕϕϕ · n dS =
∑
K∈Th

∫
K

(
v2∇ ·ϕϕϕ+ 2vϕϕϕ · ∇v

)
dx. (2.60)

In view of (2.41) and (2.60),∫
∂Ω

v2 dS ≤
∫
∂Ω

v2ϕϕϕ · ndS ≤
∑
K∈Th

∫
K

|v2∇ ·ϕϕϕ+ 2vϕϕϕ · ∇v|dx+
∑

Γ∈FIh

∫
Γ

∣∣[v2]
∣∣ |ϕϕϕ|dS.

Taking into account that ϕϕϕ ∈ (W 1,∞(Ω))d and using the Cauchy and Young’s inequalities, we find that

‖v‖2L2(∂Ω)≤‖ϕϕϕ‖(W 1,∞(Ω))d

( ∑
Γ∈FIh

∫
Γ

∣∣[v2]
∣∣dS + ‖v‖2L2(Ω) + 2

∑
K∈Th

‖v‖L2(K) |v|H1(K)

)
. (2.61)
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Further, by the Cauchy inequality, (1.20), (1.107), (2.11) and (2.14), we have∑
Γ∈FIh

∫
Γ

∣∣[v2]
∣∣ dS = 2

∑
Γ∈FIh

∫
Γ

|[v] 〈v〉| dS (2.62)

≤ 2

∑
Γ∈FIh

∫
Γ

σ[v]2dS

1/2∑
Γ∈FIh

∫
Γ

σ−1〈v〉2dS

1/2

≤ 2C
−1/2
W C

1/2
G Jσh (v, v)1/2

( ∑
K∈Th

hK‖v‖2L2(∂K)

)1/2

.

Now, it follows from (2.61), (2.62) and the discrete Cauchy inequality that

‖v‖2L2(∂Ω) ≤ ‖ϕϕϕ‖(W 1,∞(Ω))d

{
2C
−1/2
W C

1/2
G Jσh (v, v)1/2

( ∑
K∈Th

hK‖v‖2L2(∂K)

)1/2

+ ‖v‖2L2(Ω) + 2‖v‖L2(Ω) |v|H1(Ω,Th)

}
,

which implies (2.59) with C ′M = max(2C
−1/2
W C

1/2
G , 2)‖ϕϕϕ‖(W 1,∞(Ω))d .

Now we shall apply the above results to the derivation of the consistency estimate of the form bh. This form can be expressed
as

bh(w, v) = bIDh (w, v) + bNh (w, v), (2.63)

where

bIDh (w, v) =−
∑
K∈Th

∫
K

d∑
s=1

fs(w)
∂v

∂xs
dx+

∑
Γ∈FIh

∫
Γ

H(w|(L)
Γ , w|(R)

Γ , n)[v]Γ dS

+
∑

Γ∈FDh

∫
Γ

H(w|(L)
Γ , w|(L)

Γ , n) v|(L)
Γ dS (2.64)

and, due to (2.19),

bNh (w, v) =
∑

Γ∈FNh

∫
Γ

H(w|(L)
Γ , w|(L)

Γ , n)v|(L)
Γ dS =

∑
Γ∈FNh

∫
Γ

d∑
s=1

fs(w|(L)
Γ )ns v|(L)

Γ dS. (2.65)

Let us set ξ = uh −Πhpu ∈ Shp. We are interested estimating the expression

bh(u, ξ)− bh(uh, ξ) =
(
bIDh (u, ξ)− bIDh (uh, ξ)

)
+
(
bNh (u, ξ)− bNh (uh, ξ)

)
. (2.66)

Then, by (2.34) with vh = ξ, ∣∣bIDh (u, ξ)− bIDh (uh, ξ)
∣∣ ≤ Cb4|||ξ||| (Rb(η) + ‖ξ‖L2(Ω)

)
, (2.67)

where Rb(η) is defined by (2.33).
It remains to estimate the second term on the right-hand side of (2.66).

Lemma 2.9. Let u ∈ Hs(Ω), uh ∈ Shp, ξ = uh −Πhpu. Then∣∣bNh (u, ξ)− bNh (uh, ξ)
∣∣ ≤ CN (Rc(η)2 + |||ξ|||‖ξ‖L2(Ω) + ‖ξ‖2L2(Ω)

)
, (2.68)

where

Rc(η) =
( ∑
K∈Th

(
h−1
K ‖η‖2L2(K) + hK |η|2H1(K)

))1/2

(2.69)

and CN is a constant independent of u, uh and h.
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Proof. By (2.65), Lipschitz-continuity (2.18), Cauchy and Young’s inequalities, and the relation uh − u = η + ξ, where η =
Πhpu− u, we get ∣∣bNh (u, ξ)− bNh (uh, ξ)

∣∣ ≤ CL‖u− uh‖L2(∂ΩN )‖ξ‖L2(∂ΩN ) (2.70)

≤ CL‖u− uh‖L2(∂Ω) ‖ξ‖L2(∂Ω) ≤ CL
(

1

2
‖η‖2L2(∂Ω) +

3

2
‖ξ‖2L2(∂Ω)

)
with CL = 2LH . Moreover, using the multiplicative trace inequality (1.78) and Young’s inequality, we find that

‖η‖2L2(∂Ω) ≤
∑
K∈Th

‖η‖2L2(∂K) ≤ CM
∑
K∈Th

(
h−1
K ‖η‖2L2(K) + ‖η‖L2(K)|η|H1(K)

)
≤ CM

∑
K∈Th

(
h−1
K ‖η‖2L2(K) +

1

2
h−1
K ‖η‖2L2(K) +

1

2
hK |η|2H1(K)

)
≤ 3

2
CMRc(η)2, (2.71)

where Rc(η) is defined in (2.69).
We estimate ‖ξ‖2L2(∂Ω) according to Lemma 2.8. Taking into account that ξ ∈ Shp and using the multiplicative trace

inequality (1.78) and the inverse inequality (1.86), we find that∑
K∈Th

hK‖ξ‖2L2(∂K) ≤ CM
∑
K∈Th

hK

(
‖ξ‖L2(K)|ξ|H1(K) + h−1

K ‖ξ‖2L2(K)

)
(2.72)

≤ CM (1 + CI) ‖ξ‖2L2(Ω).

Hence, in view of (2.59) and (2.72), we have

‖ξ‖2L2(∂Ω) ≤ C ′M
{

(CM (1 + CI) + 1)
1/2 |||ξ||| ‖ξ‖L2(Ω) + ‖ξ‖2L2(Ω)

}
(2.73)

≤ C∗
(
|||ξ|||‖ξ‖L2(Ω) + ‖ξ‖2L2(Ω)

)
,

where C∗ = C ′M (CM (1 + CI) + 1)1/2. Finally, (2.70), (2.71) and (2.73) yield estimate (2.68) with CN = 1
2CL max(2CM , 3C

∗),
which we wanted to prove.

Let us summarize the above results.

Corollary 2.10. Let u ∈ Hs(Ω), s ≥ 2, uh ∈ Shp, ξ = uh −Πhpu, η = Πhpu− u. Then

|bh(u, ξ)− bh(uh, ξ)| (2.74)

≤ Cb
(
|||ξ|||

(
Rb(η) + ‖ξ‖L2(Ω)

)
+ δN

(
Rc(η)2 + ‖ξ‖2L2(Ω)

))
,

where δN = 0, if ∂ΩN = ∅, and δN = 1, if ∂ΩN 6= ∅.

Proof. Estimate (2.74) is an immediate consequence of (2.67) and (2.68) with the constant Cb = Cb4 + CN .

2.3.3 Error estimates for the method of lines

Now we derive the error estimates of the method of lines (2.25) under the assumption that the exact solution u satisfies the
condition

∂u

∂t
∈ L2(0, T ;Hs(Ω)), (2.75)

where s ≥ 2 is an integer. Assumption (2.75) implies that u ∈ C([0, T ];Hs(Ω)).
Let Πhpu(t) be the Shp-interpolation of u(t) (t ∈ [0, T ]) from (1.90). We set

ξ = uh −Πhpu ∈ Shp, η = Πhpu− u ∈ Hs(Ω, Th). (2.76)

Then the error eh can be expressed as

eh = uh − u = ξ + η. (2.77)
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Subtracting (2.28) from (2.25b), where we substitute vh := ξ, we get(
∂ξ

∂t
, ξ

)
+Ah(ξ, ξ) = bh(u, ξ)− bh(uh, ξ)−

(
∂η

∂t
, ξ

)
−Ah(η, ξ). (2.78)

(Of course, ξ = ξ(t), η = η(t) for t ∈ [0, T ], but we do not emphasize the dependence on t by our notation, if it is not necessary.)
In what follows we shall estimate the individual terms on the right-hand side of (2.78).

The Cauchy inequality implies that ∣∣∣∣(∂η∂t , ξ
)∣∣∣∣ ≤∥∥∥∥∂η∂t

∥∥∥∥
L2(Ω)

‖ξ‖L2(Ω). (2.79)

Moreover, using the result of Lemma 1.37, we have

|Ah(η, ξ)| ≤ εC̃BRa(η)|||ξ|||, (2.80)

where C̃B is the constant from (1.129) and

Ra(η) =

( ∑
K∈Th

(
|η|2H1(K) + h2

K |η|2H2(K) + h−2
K ‖η‖2L2(K)

))1/2

. (2.81)

Finally, we define the term

RQ(η) =
2C2

1

εCC

(
Rb(η) + εRa(η)

)2

+ 2C1

(
Rc(η)2 + ‖∂tη‖2L2(Ω)

)
, (2.82)

where Rb(η) is defined by (2.33), Rc(η) is defined by (2.69), and the constant C1 is defined as C1 = max(Cb + 1, C̃B). This
notation will be useful in the following.

Now we prove the so-called abstract error estimate, representing a bound of the error in terms of the Shp-interpolation error
η. Let us recall that in order to increase the readability of the derivation of the error estimate, we number constants appearing
in the proofs.

Theorem 2.11. Let Assumptions 2.5 from Section 2.3 be satisfied. Let u be the exact strong solution of problem (2.1) satisfying
(2.75) and let uh be the approximate solution obtained by scheme (2.25). Then the error eh = uh − u satisfies the estimate

‖eh(t)‖2L2(Ω) + εCCε

∫ T

0

|||eh(ϑ)|||2 dϑ (2.83)

≤ C2(ε)

(∫ T

0

RQ(η(t)) dt+ ‖η(t)‖2L2(Ω) + CC

∫ T

0

|||η(ϑ)|||2 dϑ

)
,

t ∈ (0, T ), h ∈ (0, h̄),

where CC is the constant from the coercivity inequality (1.140) of the form 1
εAh = ah + Jσh , RQ(η) is given by (2.82) and C2(ε)

is a constant independent of h and u, but depending on ε (see (2.93)).

Proof. As in (2.76), we set ξ = uh −Πhpu ∈ Shp, η = Πhpu− u. Then (2.77) holds: eh = uh − u = ξ + η. Due to the coercivity
(1.140) of the form Ah,

εCC |||ξ|||2 ≤ Ah(ξ, ξ). (2.84)

It follows from (2.78), (2.84) and the relation (
∂ξ

∂t
, ξ

)
=

1

2

d

dt
‖ξ‖2L2(Ω), (2.85)

that

1

2

d

dt
‖ξ‖2L2(Ω) + εCC |||ξ|||2 ≤ bh(u, ξ)− bh(uh, ξ)−

(
∂η

∂t
, ξ

)
−Ah(η, ξ). (2.86)
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Now from (2.74), (2.79), (2.80), using the inequality (γ + δ)2 ≤ 2(γ2 + δ2) and Cauchy and Young’s inequalities, we derive the
estimates

d

dt
‖ξ‖2L2(Ω) + 2εCC |||ξ|||2 (2.87)

≤ 2Cb

(
|||ξ|||

(
Rb(η) + ‖ξ‖L2(Ω)

)
+Rc(η)2 + ‖ξ‖2L2(Ω)

)
+ 2‖∂tη‖L2(Ω) ‖ξ‖L2(Ω) + 2εC̃BRa(η)|||ξ|||

≤ 2C1

{
|||ξ|||

(
‖ξ‖L2(Ω) +Rb(η) + εRa(η)

)
+Rc(η)2 + ‖ξ‖2L2(Ω) + ‖∂tη‖2L2(Ω)

}

≤ εCC |||ξ|||2 +
C2

1

εCC

(
‖ξ‖L2(Ω) +Rb(η) + εRa(η)

)2
+ 2C1

{
Rc(η)2 + ‖ξ‖2L2(Ω) + ‖∂tη‖2L2(Ω)

}

≤ εCC |||ξ|||2 + C3

(
1 +

1

εCC

)
‖ξ‖2L2(Ω) +RQ(η),

where C1 = max(Cb + 1, C̃B), C3 = 2 max(C1, C
2
1 ) and RQ(η) is given by (2.82). Hence,

d

dt
‖ξ(t)‖2L2(Ω) + εCC |||ξ(t)|||2 ≤ C3

(
1 +

1

εCC

)
‖ξ(t)‖2L2(Ω) +RQ(η(t)). (2.88)

Since u, ∂u∂t ∈ L2(0, T ;Hµ(Ω)), the right-hand side of (2.88) is integrable over (0, T ). From (2.76) and (2.25c) we see that
ξ(0) = 0. The integration of (2.88) from 0 to t ∈ [0, T ] yields

‖ξ(t)‖2L2(Ω) + εCC

∫ t

0

|||ξ(ϑ)|||2 dϑ (2.89)

≤ C3

(
1 +

1

εCC

)∫ t

0

‖ξ(ϑ)‖2L2(Ω) dϑ+

∫ t

0

RQ(η(ϑ)) dϑ.

Now we shall apply Gronwall’s Lemma 0.9 with

y(t) = ‖ξ(t)‖2L2(Ω), q(t) = εCC

∫ t

0

|||ξ(ϑ)|||2 dϑ,

r(t) = C3
εCC + 1

εCC
, z(t) =

∫ t

0

RQ(η(ϑ)) dϑ.

Further, let us set

R(η, ε) =

∫ T

0

RQ(η(ϑ)) dϑ, (2.90)

c1(ε) = 1 + C3
εCC + 1

εCC
T exp

(
C3
εCC + 1

εCC
T

)
.

We easily show that

z(t) ≤
∫ T

0

RQ(η(ϑ)) dϑ = R(η, ε), exp

(∫ t

ϑ

r(s)ds

)
≤ exp

(
C3
εCC + 1

εCC
T

)
,

z(t) +

∫ t

0

r(ϑ)z(ϑ)exp

(∫ t

ϑ

r(s)ds

)
dϑ ≤ R(η, ε)c1(ε).

This, (2.89) and Gronwall’s lemma 0.9 yield the estimate

‖ξ(t)‖2L2(Ω) + εCC

∫ t

0

|||ξ(ϑ)|||2dϑ ≤ R(η, ε)c1(ε), t ∈ [0, T ], h ∈ (0, h̄). (2.91)
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By virtue of the relation eh = ξ + η and the inequality (γ + δ)2 ≤ 2(γ2 + δ2), we can write

‖eh‖2L2(Ω) ≤2
(
‖ξ‖2L2(Ω) + ‖η‖2L2(Ω)

)
, |||eh|||2 ≤ 2

(
|||ξ|||2 + |||η|||2

)
.

Using (2.91), we deduce that

‖eh(t)‖2L2(Ω) + εCC

∫ t

0

|||eh(ϑ)|||2 dϑ (2.92)

≤ 2

(
R(η, ε)c1(ε) + ‖η(t)‖2L2(Ω) + εCC

∫ t

0

|||η(ϑ)|||2 dϑ

)
, t ∈ [0, T ], h ∈ (0, h̄),

which already implies estimate (2.83) with the constant

C2(ε) =2

(
1 + C3

εCC + 1

εCC
T exp

(
C3
εCC + 1

εCC
T

))
. (2.93)

2.4 Error estimates in terms of h

Now we derive the first main result of this chapter on the error estimate of the method of lines for the solution of the nonlinear
convection-diffusion problem. It will be obtained by estimating the right-hand side of (2.83) in terms of h.

We assume that s ≥ 2 and the exact solution u satisfies the regularity assumption

∂u

∂t
∈ L2(0, T ;Hs(Ω)). (2.94)

Then u ∈ C([0, T ], Hs(Ω)). As usual, we put η(t) = u(u) − Πhpu(t), t ∈ (0, T ), and µ = min(p + 1, s). Recalling (1.149), we
have

‖η(t)‖L2(K) ≤ CA hµK |u(t)|Hµ(K), K ∈ Th, t ∈ (0, T ), (2.95)

|η(t)|H1(K) ≤ CA hµ−1
K |u(t)|Hµ(K), K ∈ Th, t ∈ (0, T ),

|η(t)|H2(K) ≤ CA hµ−2
K |u(t)|Hµ(K), K ∈ Th, t ∈ (0, T ),

where CA is the constant from Lemma 1.22. Then, a simple manipulation gives∑
K∈Th

(
|η(t)|2H1(K) + h2

K |η(t)|2H2(K) + h−2
K ‖η(t)‖L2(K)

)
≤ 3C2

Ah
2(µ−1)|u(t)|2Hµ(Ω),

for any t ∈ (0, T ). This together with (2.81) implies that

Ra(η(t)) = Ra (u(t)−Πhpu(t)) ≤
√

3CAh
µ−1|u(t)|Hµ(Ω), t ∈ (0, T ). (2.96)

Similarly, from (2.33), we obtain

Rb(η(t)) = Rb (u(t)−Πhpu(t)) ≤
√

2CAh
µ|u(t)|Hµ(Ω), t ∈ (0, T ). (2.97)

Moreover, (2.69) and (2.95) give

Rc(η(t)) ≤
√

2CAh
µ−1/2|u(t)|Hµ(Ω), t ∈ (0, T ). (2.98)

Further, we shall use the notation ∂tu = ∂u/∂t and ∂t(Πhpu) = ∂(Πhpu)/∂t. Then definition (1.90) of the interpolation
operator Πhp and the relation

∂t(Πhpu(t)) = Πhp(∂tu(t)) ∈ Shp (2.99)

imply that

‖∂tη‖L2(Ω) = ‖∂t(Πhpu− u)‖L2(Ω) = ‖Πhp(∂tu)− ∂tu‖L2(Ω) ≤ CAhµ |∂tu|Hµ(Ω) . (2.100)

Exercise 2.12. Using the theorem on differentiating an integral with respect to a parameter, prove (2.99).
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Summarizing (2.82) with (2.96), (2.97), (2.98) and (2.100), we see that for t ∈ (0, T ), we have

RQ(η(t)) =
2C2

1

εCC

(
Rb(η(t)) + εRa(η(t))

)2

+ 2C1

(
Rc(η(t))2 + ‖∂tη(t)‖2L2(Ω)

)
≤ 2C2

1

εCC

(√
2CAh

µ|u(t)|Hµ(Ω) + ε
√

3CAh
µ−1|u(t)|Hµ(Ω)

)2

(2.101)

+ 4C1C
2
Ah

2µ−1|u(t)|2Hµ(Ω) + 2C1C
2
Ah

2µ |∂tu(t)|2Hµ(Ω)

≤ 2C2
1C

2
A

εCC
h2(µ−1)|u(t)|2Hµ(Ω)(2h

2 + 2
√

6εh+ 3ε2)

+ 4C1C
2
Ah

2(µ−1)
(
|u(t)|2Hµ(Ω) + |∂tu(t)|2Hµ(Ω)

)
(h+ h2)

≤ C4h
2(µ−1)

(
ε−1h2 + h+ ε+ h2

) (
|u(t)|2Hµ(Ω) + |∂tu(t)|2Hµ(Ω)

)
,

where

C4 = 4C2
A max

(√
6C2

1

CC
, C1

)
. (2.102)

The integration of (2.101) over (0, T ) yields∫ T

0

RQ(η(t)) dt (2.103)

≤ C4h
2µ−2

(
ε−1h2 + h+ ε+ h2

) (
|u|2L2(0,T ;Hµ(Ω)) + |∂tu|2L2(0,T ;Hµ(Ω))

)
.

Furthermore, using (2.29), (1.119) and (2.95), we get

|||η(t)|||2 =|η(t)|2H1(Ω,Th) + Jσh (η(t), η(t)) (2.104)

≤
∑
K∈Th

(
|η(t)|2H1(K) + CWCMC

−1
T

(
3h−2

K ‖η(t)‖2L2(K) + |η(t)|2H1(K)

))
≤ C5h

2(µ−1)|u(t)|2Hµ(Ω), t ∈ (0, T ),

where C5 = C2
A(4CWCMC

−1
T + 1). Hence,

εCC

∫ T

0

|||η(t)|||2 dt ≤ εCCC5h
2(µ−1)|u|2L2(0,T ;Hµ(Ω)). (2.105)

Remark 2.13. The above estimates illustrate a typical situation in numerical analysis, where a number of constants appear.
They are often defined recursively in a complicated way on the basis of constants introduced before. As an example we illustrate
this situation by the process leading to the determination of the constant C4 defined by (2.102). This relation contains the
constant CA appearing in Lemmas 1.22 and 1.24 and the constant C1, which is defined recursively in the following way:

C1 = max(Cb + 1, C̃B),

Cb = Cb4 + CN ,

Cb4 = max(Cb2, Cb3),

CN =
1

2
CLmax(2CM , 3C

∗),

CL = 2LH ,

C∗ = C ′M (CM (1 + CI) + 1)1/2,

C ′M = max(2C
−1/2
W C

1/2
G , 2)‖ϕϕϕ‖(W 1,∞(Ω))d ,

Cb2 = Cb1(1 + CM (1 + CI))
1/2,

Cb3 = Cb1(1 + 3CM/3)1/2,

Cb1 = (max(dL2
f , 2L

2
H CG/CW ))1/2,

where C̃B is the constant from Lemma 1.37, CM is the constant from Lemma 1.37 (multiplicative trace inequality), LH is the
constant from the Lipschitz continuity (2.18) of the numerical flux H, CI is the constant from the inverse inequality (1.86),
CW is the constant from the definition (1.104) of the weight in the penalty form Jσh , CG is the constant from the equivalence
condition (1.20), ϕϕϕ is the function from Lemma 2.7 and Lf is the constant from the Lipschitz continuity of the convective fluxes
fs, s = 1, . . . , d.
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Now we are ready to present the final error estimates.

Theorem 2.14. Let Assumptions 2.5 from Section 2.3 be satisfied. Let u be the exact strong solution of problem (2.1) satisfying
(2.75) and let uh be the approximate solution obtained by the scheme (2.25). Then the error eh = uh − u satisfies the estimate

max
t∈[0,T ]

‖eh(t)‖2L2(Ω) + CCε

∫ T

0

|||eh(ϑ)|||2 dϑ (2.106)

≤ C̃2(ε)h2(µ−1)
(
|u|2L2(0,T ;Hµ(Ω)) + |∂tu|2L2(0,T ;Hµ(Ω))

)
, h ∈ (0, h̄),

where CC is the constant from the coercivity inequality (1.140) of the form 1
εAh = ah + Jσh and C̃2(ε) is a constant independent

of h and u, specified in the proof.

Proof. If t ∈ [0, T ], then the estimation of the right-hand side of (2.83) by (2.103), (2.105) and (2.95) implies that

‖eh(t)‖2L2(Ω) + CCε

∫ T

0

|||eh(ϑ)|||2 dϑ

≤ C2(ε)

(∫ T

0

RQ(η(t)) dt+ ‖η(t)‖2L2(Ω) + εCC

∫ T

0

|||η(ϑ)|||2 dϑ

)
,

≤ C̃2(ε)h2µ−2
(
|u|2L2(0,T ;Hµ(Ω)) + |∂tu|2L2(0,T ;Hµ(Ω))

)
,

where C2(ε) is the constant from Theorem 2.11 given by (2.93) and

C̃2(ε) = C2(ε)(C4 + CCC5 + C2
A)
(
ε−1h̄2 + h̄+ ε+ h̄2

)
. (2.107)

This proves (2.106).

Remark 2.15. Estimate (2.106) implies that

‖u− uh‖L∞(0,T ;L2(Ω)) = O(hµ−1) for h→ 0 + . (2.108)

This is in contrast to the approximation properties (1.98) implying that

‖u−Πhpu‖L∞(0,T ;L2(Ω)) = O(hµ). (2.109)

Numerical experiments presented in the next section demonstrate that the error estimate (2.106) is suboptimal in the L∞(0, T ;L2(Ω))-
norm. Similarly as in Section 1.7.2 we can derive optimal error estimate in this norm. This is the subject of the next section.

Remark 2.16. From (2.107) and (2.93) we can see that the error estimate (2.106) cannot be used for ε very small, because the
definition (2.93) of the constant C2(ε) contains the term of the form exp(C/ε), which blows up exponentially for ε→ 0+. This
is caused by the technique used in the theoretical analysis (application of Young’s inequality and Gronwall’s Lemma) in order
to overcome the nonlinearity in the convective terms. The nonlinearity of the convective terms represents a serious obstacle for
obtaining a uniform error estimate with respect to ε → 0+. In Section 2.6 we shall be concerned with error estimates of the
DGM applied to the numerical solution of a linear convection-diffusion-reaction equation, uniform with respect to the diffusion
parameter ε→ 0+.

2.5 Optimal L∞(0, T ;L2(Ω))-error estimate

With respect to Remark 2.15, in this section we derive an optimal error estimate in the L∞(0, T ;L2(Ω))-norm. Similarly as in
Section 1.7.2, the analysis is based on the duality technique. Therefore, we consider only the SIPG variant of the DGM and the
Dirichlet boundary condition on the whole boundary ∂Ω.

Let Ω ⊂ Rd, d = 2, 3, be a bounded convex polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz boundary ∂Ω
and T > 0. We are concerned with the nonstationary nonlinear convection-diffusion problem to find u : QT = Ω × (0, T ) → R
such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs
= ε∆u+ g in QT , (2.110a)

u
∣∣
∂Ω×(0,T )

= uD, (2.110b)

u(x, 0) = u0(x), x ∈ Ω. (2.110c)
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The diffusion coefficient ε > 0 is a given constant, g : QT → R, uD : ∂Ω × (0, T ) → R and u0 : Ω → R are given functions
satisfying (2.2c), (2.2d) with ∂ΩD = ∂Ω, (2.2f), and fs ∈ C1(R), s = 1, . . . , d, are fluxes satisfying (2.2a).

Let us recall the definitions of the forms introduced in Section 2.1 by (2.9), (2.10) (with Θ = 1), (2.13), (2.11) and (2.23).
Namely, for functions u, ϕ ∈ H2(Ω, Th) we write

Ah(w, v) = εah(w, v) + εJσh (w, v), (2.111)

ah(u, ϕ) =
∑
K∈Th

∫
K

∇u · ∇ϕdx−
∑

Γ∈Fh

∫
Γ

(〈∇u〉 · n[ϕ] + 〈∇ϕ〉 · n[u]) dS, (2.112)

Jσh (u, ϕ) =
∑

Γ∈Fh

∫
Γ

σ[u] [ϕ] dS, (2.113)

`h(ϕ)(t) =

∫
Ω

g(t)ϕdx+ ε
∑

Γ∈FBh

∫
Γ

(
σϕ− (∇ϕ · n)

)
uD(t) dS, (2.114)

bh(u, ϕ) = −
∑
K∈Th

∫
K

d∑
s=1

fs(u)
∂ϕ

∂xs
dx+

∑
Γ∈FIh

∫
Γ

H
(
u|(L)

Γ , u|(R)
Γ ,n

)
[ϕ]Γ dS

+
∑

Γ∈FBh

∫
Γ

H(u|(L)
Γ , u|(L)

Γ ,n)ϕ
(L)
Γ dS.

By (·, ·) we denote the scalar product in the space L2(Ω). The weight σ is again defined by (2.14). We assume that the numerical
flux H has properties (2.18) – (2.20) from Section 2.2.

Let the exact solution u of problem (2.110) satisfy the regularity condition (2.94). Moreover, let uh ∈ C1([0, T ];Shp) denote
the approximate solution defined by (2.25) and let Πhp be the operator of the L2(Ω)-projection on the space Shp (cf. (1.90)).

In Section 2.3.3, we derived the (sub-optimal) estimate from identity (2.78). The term Ah(Πhpu − u, ξ) appearing on the
right-hand side of (2.78) cannot be estimated in “an optimal way” (i.e., of order O(hµ)), because, by virtue of (2.80) and (2.96),

|Ah(Πhpu− u, ξ)| = |Ah(η, ξ)| ≤ εC̃BRa(η)|||ξ|||,

and Ra(η) = O(hµ−1). Therefore, instead of the L2(Ω)-projection Πhp, we introduce a new projection Php, for which the terms
mentioned above vanish.

Hence, for every h ∈ (0, h̄) and t ∈ [0, T ], we define the function Phpu(t) as the Ah-projection of u(t) on Shp, i.e., a function
satisfying the conditions

Phpu(t) ∈ Shp, Ah(Phpu(t), ϕh) = Ah(u(t), ϕh) ∀ϕh ∈ Shp. (2.115)

We are interested in estimates of the functions

χ(t) = u(t)− Phpu(t) and ∂tχ(t) =
∂

∂t
χ(t) =

∂

∂t
(u(t)− Phpu(t)) , t ∈ [0, T ],

in the DG-norm ||| · ||| given by (2.29) and in the L2(Ω)-norm. First, we derive estimates of these functions in the DG-norm.

Lemma 2.17. There exists a constant CP,e > 0 independent of u, ε and h such that

|||χ(t)||| ≤CP,e hµ−1|u(t)|Hµ(Ω), t ∈ [0, T ], (2.116)

|||∂tχ(t)||| ≤CP,e hµ−1|∂tu(u)|Hµ(Ω), t ∈ [0, T ], (2.117)

for all h ∈ (0, h̄).

Proof. In what follows we usually omit the argument t of the functions u,Phpu,Πhpu, etc. By (1.138) and (2.115), we obtain

1

2
ε|||Πhpu− Phpu|||2 ≤ Ah(Πhpu− Phpu, Πhpu− Phpu) (2.118)

= Ah(Πhpu− Phpu, Πhpu− Phpu) +Ah(Phpu− u, Πhpu− Phpu)︸ ︷︷ ︸
=0

= Ah(Πhpu− u, Πhpu− Phpu).

Using the result of Lemma 1.37, we find that

Ah(Πhpu− u, Πhpu− Phpu) ≤ εC̃B Ra(Πhpu− u) |||Πhpu− Phpu|||,
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where Ra is given by (2.81). This and (2.118) imply that

|||Πhpu− Phpu||| ≤ 2C̃B Ra(Πhpu− u). (2.119)

Further, recalling (1.125), we have

|||u−Πhpu||| ≤ CσRa(u−Πhpu). (2.120)

Now it is sufficient to use the triangle inequality

|||χ||| = |||u− Phpu||| ≤ |||u−Πhpu|||+ |||Πhpu− Phpu|||,

which implies that

|||χ||| ≤ (Cσ + 2C̃B)Ra(Πhpu− u). (2.121)

Finally, the combination of (2.96) and (2.121) gives

|||χ(t)||| ≤
√

3CA(Cσ + 2C̃B)hµ−1|u(t)|Hµ(Ω), t ∈ (0, T ),

which proves (2.116) with CP,e =
√

3CA(Cσ + 2C̃B).
Let us deal now with the norm |||∂tχ|||. As

Ah (u(t)− Phpu(t), ϕh) = 0 ∀ϕh ∈ Shp, ∀ t ∈ (0, T ),

from the definitions (2.111) of Ah, for all ϕh ∈ Shp, we have

0 =
d

dt
(Ah (u(t)− Phpu(t), ϕh)) = Ah

(
∂(u(t)− Phpu(t))

∂t
, ϕh

)
, (2.122)

i.e.,

Ah(∂tχ, ϕh) = 0 ∀ϕh ∈ Shp. (2.123)

Similarly as in (2.118), using the coercivity (1.140) of the form Ah and relation (1.129) from Lemma 1.37, we find that

ε

2
|||∂t(Πhpu− Phpu)|||2

≤ Ah (∂t(Πhpu− Phpu), ∂t(Πhpu− Phpu)) +Ah (∂t(Phpu− u), ∂t(Πhpu− Phpu))︸ ︷︷ ︸
=0

= Ah (∂t(Πhpu− u), ∂t(Πhpu− Phpu))

≤ εC̃B Ra (∂t(Πhpu− u)) |||∂t(Πhpu− Phpu)|||.

Hence, we have

|||∂t(Πhpu− Phpu)||| ≤ 2C̃B Ra (∂t(Πhpu− u)) .

Then, similarly as in (2.120), we get

|||∂t(u−Πhpu)||| ≤ CσRa (∂t(u−Πhpu)) ,

which together with the triangle inequality gives

|||∂t(u− Phpu)(t)||| ≤ |||∂t(u−Πhpu)(t)|||+ |||∂t(Πhpu− Phpu)(t)||| (2.124)

≤ (2C̃B + Cσ)Ra (∂t(u−Πhpu)(t)) , t ∈ (0, T ).

Finally, we use relation (2.99) and estimate (2.96) rewritten for ∂tu(t)−Πhp(∂tu(t)):

Ra
(
∂tu(t)−Πhp(∂tu(t))

)
≤
√

3CAh
µ−1 |∂tu(t)|Hµ(Ω) .

This and (2.124) already give (2.117).
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In what follows, for an arbitrary z ∈ L2(Ω) we shall consider the elliptic dual problem (1.155): Given z ∈ L2(Ω), find ψ such
that

−∆ψ = z in Ω, ψ|∂Ω = 0. (2.125)

Similarly as in (1.157), the weak formulation of problem (2.125) reads: Find ψ ∈ H1
0 (Ω) such that∫

Ω

∇ψ · ∇v dx =

∫
Ω

z v dx ∀ v ∈ H1
0 (Ω). (2.126)

As the domain Ω is convex, for every z ∈ L2(Ω) the weak solution ψ is regular, i.e., ψ ∈ H2(Ω), and there exists a constant
CD > 0, independent of z such that

‖ψ‖H2(Ω) ≤ CD‖z‖L2(Ω), (2.127)

as follows from [Gri92]. Let us note that H2(Ω) ⊂ C(Ω).
Further, let Πh1ψ be the piecewise linear L2(Ω)-projection of the function ψ on Sh1 (cf. (1.91)). Obviously, using (1.125),

and (2.96) with µ = 2, we have

‖ψ −Πh1ψ‖1,σ ≤ CσRa(ψ −Πh1ψ) ≤
√

3CACσh|ψ|H2(Ω). (2.128)

Finally, taking into account that the form Ah is the ε multiple of the form Ah from Chapter 1 and using estimate (1.122),
we have

|Ah(u, v)| ≤ 2 ε‖u‖1,σ‖v‖1,σ ∀u, v ∈ H2(Ω, Th). (2.129)

Now we shall use the dual problem (2.125) to obtain L2(Ω)-optimal error estimates for χ = u−Phpu and ∂tχ = (u−Phpu)t.

Lemma 2.18. There exists a constant CP,L > 0 independent of ε such that

‖χ(t)‖L2(Ω) ≤ CP,Lhµ|u(t)|Hµ(Ω), t ∈ (0, T ), (2.130)

‖∂tχ(t)‖L2(Ω) ≤ CP,Lhµ|∂tu(t)|Hµ(Ω), t ∈ (0, T ), (2.131)

for all h ∈ (0, h̄).

Proof. We have

‖χ‖L2(Ω) = sup
0 6=z∈L2(Ω)

|(χ, z)|
‖z‖L2(Ω)

. (2.132)

Taking into account that the form Ah is the ε multiple of the form Ah from Chapter 1, we see that by Lemma 1.48, for z ∈ L2(Ω)
and ψ satisfying (2.125), we have

(χ, z) =
1

ε
Ah(ψ, χ). (2.133)

Further, the symmetry of Ah and (2.115) give

Ah(Πh1ψ, χ) = Ah(χ,Πh1ψ) = Ah(u− Phpu, Πh1ψ) = 0, (2.134)

and therefore,

(χ, z) =
1

ε
Ah(ψ −Πh1ψ, χ). (2.135)

Now, using (2.129), we have

|(χ, z)| = 1

ε
|Ah(ψ −Πh1ψ, χ)| ≤ 2‖ψ −Πh1ψ‖1,σ ‖χ‖1,σ. (2.136)

Moreover, by (2.128) and (2.127), we obtain

‖ψ −Πh1ψ‖1,σ ≤
√

3CACσh|ψ|H2(Ω) ≤
√

3CACσCDh‖z‖L2(Ω). (2.137)
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Triangle inequality, (1.125), (1.126), (2.96) and (2.116) imply the estimate

‖χ(t)‖1,σ = ‖u− Phpu‖1,σ ≤ ‖u−Πhpu‖1,σ + ‖Πhpu− Phpu‖1,σ (2.138)

≤ CσRa(u−Πhpu) + C̃σ|||Πhpu− Phpu|||
≤ CσRa(u−Πhpu) + C̃σ|||Πhpu− u|||+ C̃σ|||u− Phpu|||
≤ CσRa(u−Πhpu) + C̃σCσRa(u−Πhpu) + C̃σ|||χ|||
≤ Cσ(1 + C̃σ)

√
3CAh

µ−1|u(t)|Hµ(Ω) + C̃σCP,e h
µ−1|u(t)|Hµ(Ω)

= C6h
µ−1|u(t)|Hµ(Ω), t ∈ (0, T ),

where C6 = Cσ(1 + C̃σ)
√

3CA + C̃σCP,e. Summarizing (2.136), (2.137) and (2.138), we find that

(χ(t), z) ≤2
√

3CACσCDh‖z‖L2(Ω)C6h
µ−1|u(t)|Hµ(Ω)

=CP,L h
µ|u(t)|Hµ(Ω)‖z‖L2(Ω), t ∈ (0, T ),

where CP,L = 2
√

3CACσCDC6. Hence,

‖χ(t)‖L2(Ω) = sup
06=z∈L2(Ω)

|(χ(t), z)|
‖z‖L2(Ω)

≤ CP,L hµ|u(t)|Hµ(Ω), t ∈ (0, T ),

which completes the proof of (2.130).
Finally, let us prove estimate (2.131). Differentiating (2.115) with respect to t yields

Ah(∂tχ, ϕh) = 0 ∀ϕh ∈ Shp. (2.139)

We have

‖∂tχ‖L2(Ω) = sup
06=z∈L2(Ω)

|(∂tχ, z)|
‖z‖L2(Ω)

. (2.140)

Similarly as in (2.133), we get

(∂tχ, z) =
1

ε
Ah(ψ, ∂tχ). (2.141)

The symmetry of Ah and (2.139) imply that

Ah(Πh1ψ, ∂tχ) = Ah(∂tχ,Πh1ψ) = Ah (∂t(u− Phpu),Πh1ψ) = 0.

These relations, (2.141) and (2.129) yield

|(∂tχ, z)| =
1

ε
|Ah(ψ −Πh1ψ, ∂tχ)| ≤ 2‖ψ −Πh1ψ‖1,σ‖∂tχ‖1,σ. (2.142)

The term ‖ψ −Πh1ψ‖1,σ is estimated by (2.137) and similarly as in (2.138), we obtain

‖∂tχ(t)‖1,σ ≤ C6h
µ−1|∂tu(t)|Hµ(Ω), t ∈ (0, T ). (2.143)

Finally, from (2.140), (2.142), (2.137) and (2.143), we arrive at estimate (2.131).

Let us note that assuming the symmetry of the form Ah is crucial in the presented proof. It enables us to exchange arguments
in (2.134). This is not possible in the NIPG and IIPG methods, where the analysis of optimal L∞(L2)-error estimates still
represents an open problem.

Lemma 2.19. Let us assume that u is the solution of the continuous problem (2.110) satisfying condition (2.75), uh is the
solution of the discrete problem (2.25), Phpu is defined by (2.115), and ζ = Phpu − uh ∈ Shp. Then there exists a constant
Cb > 0, independent of h ∈ (0, h̄), such that

|bh(u, ζ)− bh(uh, ζ)| ≤ Cb|||ζ|||
(
hµ|u|Hµ(Ω) + ‖ζ‖L2(Ω)

)
. (2.144)
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Proof. We proceed similarly as in the proof of Lemma 2.6. The triangle inequality gives

|bh(u, ζ)− bh(uh, ζ)| ≤ |bh(u, ζ)− bh(Phpu, ζ)|+ |bh(Phpu, ζ)− bh(uh, ζ)|. (2.145)

Applying (2.30) with ū := Phpu and v := ζ ∈ Shp, we get

|bh(u, ζ)− bh(Phpu, ζ)| ≤Cb1|||ζ|||
(
‖χ‖2L2(Ω) +

∑
K∈Th

hK‖χ‖2L2(∂K)

)1/2

. (2.146)

(Let us recall that χ = u− Phpu). The multiplicative trace inequality (1.78) and the Cauchy inequality give∑
K∈Th

hK‖χ‖2L2(∂K) ≤ CM
∑
K∈Th

(
hK |χ|H1(K)‖χ‖L2(K) + ‖χ‖2L2(K)

)

≤ CM

h( ∑
K∈Th

|χ|2H1(K)

)1/2( ∑
K∈Th

‖χ‖2L2(K)

)1/2

+
∑
K∈Th

‖χ‖2L2(K)


≤ CM

(
h|χ|H1(Ω,Th)‖χ‖L2(Ω) + ‖χ‖2L2(Ω)

)
.

The above relations, the inequality |χ|H1(Ω,Th) ≤ |||χ||| and estimates (2.116) and (2.130) imply that∑
K∈Th

hK‖χ(t)‖2L2(∂K) ≤ CM
(
CP,eCP,L hh

µ−1 hµ + C2
P,Lh

2µ
)
|u(t)|2Hµ(Ω) (2.147)

= C7h
2µ|u(t)|2Hµ(Ω), t ∈ (0, T ),

where C7 = CM (CP,eCP,L + C2
P,L). Furthermore, (2.146), (2.130) and (2.147) give

|bh(u, ζ)− bh(Phpu, ζ)| ≤ Cb1
(
C2
P,L + C7

)1/2
hµ|||ζ||||u(t)|Hµ(Ω). (2.148)

Furthermore, estimate (2.31) with ūh := Phpu ∈ Shp and vh := ζ ∈ Shp gives

|bh(Phpu, ζ)− bh(uh, ζ)| ≤ Cb2|||ζ||| ‖uh − Phpu‖L2(Ω) = Cb2|||ζ||| ‖ζ‖L2(Ω). (2.149)

Finally, inserting estimates (2.148) and (2.149) into (2.145), we obtain inequality (2.144) with Cb = max
(
Cb2, Cb1

(
C2
P,L +

C7

)1/2)
.

Now we can proceed to the main result, which is the optimal error estimate in the norm of the space L∞(0, T ;L2(Ω)) of the
DG method (2.25) applied on nonconforming meshes.

Theorem 2.20. Let Ω ⊂ Rd, d = 2, 3, be a bounded convex polygonal (if d = 2) or polyhedral (if d = 3) domain with Lipschitz
boundary ∂Ω. Let Assumptions 2.5 in Section 2.3 be satisfied. Let u be the exact solution of problem (2.1), where ∂ΩD = ∂Ω and
∂ΩN = ∅, satisfying the regularity condition (2.94) and let uh be the approximate solution obtained by scheme (2.25) with the
SIPG version of the diffusion terms and the constant CW satisfying (1.132). Then the error eh = uh − u satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ C8h
µ, h ∈ (0, h̄), (2.150)

with a constant C8 > 0 independent of h.

Proof. Let Phpu be defined by (2.115) and let χ and ζ be as in Lemmas 2.17, 2.18 and 2.19, i.e., χ = u−Phpu, ζ = Phpu− uh.
Then eh = uh − u = −χ− ζ. Let us subtract (2.25b) from (2.28), substitute ζ ∈ Shp for vh, and use the relations(

∂ζ(t)

∂t
, ζ(t)

)
=

1

2

d

dt
‖ζ(t)‖2L2(Ω), Ah(u(t)− Phpu(t), ζ(t)) = 0.

Then we get

1

2

d

dt
‖ζ(t)‖2L2(Ω) +Ah(ζ(t), ζ(t)) (2.151)

= (bh(uh(t), ζ(t))− bh(u(t), ζ(t)))− (∂tχ(t), ζ(t)).
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The first term on the right-hand side can be estimated by Lemma 2.19 and Young’s inequality. In estimating the second term
on the right-hand side we use the Cauchy and Young’s inequalities and Lemma 2.18. Finally, the coercivity property (1.140)
(where CC = 1/2) of 1

εAh = ah+Jσh gives the estimate on the left-hand side of (2.151). On the whole, after some manipulation,
we get

d

dt
‖ζ(t)‖2L2(Ω) + ε|||ζ(t)|||2 (2.152)

≤ 2 |bh(uh(t), ζ(t))− bh(u(t), ζ(t))|+ 2|(∂tχ(t), ζ(t))|
≤ 2Cb|||ζ|||

(
hµ|u|Hµ(Ω) + ‖ζ‖L2(Ω)

)
+ 2‖∂tχ(t)‖L2(Ω)‖ζ(t)‖L2(Ω)

≤ ε|||ζ(t)|||2 +
2C2

b

ε
h2µ|u|2Hµ(Ω) +

2C2
b

ε
‖ζ‖2L2(Ω) + C2

P,Lh
2µ|∂tu|2Hµ(Ω)+‖ζ(t)‖2L2(Ω)

≤ ε|||ζ(t)|||2 + C9h
2µ

(
1

ε
|u|2Hµ(Ω) + |∂tu|2Hµ(Ω)

)
+ C9

(
1 +

1

ε

)
‖ζ‖2L2(Ω),

where C9 = max(2C2
b , C

2
P,L, 1). This implies that

d

dt
‖ζ(t)‖2L2(Ω) ≤ C9h

2µ

(
1

ε
|u|2Hµ(Ω) + |∂tu|2Hµ(Ω)

)
+ C9

(
1 +

1

ε

)
‖ζ‖2L2(Ω). (2.153)

Using (2.25c), (1.97), (2.130), we have

‖ζ(0)‖2L2(Ω) = ‖Phpu(0)− uh(0)‖2L2(Ω) = ‖Phpu(0)−Πhpu(0)‖2L2(Ω) (2.154)

≤ 2‖Phpu(0)− u(0)‖2L2(Ω) + 2‖u(0)−Πhpu(0)‖2L2(Ω)

≤ 2(C2
A + C2

P,L)h2µ|u0|2Hµ(Ω) = C10h
2µ|u0|2Hµ(Ω),

where C10 = 2(C2
A + C2

P,L).
Integrating of (2.153) from 0 to t ∈ [0, T ] and (2.154) yield

‖ζ(t)‖2L2(Ω) ≤ C9 h
2µ

(
1

ε

∫ t

0

|u(ϑ)|2Hµ(Ω) dϑ+

∫ t

0

|∂tu(ϑ)|2Hµ(Ω) dϑ

)
(2.155)

+ C9

(
1 +

1

ε

)∫ t

0

‖ζ(ϑ)‖2L2(Ω) dϑ+ C10 h
2µ|u0|2Hµ(Ω).

≤ C9

(
1 +

1

ε

)∫ t

0

‖ζ(ϑ)‖2L2(Ω) dϑ+ C11h
2µN(ε, u),

where C11 = max(C9, C10) and

N(ε, u) =
1

ε

∫ t

0

|u(ϑ)|2Hµ(Ω) dϑ+

∫ t

0

|∂tu(ϑ)|2Hµ(Ω) dϑ+ |u0|2Hµ(Ω).

Now we apply Gronwall’s Lemma 0.9, where we put

y(t) = ‖ζ(t)‖2L2(Ω), q(t) = 0,

r(t) = C9 (1 + 1/ε) , z(t) = C11h
2µN(ε, u).

Then, after some manipulation, we obtain the estimate

‖ζ(t)‖2L2(Ω) ≤ C11h
2µN(ε, u) exp

(
C9

(
1 +

1

ε

)
t

)
. (2.156)

Since eh = −χ − ζ, to complete the proof, it is sufficient to combine (2.156) with the estimate (2.130) of ‖χ(t)‖L2(Ω) in
Lemma 2.18.

Exercise 2.21. Prove estimates (2.155) and (2.156) in detail.
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2.6 Uniform error estimates with respect to the diffusion coefficient

In Sections 2.1–2.5, error estimates for the space DG semidiscretization were derived in the case of nonlinear convection-diffusion
problems. From the presented analysis we can see that the constants in these estimates blow up exponentially if the diffusion
coefficient ε→ 0+. This means that these estimates are not applicable, if ε > 0 is very small. (See also Remark 2.16.) There is
question as to whether it is possible to obtain error estimates that are uniform with respect to the diffusion coefficient ε→ 0+
of convection-diffusion problems.

In this section we are concerned with the error analysis of the DGM of lines applied to a linear convection-diffusion equation,
which also contains a reaction term, and its coefficients satisfy some special assumptions used in works analyzing numerical
methods for linear convection-diffusion problems (cf. [RST08], Chapter III, or [HSS02]). As a result, we obtain error estimates,
uniform with respect to the diffusion coefficient ε→ 0+, and valid even for ε = 0.

2.6.1 Continuous problem

Let Ω ⊂ Rd (d = 2 or 3) be a bounded polygonal (for d = 2) or polyhedral (for d = 3) domain with Lipschitz boundary ∂Ω
and T > 0. We set QT = Ω × (0, T ). Let v : QT = Ω × [0, T ] → Rd be a given transport flow velocity. We assume that
∂Ω = ∂Ω− ∪ ∂Ω+, and for all t ∈ (0, T ),

v(x, t) · n(x) <0 on ∂Ω−, (2.157)

v(x, t) · n(x) ≥0 on ∂Ω+,

where n(x) denotes the outer unit normal to the boundary of Ω. We assume that the parts ∂Ω− and ∂Ω+ are independent
of time. With respect to our former notation, we can write ∂ΩD = ∂Ω− and ∂ΩN = ∂Ω+. The part ∂Ω− of the boundary
∂Ω represents the inlet through which the fluid enters the domain Ω. The part of ∂Ω+, where v · n > 0, represents the outlet
through which the fluid leaves the domain Ω, and the part on which v · n = 0 represents impermeable walls.

We consider the following linear initial-boundary value convection-diffusion-reaction problem: Find u : QT → R such that

∂u

∂t
+ v · ∇u− ε∆u+ cu = g in QT , (2.158a)

u = uD on ∂Ω− × (0, T ), (2.158b)

ε
∂u

∂n
= gN on ∂Ω+ × (0, T ), (2.158c)

u(x, 0) = u0(x), x ∈ Ω. (2.158d)

In the case ε = 0, we put gN = 0 and ignore the Neumann condition (2.158c).
Equation (2.158a) describes the transport and diffusion in a fluid of a quantity u as, for example, temperature or concentration

of some material. The constant ε ≥ 0 is the diffusion coefficient, c represents a reaction coefficient, and g defines the source of
the quantity u. Such equations appear, for example, in fluid dynamics or heat and mass transfer.

We assume that the data satisfy the following conditions:

g ∈ C([0, T ];L2(Ω)), (2.159a)

u0 ∈ L2(Ω), (2.159b)

uD is the trace of some u∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(QT ) on ∂Ω− × (0, T ), (2.159c)

v ∈ C([0, T ];W 1,∞(Ω)), |v| ≤ Cv in Ω× [0, T ], |∇v| ≤ Cv a.e. in QT , (2.159d)

c ∈ C([0, T ];L∞(Ω)), |c(x, t)| ≤ Cc a.e.in QT , (2.159e)

c− 1

2
∇ · v ≥ γ0 > 0 in QT with a constant γ0, (2.159f)

gN ∈ C([0, T ];L2(∂Ω+)), (2.159g)

ε ≥ 0. (2.159h)

Assumption (2.159f) is not restrictive, because using the transformation u = eαtw,α = const substituted into (2.158) leads to
the equation for w in the form

∂w

∂t
+ v · ∇w − ε∆w + (c+ α)w = ge−αt.

Condition (2.159f) now reads c+ α− 1
2∇ · v ≥ γ0 > 0 and is satisfied if we choose α > 0 large enough.

The weak formulation is derived in a standard way. Equation (2.158) is multiplied by any ϕ ∈ V = {ϕ ∈ H1(Ω);ϕ|∂Ω− = 0},
Green’s theorem is applied and condition (2.158c) is used.

74



Definition 2.22. We say that a function u is the weak solution to (2.158) if it satisfies the conditions

u− u∗ ∈ L2(0, T ;V ), u ∈ L∞(QT ), (2.160a)

d

dt

∫
Ω

uϕdx+ ε

∫
Ω

∇u · ∇ϕdx+

∫
∂Ω+

(v · n)uϕdS −
∫

Ω

u∇ · (ϕv) dx (2.160b)

+

∫
Ω

cuϕdx =

∫
Ω

gϕdx+

∫
∂Ω+

gNϕdS

for all ϕ ∈ V in the sense of distributions on (0, T ),

u(0) = u0 in Ω. (2.160c)

We shall assume that the weak solution u exists and is sufficiently regular, namely,

∂u

∂t
∈ L2(0, T ;Hs(Ω)), (2.161)

where s ≥ 2 is an integer. Then also u ∈ C([0, T );Hs(Ω)) and it is possible to show that this solution u satisfies equation
(2.158a) pointwise (almost everywhere). (If ε > 0, then with the aid of techniques from [Lio96], [Rou05] and [Rek82], it is
possible to prove that there exists a unique weak solution. Moreover, it satisfies the condition ∂u/∂t ∈ L2(QT ).)

2.6.2 Discretization of the problem

Let Th be a standard conforming triangulation of the closure of the domain Ω into a finite number of closed triangles (d = 2)
or tetrahedra (d = 3). Hence, the mesh Th satisfies assumption (MA4) in Section 1.3.2. This means that we do not consider
hanging nodes (or hanging edges) in this case. Otherwise we use the same notation as in Section 1.

We assume that the conforming triangulations satisfy the shape-regularity assumption (1.19). For K ∈ Th we set

∂K−(t) ={x ∈ ∂K; v(x, t) · n(x) < 0}, (2.162)

∂K+(t) ={x ∈ ∂K; v(x, t) · n(x) ≥ 0}, (2.163)

where n denotes the outer unit normal to ∂K. Hence, ∂K−(t) and ∂K+(t) denote the inlet and outlet parts of the boundary
of K, respectively. In what follows we shall not emphasize the dependence of ∂K+ and ∂K− on time by notation.

In order to derive error estimates that are uniform with respect to ε, we discretize the convective terms using the idea of the
upwinding (see (2.16)). This choice allows us to avoid using Gronwall’s Lemma, which causes the non-uniformity of the error
estimates in Sections 2.3 and 2.5 (see Remark 2.30). Multiplying the convective term v · ∇u by any ϕ ∈ H2(Ω, Th), integrating
over element K and applying Green’s theorem, we get∫

K

(v · ∇u)ϕdx =−
∫
K

u∇ · (ϕv) dx+

∫
∂K

(v · n)uϕdS (2.164)

=−
∫
K

u∇ · (ϕv) dx+

∫
∂K−

(v · n)uϕdS +

∫
∂K+

(v · n)uϕdS.

On the inflow part of the boundary of K we use information from outside of the element K. Therefore, we write there u−

instead of u. If x ∈ ∂Ω−, then we set u−(x) := uD(x). The integrals over ∂K+, where the information “flows out” of the
element, remain unchanged. We take into account that [u] = 0 on Γ ∈ FIh and u|∂Ω− satisfies the Dirichlet condition (2.158b).
We further rearrange the terms in (2.164) and find that∫

K

(v · ∇u)ϕdx (2.165)

= −
∫
K

u∇ · (ϕv) dx+

∫
∂K−

(v · n)u−ϕdS +

∫
∂K+

(v · n)uϕdS

= −
∫
K

u∇ · (ϕv) dx+

∫
∂K

(v · n)uϕdS −
∫
∂K+∪∂K−

(v · n)uϕdS︸ ︷︷ ︸
=0

+

∫
∂K−

(v · n)u−ϕdS +

∫
∂K+

(v · n)uϕdS

=

∫
K

(v · ∇u)ϕdx+

∫
∂K−

(v · n)(u− − u)ϕdS

=

∫
K

(v · ∇u)ϕdS −
∫
∂K−\∂Ω

(v · n)[u]ϕdS −
∫
∂K−∩∂Ω

(v · n)(u− uD)ϕdS,

where we set [u] = u− u− on ∂K− \ ∂Ω.
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Remark 2.23. Let us note that identity (2.165) can be derived from the relation∫
K

(v · ∇u)ϕdx =−
∫
K

u∇ · (ϕv) dx+
∑

Γ⊂∂K

∫
Γ

H(u
(L)
Γ , u

(R)
Γ ,nΓ)ϕdS,

where H is the numerical flux given (in analogy to (2.16)) by

H(u1, u2,n) =

{
v · n u1, if v · n > 0
v · n u2, if v · n ≤ 0

(2.166)

and H(u1, u2,n) = v · nuD on ∂K− ∩ ∂Ω.

Exercise 2.24. Verify Remark 2.23.

Now we proceed to the derivation of the discrete problem. We start from equation (2.158a) under assumption (2.161),
multiply it by any ϕ ∈ H2(Ω, Th), integrate over each element K, apply Green’s theorem to the diffusion and convective terms
and sum over all elements K ∈ Th. Then we use the identity (2.165) for convective terms, add some terms to both sides of the
resulting identity or vanishing terms (similarly as in Section 1.4 in the discretization of the diffusion term) and use the boundary
conditions (we recall that ∂ΩD = ∂Ω− = ∪K∈Th∂K− ∩ ∂Ω). After some manipulation we find that the exact solution u satisfies
the following identity for ϕ ∈ H2(Ω, Th):(

∂u(t)

∂t
, ϕ

)
+Ah(u(t), ϕ) + bh(u(t), ϕ) + ch(u(t), ϕ) = `h(ϕ)(t) (2.167)

for a.e. t ∈ (0, T ),

where the forms in (2.167) are defined in the following way:

(u, ϕ) =

∫
Ω

uϕdx, (2.168)

Ah(u, ϕ) = εah(u, ϕ) + εJσh (u, ϕ), (2.169)

ah(u, ϕ) =
∑
K∈Th

∫
K

∇u · ∇ϕdx−
∑

Γ∈FIh

∫
Γ

(〈∇u〉 · n [ϕ] + Θ〈∇ϕ〉 · n [u]) dS

−
∑
K∈Th

∫
∂K−∩∂Ω

((∇u · n)ϕ+ Θ(∇ϕ · n)u) dS, (2.170)

Jσh (u, ϕ) =
∑

Γ∈FIh

∫
Γ

σ [u] [ϕ] dS +
∑
K∈Th

∫
∂K−∩∂Ω

σuϕdS, (2.171)

bh(u, ϕ) =
∑
K∈Th

∫
K

(v · ∇u)ϕdx−
∑
K∈Th

∫
∂K−\∂Ω

(v · n)[u]ϕdS (2.172)

−
∑
K∈Th

∫
∂K−∩∂Ω

(v · n)uϕdS,

ch(u, ϕ) =

∫
Ω

cuϕdx, (2.173)

`h(ϕ)(t) =

∫
Ω

g(t)ϕdx+
∑
K∈Th

∫
∂K+∩∂Ω

gN (t)ϕdS + ε
∑
K∈Th

∫
∂K−∩∂Ω

σuD(t)ϕdS

+ εΘ
∑
K∈Th

∫
∂K−∩∂Ω

uD(t)(∇ϕ · n) dS −
∑
K∈Th

∫
∂K−∩∂Ω

(v · n)uD(t)ϕ dS. (2.174)

The weight σ|Γ is defined by (1.104), where hΓ is given by (1.24) or (1.25) or (1.26) and satisfies (1.20). The constant CW > 0
from (1.104) is arbitrary for the NIPG version, and it satisfies condition (1.132) or (1.139) for the SIPG or IIPG version,
respectively.

In the form representing the discretization of the diffusion term we use the nonsymmetric (NIPG) formulation for Θ = −1,and
the incomplete (IIPG) formulation for Θ = 0 or symmetric formulation (SIPG) for Θ = 1.

The approximate solution will be sought for each t ∈ (0, T ) in the finite dimensional space

Shp =
{
ϕ ∈ L2(Ω);ϕ|K ∈ Pp(K) ∀K ∈ Th

}
, (2.175)

where p ≥ 1 is an integer and Pp(K) is the space of polynomials on K of degree at most p.
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Definition 2.25. The DG approximate solution of problem (2.158) is defined as a function uh such that

uh ∈ C1([0, T );Shp), (2.176a)(
∂uh(t)

∂t
, ϕh

)
+Ah(uh(t), ϕh) + bh(uh(t), ϕh) + ch(uh(t), ϕh) = `h(ϕh)(t)

∀ϕh ∈ Shp ∀t ∈ (0, T ), (2.176b)

(uh(0), ϕh) = (u0, ϕh) ∀ϕh ∈ Shp. (2.176c)

If ε = 0, we can also choose p = 0. In this case we get the finite volume method using piecewise constant approximations.
Thus, the finite volume method is a special case of the DGM.

2.6.3 Error estimates

Let us consider a system {Th}h∈(0,h̄), h̄ > 0, of conforming triangulations of Ω satisfying the shape-regularity assumption (1.19).
By Πhp we again denote the Shp-interpolation defined by (1.90) with approximation properties formulated in Lemma 1.24. Thus,
if µ = min(p+ 1, s), s ≥ 2 and v ∈ Hs(K), then (1.93) – (1.95) hold.

If we denote

ξ = uh −Πhpu, η = Πhpu− u, (2.177)

where u is the exact solution satisfying the regularity conditions (2.161) and uh is the approximate solution, then the error
eh = uh − u = ξ + η. By (1.93) – (1.95) and (2.100), for all K ∈ Th and h ∈ (0, h̄) we have

‖η‖L2(K) ≤ CAhµ|u|Hµ(K), (2.178)

|η|H1(K) ≤ CAhµ−1|u|Hµ(K), (2.179)

|η|H2(K) ≤ CAhµ−2|u|Hµ(K), (2.180)

‖η‖L2(Ω) ≤ CAhµ|u|Hµ(Ω), (2.181)

‖∂tη‖L2(Ω) ≤ CAhµ |∂tu|Hµ(Ω) , (2.182)

almost everywhere in (0, T ), where ∂tη = ∂η/∂t and ∂tu = ∂u/∂t. If p ≥ 0 and s ≥ 1, then (2.178), (2.179), (2.181) and (2.182)
hold as well, as follows from (1.92).

In the error analysis we use the multiplicative trace inequality (1.78), the inverse inequality (1.86) and the modified variant
of Gronwall’s lemma 0.10. For simplicity of notation we introduce the following norm over a subset ω of either ∂Ω or ∂K:

‖ϕ‖v,ω = ‖
√
|v · n|ϕ‖L2(ω), (2.183)

where n is the corresponding outer unit normal.
Now we shall prove the following property of the form bh given by (2.172).

Lemma 2.26. There exist positive constants C
′
b and Cb independent of u, h, ε such that

|bh(η, ξ)| ≤ 1

4

∑
K∈Th

(
‖ξ‖2v,∂K+∩∂Ω + ‖[ξ]‖2v,∂K−\∂Ω

)
(2.184)

+ Cb
∑
K∈Th

‖η‖L2(K)‖ξ‖L2(K) +R2(η),

where

R2(η) = C
′
b

∑
K∈Th

(
‖η‖L2(K)|η|H1(K) + h−1

K ‖η‖2L2(K)

)
, (2.185)

Cb =Cv(1 + CACI), C
′
b = CvCM (2.186)

and Cv is the constant in assumption (2.159d).
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Proof. Using (2.172) and Green’s theorem, we find that

bh(η, ξ) =
∑
K∈Th

(∫
K

(v · ∇η)ξ dx (2.187)

−
∫
∂K−∩∂Ω

(v · n)ξη dS −
∫
∂K−\∂Ω

(v · n)ξ(η − η−) dS

)

=
∑
K∈Th

(∫
∂K

(v · n)ξη dS −
∫
K

η(v · ∇ξ) dx−
∫
K

ηξ∇ · v dx

−
∫
∂K−∩∂Ω

(v · n)ξη dS −
∫
∂K−\∂Ω

(v · n)ξ(η − η−) dS

)
,

where the superscript − denotes the values on ∂K from outside the element K. Hence,

|bh(η, ξ)| ≤
∣∣∣∣∣ ∑
K∈Th

∫
K

η(v · ∇ξ) dx

∣∣∣∣∣+

∣∣∣∣∣ ∑
K∈Th

∫
K

ηξ∇ · v dx

∣∣∣∣∣ (2.188)

+

∣∣∣∣∣ ∑
K∈Th

(∫
∂K

(v · n)ξη dS −
∫
∂K−∩∂Ω

(v · n)ξη dS

−
∫
∂K−\∂Ω

(v · n)ξ(η − η−) dS

)∣∣∣∣∣ .
The second term on the right-hand side of (2.188) is estimated easily with the aid of the Cauchy inequality and assumption

(2.159d): ∣∣∣∣∣ ∑
K∈Th

∫
K

ηξ∇ · v dx

∣∣∣∣∣ ≤ Cv

∑
K∈Th

‖η‖L2(K)‖ξ‖L2(K). (2.189)

Since ∑
K∈Th

∫
∂K+\∂Ω

(v · n)ξη dS = −
∑
K∈Th

∫
∂K−\∂Ω

(v · n)ξ−η− dS (2.190)

and v · n ≥ 0 on ∂K+, with the aid of Young’s inequality, the set decomposition

∂K = ∂K+ ∪ (∂K− ∩ ∂Ω) ∪ (∂K− \ ∂Ω)

and notation (2.183), the third term on the right-hand side of (2.188) can be rewritten and then estimated in the following way:∣∣∣∣∣ ∑
K∈Th

(∫
∂K+

(v · n)ξη dS +

∫
∂K−\∂Ω

{
(v · n)ξη − (v · n)ξ(η − η−)

}
dS

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

(∫
∂K+∩∂Ω

(v · n)ξη dS +

∫
∂K+\∂Ω

(v · n)ξη dS +

∫
∂K−\∂Ω

(v · n)η−ξ dS

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

(∫
∂K+∩∂Ω

(v · n)ξη dS +

∫
∂K−\∂Ω

(v · n)η−(ξ − ξ−) dS

)∣∣∣∣∣
≤ 1

4

∑
K∈Th

(∫
∂K+∩∂Ω

(v · n)ξ2 dS +

∫
∂K−\∂Ω

|v · n|[ξ]2 dS

)
(2.191)

+
∑
K∈Th

(∫
∂K+∩∂Ω

(v · n)η2 dS +

∫
∂K−\∂Ω

|v · n|(η−)2 dS

)

≤ 1

4

∑
K∈Th

(
‖ξ‖2v,∂K+∩∂Ω + ‖[ξ]‖2v,∂K−\∂Ω

)
+
∑
K∈Th

(
‖η‖2v,∂K+∩∂Ω + ‖η−‖2v,∂K−\∂Ω

)
.
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Using the multiplicative trace inequality, the boundedness of v and estimates (2.178) and (2.179), we get∑
K∈Th

(
‖η‖2v,∂K+∩∂Ω + ‖η−‖2v,∂K−\∂Ω

)
(2.192)

≤ Cv

∑
K∈Th

‖η‖2L2(∂K) ≤ CvCM
∑
K∈Th

(
‖η‖L2(K)|η|H1(K) + h−1

K ‖η‖2L2(K)

)
.

By virtue of the definition (2.177) of η and (1.89) – (1.90), the first term on the right-hand side of (2.188) vanishes if the
vector v is piecewise linear, because v · ∇ξ|K ∈ Pp(K) in this case. If this is not the case, we have to proceed in a more
sophisticated way. For every t ∈ [0, T ) we introduce a function Πh1v(t) which is a piecewise linear L2(Ω)-projection of v(t) on
the space Shp. Under assumption (2.159d), by (1.96),

‖v −Πh1v‖L∞(K) ≤ CAhK |v|W 1,∞(K), K ∈ Th, h ∈ (0, h̄). (2.193)

The first term in (2.188) is then estimated with the aid of (1.89), (1.86), (2.193), the Cauchy inequality and assumption (2.159d)
in the following way: ∣∣∣∣∣ ∑

K∈Th

∫
K

η(v · ∇ξ) dx

∣∣∣∣∣ (2.194)

≤
∑
K∈Th

∣∣∣∣∫
K

η(Πh1v · ∇ξ) dx

∣∣∣∣+
∑
K∈Th

∣∣∣∣∫
K

η((v −Πh1v) · ∇ξ) dx

∣∣∣∣
=
∑
K∈Th

∣∣∣∣∫
K

η((v −Πh1v) · ∇ξ) dx

∣∣∣∣ ≤ ∑
K∈Th

‖v −Πh1v‖L∞(K)‖η‖L2(K)|ξ|H1(K)

≤
∑
K∈Th

CAhK |v|W 1,∞(K) ‖η‖L2(K) CIh
−1
K ‖ξ‖L2(K)

≤ CvCACI
∑
K∈Th

‖η‖L2(K)‖ξ‖L2(K).

Using (2.189), (2.191) and (2.194) in (2.188), we obtain (2.184) with constants defined in (2.186). This finishes the proof of
Lemma 2.26.

Further, by (2.80) and Young’s inequality,

|Ah(η, ξ)| ≤ εC̃BRa(η)|||ξ||| ≤ ε

4
|||ξ|||2 + εC̃2

BRa(η)2 =
ε

4
|||ξ|||2 + εR1(η), (2.195)

where

R1(η) =C̃2
B

∑
K∈Th

(
|η|2H1(K) + h2

K |η|2H2(K) + h−2
K ‖η‖2L2(K)

)
. (2.196)

Finally, the Cauchy inequality gives

|ch(η, ξ)| ≤ Cc‖η‖L2(Ω)‖ξ‖L2(Ω), (2.197)

|(∂tη, ξ)| ≤ ‖∂tη‖L2(Ω) ‖ξ‖L2(Ω). (2.198)

Now we can formulate the abstract error estimate.

Theorem 2.27. Let us assume that {Th}h∈(0,h̄) is a system of conforming shape-regular triangulations (cf. (1.19)) of the
domain Ω and let assumptions (2.159) be satisfied. Let us assume that the constant CW > 0 satisfies the conditions in Corollary
1.41 for NIPG, SIPG and IIPG versions of the diffusion form. Let the exact solution u of problem (2.158) be regular in the
sense of (2.161) and let uh be the approximate solution obtained by the method of lines (2.176). Then the error eh = uh − u
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satisfies the estimate (
‖eh(t)‖2L2(Ω) +

ε

2

∫ t

0

|||eh(ϑ)|||2dϑ+ 2γ0

∫ t

0

‖eh(ϑ)‖2L2(Ω) dϑ (2.199)

+
1

2

t∫
0

∑
K∈Th

(
‖eh(ϑ)‖2v(ϑ),∂K∩∂Ω + ‖[eh(ϑ)]‖2v(ϑ),∂K−(ϑ)\∂Ω

)
dϑ
)1/2

≤
√

2
(∫ t

0

(εR1(η(ϑ)) +R2(η(ϑ))dϑ
)1/2

+ 2
√

2

∫ t

0

(
‖η(ϑ)‖L2(Ω)(Cc + Cb) +

∥∥∥∂tη(ϑ)
∥∥∥
L2(Ω)

)
dϑ

+
√

2

(
‖η(ϑ)‖2L2(Ω) +

∫ t

0

(
ε

2
|||η(ϑ)|||2 + 2γ0‖η(ϑ)‖2L2(Ω)+R2(η(ϑ))) dϑ

)1/2

,

t ∈ [0, T ], h ∈ (0, h̄),

where R1 and R2 are given by (2.196) and (2.185), respectively.

Proof. The proof will be carried out in several steps.
We subtract equation (2.167) from (2.176b) and for arbitrary but fixed t ∈ [0, T ], we put ϕ := ξ(t) to get

(∂tξ, ξ) +Ah(ξ, ξ) + bh(ξ, ξ) + ch(ξ, ξ) (2.200)

= − (∂tη, ξ)−Ah(η, ξ)− bh(η, ξ)− ch(η, ξ).

Obviously,

(∂tξ, ξ) =
1

2

d

dt
‖ξ‖2L2(Ω), (2.201)

and, in view of Corollary 1.41,

Ah(ξ, ξ) ≥ ε

2
|||ξ|||2. (2.202)

Further, let us rearrange the terms in the form bh. We have

bh(ξ, ξ) =
∑
K∈Th

(∫
K

(v · ∇ξ)ξ dx−
∫
∂K−∩∂Ω

(v · n)ξ2 dS −
∫
∂K−\∂Ω

(v · n)[ξ]ξ dS

)

=
∑
K∈Th

(
−1

2

∫
K

(∇ · v) ξ2 dx+
1

2

∫
∂K

(v · n)ξ2 dS −
∫
∂K−∩∂Ω

(v · n)ξ2 dS

−
∫
∂K−\∂Ω

(v · n)ξ(ξ − ξ−) dS

)
.

Using the decomposition ∂K = ∂K− ∪ ∂K+, we get

bh(ξ, ξ) =
∑
K∈Th

1

2

(
−
∫
K

ξ2∇ · v dx−
∫
∂K−∩∂Ω

(v · n)ξ2 dS

−
∫
∂K−\∂Ω

(v · n)(ξ2 − 2ξξ−) dS

+

∫
∂K+∩∂Ω

(v · n)ξ2 dS +

∫
∂K+\∂Ω

(v · n)ξ2 dS

)
.

Now, by virtue of the relation ∑
K∈Th

∫
∂K+\∂Ω

(v · n)ξ2 dS = −
∑
K∈Th

∫
∂K−\∂Ω

(v · n)(ξ−)2 dS, (2.203)
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definition (2.162) and (2.183), we find that

bh(ξ, ξ) =
1

2

∑
K∈Th

(
−
∫
K

ξ2∇ · v dx−
∫
∂K−∩∂Ω

(v · n)ξ2 dS (2.204)

−
∫
∂K−\∂Ω

(v · n)(ξ2 − 2ξξ− + (ξ−)2) dS +

∫
∂K+∩∂Ω

(v · n)ξ2 dS

)

=
1

2

∑
K∈Th

(
−
∫
K

ξ2∇ · v dx+

∫
∂K−∩∂Ω

|(v · n)|ξ2 dS

+

∫
∂K−\∂Ω

|(v · n)|(ξ2 − 2ξξ− + (ξ−)2) dS +

∫
∂K+∩∂Ω

|(v · n)|ξ2 dS

)

=
1

2

∑
K∈Th

(
‖ξ‖2v,∂K−∩∂Ω + ‖[ξ]‖2v,∂K−\∂Ω + ‖ξ‖2v,∂K+∩∂Ω

)
− 1

2

∫
Ω

ξ2∇ · v dx.

Finally,

ch(ξ, ξ) =

∫
Ω

cξ2 dx. (2.205)

On the basis of (2.200) – (2.202), (2.204) and (2.205) we obtain the inequality

1

2

d

dt
‖ξ‖2L2(Ω) +

ε

2
|||ξ|||2 +

∫
Ω

(c− 1

2
∇ · v)ξ2 dx (2.206)

+
1

2

∑
K∈Th

(
‖ξ‖2v,∂K∩∂Ω + ‖[ξ]‖2v,∂K−\∂Ω

)
≤ |(∂tη, ξ)|+ |Ah(η, ξ)|+ |bh(η, ξ)|+ |ch(η, ξ)|.

Now, assumptions (2.159e), (2.159f) and inequalities (2.184), (2.195), (2.197) and (2.198) imply that

d

dt
‖ξ‖2L2(Ω) +

ε

2
|||ξ|||2 + 2γ0‖ξ‖2L2(Ω) +

1

2

∑
K∈Th

(
‖ξ‖2v,∂K∩∂Ω + ‖[ξ]‖2v,∂K−\∂Ω

)
≤ 2‖ξ‖L2(Ω)

(
‖η‖L2(Ω)(Cc + Cb) + ‖∂tη‖L2(Ω)

)
+ 2εR1(η) + 2R2(η). (2.207)

Integrating (2.207) over (0, t) and using the relation ξ(0) = 0, we get

‖ξ(t)‖2L2(Ω) +

∫ t

0

ε

2
|||ξ(ϑ)|||2 dϑ+ 2γ0‖ξ‖2L2(Qt)

(2.208)

+
1

2

t∫
0

∑
K∈Th

(
‖ξ(ϑ)‖2v(ϑ),∂K∩∂Ω + ‖[ξ(ϑ)]‖2v(ϑ),∂K−(ϑ)\∂Ω

)
dϑ

≤ 2

∫ t

0

‖ξ(ϑ)‖L2(Ω)

(
‖η(ϑ)‖L2(Ω)(Cc + Cb) + ‖∂tη(ϑ)‖L2(Ω)

)
dϑ

+ 2

∫ t

0

(εR1(η(ϑ)) +R2(η(ϑ)))dϑ.

As the last step we make use of the modified Gronwall’s Lemma 0.10 with

χ(t) = ‖ξ(t)‖L2(Ω), (2.209)

R(t) =
ε

2

∫ t

0

|||ξ(ϑ)|||2 dϑ+ 2γ0‖ξ‖2L2(Qt)

+
1

2

t∫
0

∑
K∈Th

(
‖ξ(ϑ)‖2v(ϑ),∂K∩∂Ω + ‖[ξ(ϑ)]‖2v(ϑ),∂K−(ϑ)\∂Ω

)
dϑ,

A(t) = 2

∫ t

0

(εR1(η(ϑ)) +R2(η(ϑ))) dϑ,

B(t) = ‖η(t)‖L2(Ω)(Cc + Cb) + ‖∂tη(t)‖L2(Ω) .
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For simplicity, we denote the left-hand side of inequality (2.208) as L(ξ, t). Then for t ∈ [0, T ] we get

√
L(ξ, t) ≤

(
2

∫ t

0

(εR1(η(t)) +R2(η(t))) dϑ

)1/2

(2.210)

+

∫ t

0

(
‖η(t)‖L2(Ω)(Cc + Cb) + ‖∂tη(t)‖L2(Ω)

)
dϑ.

To obtain the estimate of eh = uh − u = ξ + η, we note that

‖eh‖2L2(Ω) ≤ 2
(
‖ξ‖2L2(Ω) + ‖η‖2L2(Ω)

)
,

|||eh|||2 ≤ 2
(
|||ξ|||2 + |||η|||2

)
,

‖eh‖2v,∂K∩∂Ω ≤ 2
(
‖ξ‖2v,∂K∩∂Ω + ‖η‖2v,∂K∩∂Ω

)
,

‖[eh]‖2v,∂K−\∂Ω ≤ 2
(
‖[ξ]‖2v,∂K−\∂Ω + ‖[η]‖2v,∂K−\∂Ω

)
.

We can find that √
L(eh, t) ≤

√
2
√
L(ξ, t) + L(η, t) ≤

√
2
(√

L(ξ, t) +
√
L(η, t)

)
. (2.211)

Similarly as in the proof of (2.192), under the notation (2.185) and (2.186), we find that∑
K∈Th

(
‖η‖2v,∂K∩∂Ω + ‖[η]‖2v,∂K−\∂Ω

)
≤ 2R2(η). (2.212)

Now, from (2.210), (2.211) and (2.212) it follows that

√
L(eh, t) ≤ 2

(∫ t

0

(εR1(η(t)) +R2(η(t))) dϑ
)1/2

(2.213)

+
√

2

∫ t

0

(
‖η(t)‖L2(Ω)(Cc + Cb) +

∥∥∥∂tη(t)
∥∥∥
L2(Ω)

)
dϑ

+
√

2

(
‖η(t)‖2L2(Ω) +

∫ t

0

(ε
2
|||η(ϑ)|||2 + 2γ0‖η‖2L2(Ω) +R2(η(ϑ))

)
dϑ

)1/2

,

which is the desired result (2.199).

Now, we formulate the main result of this section, representing the error estimate in terms of the mesh-size h.

Theorem 2.28. Let us assume that {Th}h∈(0,h̄) is a system of conforming shape-regular triangulations (cf. (1.19)) of the domain
Ω and let assumption (2.159) be satisfied. Let us assume that the constant CW > 0 satisfies the conditions from Corollary 1.41
for NIPG, SIPG and IIPG versions of the diffusion form. Let the exact solution u of problem (2.158) be regular in the sense of
(2.161) and let uh be the approximate solution obtained by the method of lines (2.176). Then the error eh = uh − u satisfies the
estimate

max
t∈(0,T )

‖eh(t)‖L2(Ω) +

ε
2

T∫
0

|||eh(ϑ)|||2 dϑ+ 2γ0‖eh‖2L2(QT )

1/2

(2.214)

+

1

2

∑
K∈Th

T∫
0

(
‖eh(t)‖2v(t),∂K∩∂Ω + ‖[eh(t)]‖2v(t),∂K−(t)\∂Ω

)
dt

1/2

≤ C̃hµ−1(
√
ε+
√
h),

where C̃ > 0 is a constant independent of ε and h.

Proof. Estimate (2.214) will be derived from the abstract error estimate (2.199) and estimates (2.178) – (2.182) of the term η.
By (2.196), (2.185), (2.178) - (2.180), the inequality hK ≤ h and the relation∑

K∈Th
|u|2Hµ(K) = |u|2Hµ(Ω), (2.215)
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we have

R1(η) ≤ 3C̃2
BC

2
Ah

2(µ−1)|u|2Hµ(Ω), (2.216)

R2(η) ≤ 2C
′
b C

2
Ah

2µ−1|u|2Hµ(Ω). (2.217)

From (2.104), we have

|||η|||2 ≤ C2
A

(
1 +

4CWCM
CT

)
h2(µ−1)|u|2Hµ(Ω). (2.218)

Now, estimates (2.178), (2.182), (2.199), (2.216) – (2.218) and the inequality
√
a +
√
b +
√
c ≤

√
3(a + b + c)1/2 valid for

a, b, c ≥ 0, imply that

max
t∈(0,T )

‖eh(t)‖L2(Ω) +

ε
2

T∫
0

|||eh(ϑ)|||2 dϑ+ 2γ0‖eh‖2L2(QT )

1/2

(2.219)

+

1

2

∑
K∈Th

T∫
0

(
‖eh(t)‖2v(t),∂K∩∂Ω + ‖[eh(t)]‖2v(t),∂K−(t)\∂Ω

)
dt

1/2

≤

√6

((
3εC̃2

BC
2
Ah

2(µ−1) + 2C
′
b C

2
Ah

2µ−1
)∫ T

0

|u(ϑ)|2Hµ(Ω dϑ

)1/2

+2
√

6

(
CA(Cc + Cb)h

µ

∫ T

0

|u(ϑ)|Hµ(Ω dϑ+ CAh
µ

∫ T

0

|∂tu(ϑ)|Hµ(Ω) dϑ

)
+
√

6
(
C2
Ah

2µmaxt∈[0,T ]|u(t)|2Hµ(Ω)

+C2
A

(
2γ0h

2µ +
ε

2

(
1 +

4CWCM
CT

)
h2(µ−1) + 2C

′
b h

2µ−1
)∫ T

0

|u(ϑ)|2Hµ(Ω) dϑ
)1/2

}
.

The above inequality and the inequality h < h̄ already imply estimate (2.214) with a constant C̃ depending on the constants

C̃B , CA, C
′
b , Cc, Cb, h̄, γ0, CW , CM , CT and the seminorms

|u|L2(0,T ;Hµ(Ω)), |u|L1(0,T ;Hµ(Ω)), |u|C([0,T ];Hµ(Ω)), |∂tu|L1(0,T ;Hµ(Ω)) .

Exercise 2.29. (i) Prove estimate (2.212) in detail.

(ii) Verify relations (2.211).

(iii) Express the constant C̃ from the error estimate (2.214) in terms of the constants C̃B , CA, . . ., and the norms of u and
∂tu.

(iv) Prove relations (2.190) and (2.203) in detail.

Remark 2.30. Let us omit the integrals over ∂K− ∩ ∂Ω and ∂K− \ ∂Ω in the form bh and the corresponding terms on the
right-hand side in the definition of the approximate solution uh (which means that we cancel upwinding). Proceeding in the same
way as before, we obtain the estimate of the type

d

dt
‖ξ‖2L2(Ω) + ε|||ξ|||2 + 2

∫
Ω

(c− 1

2
∇ · v)ξ2 dx+

∑
K∈Th

∫
∂K

(v · n)ξ2 dS

≤ Cεh2(µ−1) + Ch2µ + ‖ξ‖2L2(Ω). (2.220)

We can see that it is difficult to handle the terms
∫

Γ
(v ·n)ξ2 dS on the left-hand side, as v ·n may be both positive and negative.

We can make some rearrangements, but then it is necessary to use the standard Gronwall’s Lemma 0.9 and we obtain a term
like exp(cT/ε) on the right-hand side of the final estimate, which is not desirable, especially for small ε. The use of upwinding
is therefore important for obtaining the error estimate uniform with respect to the diffusion coefficient ε. Similar result is valid
even on an infinite time interval [0,+∞) as was shown in [FŠ04].

Exercise 2.31. Prove estimate (2.220) and the error estimate following from (2.220).
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2.7 Numerical examples

In Chapter 1 we presented numerical experiments which demonstrate the high order of convergence of the discontinuous Galerkin
method (DGM). However, similar results can be obtained for the standard conforming finite element method (FEM) (e.g.,
[Cia79]). Moreover, in comparison with conforming FEM, DGM requires more degrees of freedom for obtaining the same level
of computational error. On the other hand, the numerical solutions obtained by the conforming FEM and DGM are completely
different in the case of convection-diffusion problems, particularly for dominating convection.

Let us consider a simple stationary linear convection-diffusion boundary value problem to find such a function u that

∂u

∂x1
− ε∆u =1 in Ω = (0, 1)× (0, 1), (2.221)

u =0 on ∂Ω,

where ε > 0 is a diffusion coefficient. The exact solution possesses an exponential boundary layer along x1 = 1 and two parabolic
boundary layers along x2 = 0 and x2 = 1 (cf. [RST96]). In the interior grid points the solution u(x1, x2) ≈ x1.

We solved this problem with the aid of the conforming FEM and the IIPG variant of DGM on a uniform triangular grid
with spacing h = 1/16 with the aid of piecewise linear approximation. Figures 2.1 and 2.2 show the approximate solutions for
ε = 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6 obtained by FEM and DGM, respectively.

We can see that the conforming finite element solutions suffer from spurious oscillations whose amplitude increases with
decreasing diffusion coefficient. On the other hand, for ε = 10−1, 10−2 and 10−3 the discontinuous Galerkin solution contains
spurious overshoots and undershoots only in the vicinity of the boundary layers, but inside the domain there are no spurious
oscillations. These overshoots and undershoots completely disappear for ε � 1. It is caused by the fact that the Dirichlet
boundary condition is imposed in a weak sense with the aid of the boundary penalty. From this point of view, the DGM does
not require such sophisticated stabilization techniques as the conforming FEM (see [JK07] for an overview).
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Figure 2.1: Linear convection-diffusion equation, P1 conforming finite element method, horizontal cut at x2 = 0.5 (left), vertical
cut at x1 = 0.5 (center), 3D view (right), for ε = 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6.
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Figure 2.2: Linear convection-diffusion equation, P1 discontinuous Galerkin method, horizontal cut at x2 = 0.5 (left), vertical
cut at x1 = 0.5 (center), 3D view (right), for ε = 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6.
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Chapter 3

Time discretization by the multi-step
methods

3.1 Backward difference formula for the time discretization

In Section ??, we presented the full space-time discretization of the nonstationary initial-boundary value problem (??) by the
semi-implicit backward Euler time scheme (??). This scheme has a high-order of convergence (depending on the degree of
polynomial approximation) with respect to the mesh-size h, but only the first order of convergence with respect to the time step
τ .

In many applications, computations with a scheme having the first-order of convergence with respect to τ are very inefficient.
In this section we introduce a method for solving the nonstationary initial-boundary value problem (2.1) which is based on a
combination of the discontinuous Galerkin method for the space semidiscretization and the k-step backward difference formula
(BDF) for the time discretization. We call this technique as BDF-DGM. The BDF methods are widely used for solving stiff
ODEs, see [HNW00], [?].

Similarly as in Section ??, the diffusion, penalty and stabilization terms are treated implicitly, whereas the nonlinear
convective terms are treated by a higher-order explicit extrapolation method. This leads to the necessity to solve only a linear
algebraic problem at each time step. We analyze this scheme and derive error estimates in the discrete L∞(0, T ;L2(Ω))-norm
and in the L2(0, T ;H1(Ω, Th))-norm with respect to the mesh-size h and time step τ for k = 2, 3. Mostly, we follow the
strategy from [?]. In this section we analyze only the SIPG technique which allows us to obtain h-optimal error estimates in
the L2(Ω)-norm. Concerning NIPG and IIPG approaches, see Remark 3.9.

We consider again the initial-boundary value problem (2.1) to find u : QT → R such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs
= ε∆u+ g in QT , (3.1a)

u
∣∣
∂ΩD×(0,T ) = uD, (3.1b)

εn · ∇u
∣∣
∂ΩN×(0,T ) = gN , (3.1c)

u(x, 0) = u0(x), x ∈ Ω. (3.1d)

We assume that the data satisfy conditions (2.2), i.e.,

f = (f1, . . . , fd), fs ∈ C1(R), f ′s are bounded, fs(0) = 0, s = 1, . . . , d,

uD = trace of some u∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(QT ) on ∂Ω +D × (0, T ),

ε > 0, g ∈ C([0, T ];L2(Ω)), gN ∈ C([0, T ];L2(∂ΩN )), u0 ∈ L2(Ω).

We suppose that there exists a weak solution u of (3.1) which is sufficiently regular, namely,

u ∈W 1,∞(0, T ;Hs(Ω)) ∩W k,∞(0, T ;H1(Ω)) ∩W k+1,∞(0, T ;L2(Ω)), (3.2)

where s ≥ 2 is an integer. Such a solution satisfies problem (3.1) pointwise. Under (3.2), we have u ∈ C([0, T ];Hs(Ω)), u ′ ∈
C([0, T ];L2(Ω)), where u ′ means the derivative of ∂u(t)/∂t. (For the definitions of the above function spaces, see Section 0.1.5.)

The symbol (·, ·) denotes the scalar product in the space L2(Ω).
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k αi, i = k, k − 1, . . . , 0 βi, i = 1, . . . , k
1 1 −1 1

2 3
2 −2 1

2 2 −1

3 11
6 −3 3

2 − 1
3 3 −3 1

Table 3.1: Values of the coefficients αi, i = 0, . . . , k, and βi, i = 1, . . . , k, for k = 1, 2, 3.

3.1.1 Discretization of the problem

We use the same notation and assumptions as in Sections 1.4 and 2.2. This means that we suppose that the domain Ω is polygonal
if d = 2, or polyhedral if d = 3, with Lipschitz boundary. By Th we denote a partition of the domain Ω and use the diffusion,
penalty, right-hand side and convection forms Ah, ah, `h, J

σ
h , bh, defined in Section 2.2 by relations (2.9) – (2.13) and (2.23). Let

p ≥ 1 be an integer and let Shp be the space of discontinuous piecewise polynomial functions (1.34). Moreover, we assume that
Assumptions 2.5 in Section 2.3 are satisfied. Let us recall that the functions fs, s = 1, . . . , d, are Lipschitz-continuous with
constant Lf = 2LH , where the constant LH is introduced in (2.18).

Furthermore, as was already shown (cf. (2.28)), the exact solution u with property (3.2) satisfies the consistency identity(
∂u

∂t
(t), vh

)
+Ah(u(t), vh) + bh(u(t), vh) = `h(vh) (t) ∀vh ∈ Shp ∀t ∈ (0, T ). (3.3)

Now, because of time discretization, we shall consider a uniform partition of the time interval [0, T ] formed by the time
instants tj = jτ, j = 0, 1, . . . , r, with a time step τ = T/r, where r > k is an integer. The value u(tj) of the exact solution will

be approximated by an element ujh ∈ Shp, j = 0, . . . , r.
Let k ≥ 1 be an integer. The time derivative in (3.3) will be approximated by a high-order k-step backward difference formula

∂u

∂t
(tj+k) ≈ 1

τ

(
αku

j+k
h + αk−1u

j+k−1
h + · · ·+ α0u

j
h

)
=

1

τ

k∑
i=0

αiu
j+i
h , (3.4)

where uj+lh ≈ u(tj+l and αi, i = 0, . . . , k, are the so-called BDF coefficients given by

αk =

k∑
i=1

1

i
, αi = (−1)k−i

(
k

i

)
1

k − i , i = 0, . . . , k − 1. (3.5)

In order to obtain an accurate, stable, efficient and simple scheme, the forms Ah and `h will be treated implicitly, whereas the
nonlinear terms represented by the form bh will be treated explicitly. In order to keep the high order of the scheme with respect
to the time step, in bh we employ a high-order explicit extrapolation

u(tj+k) ≈
(
β1u

j+k−1
h + β2u

j+k−2
h + · · ·+ βku

j
h

)
=

k∑
i=1

βiu
j+k−i
h , (3.6)

where βi, i = 1, . . . , k, are the coefficients given by

βi =(−1)i+1

(
k

i

)
= −αk−ii, i = 1, . . . , k. (3.7)

Table 3.1 shows the values of αi, i = 0, . . . , k, and βi, i = 1, . . . , k, for k = 1, 2, 3.
Now we are ready to introduce the full space-time BDF-DG discretization of problem (3.1).

Definition 3.1. Let k ≥ 1 be an integer and let u1
h, . . . , u

k−1
h ∈ Shp be given. We define the approximate solution of problem

(3.1) obtained by the semi-implicit k-step BDF-DG method as functions ul+kh , tl+k ∈ [0, T ], satisfying the conditions

ul+kh ∈ Shp, (3.8a)

1

τ

(
k∑
i=0

αiu
l+i
h , vh

)
+Ah(ul+kh , vh) + bh(El+k(uh), vh) = `h(vh) (tl+k) (3.8b)

∀ vh ∈ Shp, l = 0, 1, 2, . . . , r − k,
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where Em denotes the high-order explicit extrapolation operator at the time level tm given by

Em(uh) =

k∑
i=1

βiu
m−i
h , (3.9)

and αi, i = 0, . . . , k, and βi, i = 1, . . . , k, are given by (3.5) and (3.7), respectively. The function ulh is called the approximate
solution at time tl, l = 0, . . . , r.

Remark 3.2. (i) We see that the high-order explicit extrapolation El+k(uh) depends on ulh, . . . , u
l+k−1
h and is independent of

ul+kh .

(ii) Since scheme (3.8) represents a k-step formula, we have to define the approximate solution u0
h, u1

h, . . . , u
k−1
h at times t0 = 0,

t1, . . . , tk−1. The initial value u0
h is defined as the L2(Ω) projection of the initial data u0 on the space Shp. This means that

u0
h ∈ Shp and

(u0
h − u0, vh) = 0 ∀vh ∈ Shp.

The values u1
h, . . . , u

k−1
h have to be determined, e.g., by a one-step method as, for example, a kth-order Runge–Kutta scheme,

see Section ??.
(iii) The discrete problem (3.8) is equivalent to a system of linear algebraic equations for each tl+k ∈ [0, T ]. The existence

and uniqueness of the solution of this linear algebraic problem is proved in Section 3.1.2.
(iv) The explicit extrapolation can also be applied to u ∈ C([0, T ];L2(Ω)) by

El+k(u) =

k∑
i=1

βiu
l+k−i, tl, tl+k ∈ [0, T ]. (3.10)

3.1.2 Theoretical analysis

In what follows we shall be concerned with the analysis of method (3.8) for the SIPG variant of the DGM. Hence, we set Θ = 1
in the definitions (2.10) and (2.13) of the forms Ah and `h. Moreover, we confine our considerations to the case when ∂ΩN = ∅.
This means that we analyze problem (??) from Section ??. Other possibilities will be mentioned in Remark 3.9.

Similarly, as in the analysis of schemes for the numerical solution of ordinary differential equations, we introduce the concept
of stability of the BDF method.

Definition 3.3. The BDF method (3.8) is stable (by Dahlquist), if all roots of the polynomial ρ(ξ) =
∑k
j=0 αjξ

j lie in the unit
closed circle {z ∈ C; |z| ≤ 1} and the roots satisfying the condition |ξ| = 1 are simple (the symbol C denotes the set of complex
numbers).

Theorem 3.4. Let Assumptions 2.5 from Section 2.3 be satisfied and let ∂ΩN = ∅. Let u be the exact solution of problem (3.1)
satisfying (3.2). Let tl = lτ, l = 0, 1, . . . , r, τ = T/r, be a time partition of [0, T ], let ulh, l = 0, . . . , r, be the approximate solution

defined by the k-step BDF-DG scheme (3.8) with k = 2 and let τ ≤ 1. Then there exists a constant C̃2 = O (exp(3GT (1 + 2K/ε)))
independent of h and τ such that

‖e‖2h,τ,L∞(L2) ≤ C̃2

(
(h2µ + τ4)(1 + 1/ε) +

1∑
j=0

‖ejh‖2L2(Ω)

)
, (3.11)

where K is defined by (??) and G by (??).

Now, we formulate the L∞(L2)-error estimate of the three step method.

Theorem 3.5. Let Assumptions 2.5 in Section 2.3 be satisfied and let ∂ΩN = ∅. Let u be the exact solution of problem (3.1)
satisfying (3.2). Let tl = lτ, l = 0, 1, . . . , r, τ = T/r, be a partition of the time interval [0, T ], let ulh, l = 0, . . . , r be defined

by the k-step BDF-DG scheme (3.8) with k = 3 and let τ ≤ 1. Then there exists a constant C̃3 = O (exp(GT (30 + 117K/4ε)))
such that

‖e‖2h,τ,L∞(L2) ≤ C̃3

(
(h2µ + τ6) (1 + 1/ε) +

2∑
l=0

‖elh‖2L2(Ω) + τε|||ζ2|||2
)
, (3.12)

where K is defined by (??) and ζ2 = u2
h − Phpu

2 is given by (??).
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Theorem 3.6. Let Assumptions 2.5 in Section 2.3 be satisfied and let ∂ΩN = ∅. Let u be the exact solution of problem (3.1)
satisfying (3.2). Let tl = lτ, l = 0, 1, . . . , r, τ = T/r, be a partition of [0, T ] and let ulh, l = 0, . . . , r, be the approximate solution

defined by the k-step BDF-DG scheme (3.8) with k = 2, 3. Then there exists a constant Ĉ such that

‖e‖2h,τ,L2(H1) (3.13)

≤ Ĉ
(
εh2(µ−1) + (1 + 1/ε)2(h2µ + τ2k) + (1 + 1/ε)

k−1∑
j=0

(
‖ejh‖L2(Ω) + τε|||ejh|||

2
))

.

Remark 3.7. We observe that estimates (3.11), (3.12) and (3.13) are optimal with respect to h as well as τ in the discrete
L∞(0, T ;L2(Ω))-norm and L2(0, T ;H1(Ω, Th))-norm.

It can be seen that these estimates are not of practical use for ε→ 0+, because they blow up exponentially with respect to 1/ε.
This is caused by the treatment of nonlinear terms in the error analysis. The nonlinearity of the convective terms represents a
serious obstacle for obtaining a uniform error estimate with respect to ε→ 0+.

Remark 3.8. The proven unconditional stability may seem to be in contradiction with the Dahlquist barrier (see [?, Theorem
1.4]) which implies that the 3-step BDF method cannot be unconditionally A-stable. However, in our case, the k-step BDF
scheme with k = 2, 3 was not applied to a general system of ODEs, but to system (3.1) arising from the space semi-discretization
of (3.1) under the assumptions of the symmetry of the form Ah and some favourable properties of the form bh, which cause that
all eigenvalues of the Jacobi matrix of the corresponding ODE system lie in the stability region of the k-step BDF method with
k = 2, 3 for any τ ≤ 1 and h ∈ (0, h̄).

Remark 3.9. The presented numerical analysis can be partly extended also to NIPG and IIPG variants of the DG method.
However, the determination of error estimates for the 3-step BDF-DG method employs equality (??), which is not valid for
NIPG and IIPG variants due to their non-symmetry. It is not clear to us whether it is possible to avoid this obstacle.

On the other hand, for the 2-step BDF-DG method, a weaker result than (3.11) can be derived for NIPG and IIPG variants,
for example,

‖e‖2h,τ,L∞(L2) ≤ C̃

(h2(µ−1) + τ4) (1 + 1/ε) +

1∑
j=0

‖ejh‖2L2(Ω)

 , (3.14)

where C̃ is independent of h and τ . Estimate (3.14) can also be proved in the case of mixed Dirichlet–Neumann boundary
conditions, i.e., for nonempty ∂ΩN .

3.1.3 Numerical examples

In this section we demonstrate the theoretical error estimates (3.11), (3.12) and (3.13) derived in the previous section. We try to
investigate the dependence of the computational error on h and τ independently. Based on (3.11), (3.12) and (3.13) we expect
that the computational error eh,τ in the L2(Ω)-norm as well as the H1(Ω, Th)-seminorm depends on h and τ according to the
formula

eh,τ ≈ chhp+1 + cττ
k, (3.15)

where ch and cτ are constants independent of h and τ .
In our numerical experiments we solve equation (3.1a) in Ω = (0, 1)2, ∂Ω = ∂ΩD, fi(u) = u2/2, i = 1, 2, equipped with the

boundary condition (3.1b) and the initial condition (3.1d).

Convergence with respect to τ

In this case we put ε = 0.01, T = 1 and the functions uD, u0 and g are chosen in such a way that the exact solution has the
form u(x1, x2, t) = 16 (e10t − 1)/(e10 − 1)x1(1− x1)x2(1− x2).

The computations were carried out on a fine triangular mesh having 4219 elements with a piecewise cubic approximation
in space and using 6 different time steps: 1/20, 1/40, 1/80, 1/160, 1/320, 1/640. For such data setting we expect that
chh

p+1 � cττ
k and, therefore the space discretization errors are negligible. Fig. 3.1 shows the computational errors at t = T

and the corresponding experimental order of convergence with respect to τ in the L2(Ω)-norm and the H1(Ω, Th)-seminorm for
the k-step BDF scheme (3.8) with k = 1, k = 2 and k = 3. The expected order of convergence O(τk) is observed in each case.
A smaller decrease of the order of convergence in the H1(Ω, Th)-seminorm for k = 3 and τ = 1/640 is caused by the influence
of the spatial discretization since in this case the statement chh

p+1 � cττ
k is no longer valid.

90



 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1

k=1

k=2

k=3

1

1

1

1

2

3

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1

k=1

k=2

k=3

1

1

1

1

2

3

Figure 3.1: Computational errors and orders of convergence with respect to the time step τ in the L2(Ω)-norm (left) and the
H1(Ω, Th)-seminorm (right) for scheme (3.8) with k = 1 (full line), k = 2 (dashed line) and k = 3 (dotted line).
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Figure 3.2: Computational errors and orders of convergence with respect to the mesh-size h in the L2(Ω)-norm (left) and the
H1(Ω, Th)-seminorm (right) for scheme (3.8) with P1 (full line), P2 (dashed line) and P3 (dotted line) approximations.

Convergence with respect to h

In this case we put ε = 0.1, T = 10 and the functions uD, u0 and g are chosen in such a way that the exact solution has the
form u(x1, x2, t) = (1− e−10t)(x2

1 + x2
2)x1x2(1− x1)(1− x2). As we see, we have µ = p+ 1.

The computations were carried out with the 3-step BDF scheme (3.8) on 7 triangular meshes having 128, 288, 512, 1152,
2048, 4608 and 8192 elements, using the time step τ = 0.01. For such data setting we expect that chh

p+1 � cττ
k and the time

discretization errors can be neglected. Fig. 3.2 shows the computational errors at t = T and the corresponding experimental
order of convergence with respect to h in the L2(Ω)-norm and the H1(Ω, Th)-seminorm for piecewise linear P1, quadratic P2

and cubic P3 approximations. We observe the order of convergence O(hp+1) for p = 1, 2, 3 in the L2(Ω)–norm and O(hp) in the
H1(Ω, Th)-seminorm, which perfectly corresponds to the theoretical results (3.13).
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Chapter 4

Time discretization by time discontinuous
Galerkin method

In Chapter ??, we introduced and analyzed methods based on the combination of the DGM space discretization with the
backward difference formula in time. Although this approach gives satisfactory results in a number of applications (see Chapter
7), its drawback is a complicated adaptation of the space computational mesh and the time step. From this point of view, more
suitable approach is the space-time discontinuous Galerkin method (ST-DGM), where the DGM is applied separately in space
and in time.

The ST-DGM can use different triangulations on different time levels arising due to a mesh adaptation and, thus, it perfectly
suits the numerical solution of nonstationary problems. Moreover, the ST-DGM can (locally) employ different polynomial
degrees p and q in space and time discretization, respectively.

Section 4.1 will be concerned with basic ideas and techniques of the ST-DGM applied to a linear model heat equation. In
Section 4.2, we extend the analysis to a more general convection-diffusion problem with nonlinear convection and nonlinear
diffusion. Sections ?? and ?? will be devoted to some special ST-DG techniques.

4.1 Space-time DGM for a heat equation

In this section, we present and analyze the space-time discontinuous Galerkin method applied to a simple model problem
represented by the linear heat equation. We explain the main aspects of the ST-DG discretization for this problem and derive
the error estimates in the L∞(0, T ;L2(Ω))-norm and the DG-norm formed by the L2(0, T ;H1(Ω, Th))-norm and penalty terms.

Let Ω ⊂ Rd, d = 2 or 3, be a bounded polygonal or polyhedral domain, T > 0 and QT := Ω × (0, T ). We consider the
problem to find u : QT → R such that

∂u

∂t
= ε∆u+ g in QT , (4.1a)

u
∣∣
∂ΩD×(0,T ) = uD, (4.1b)

∇u · n
∣∣
∂ΩN×(0,T ) = gN , (4.1c)

u(x, 0) = u0(x), x ∈ Ω, (4.1d)

Similarly as in Section 2.2 we assume that the boundary ∂Ω is formed by two disjoint parts ∂ΩD and ∂ΩN with measd−1(∂ΩD) >
0, and that the data satisfy the usual conditions (cf. (2.2)): uD = trace of some u∗ ∈ C([0, T ];H1(Ω)) on ∂ΩD × (0, T ),
ε > 0, g ∈ C([0, T ];L2(Ω)), gN ∈ C([0, T ];L2(∂ΩN )) and u0 ∈ L2(Ω).

4.1.1 Discretization of the problem

Space-time partition and function spaces

In order to derive the space-time discontinuous Galerkin discretization, we introduce some notation.
Let r > 1 be an integer. In the time interval [0, T ] we construct a partition 0 = t0 < · · · < tr = T and denote

Im = (tm−1, tm), Im = [tm−1, tm], τm = tm − tm−1, τ = max
m=1,...,r

τm.

Then

[0, T ] = ∪rm=1Im, Im ∩ In = ∅ for m 6= n, m, n = 1, . . . , r.
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Figure 4.1: Space-time discretization for space dimension d = 1.

If ϕ is a function defined in
⋃r
m=1 Im, we introduce the notation

ϕ±m = ϕ(tm±) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ+
m − ϕ−m, (4.2)

provided the one-sided limits lim
t→tm±

ϕ(t) exist.

For each time instant tm, m = 0, . . . , r, and interval Im, m = 1, . . . , r, we consider a partition Th,m (called triangulation)
of the closure Ω of the domain Ω into a finite number of closed simplexes (triangles for d = 2 and tetrahedra for d = 3) with
mutually disjoint interiors. The partitions Th,m may be in general different for different m. Figure 4.1 shows an illustrative
example of the space-time partition for d = 1.

In what follows, we shall use a similar notation as in Section 1.1, only a subscript m has to be added to the notation because
of different grids Th,m. By Fh,m we denote the system of all faces of all elements K ∈ Th,m. Further, we denote the set of all
inner faces by FIh,m and the set of all boundary faces by FBh,m. Each Γ ∈ Fh,m will be associated with a unit normal vector

nΓ, which has the same orientation as the outer normal to ∂Ω for Γ ∈ FBh,m. In Γ ∈ FBh,m we distinguish the subsets the of all

“Dirichlet” boundary faces FDh = {Γ ∈ Fh; Γ ⊂ ∂ΩD} and of all “Neumann” boundary faces FNh = {Γ ∈ Fh, Γ ⊂ ∂ΩN}. We
set

hK = diam(K) for K ∈ Th,m, hm = maxK∈Th,mhK , h = max
m=1,...,r

hm.

By ρK we denote the radius of the largest ball inscribed into K.
For any integer k ≥ 1, over a triangulation Th,m we define the broken Sobolev space

Hk(Ω, Th,m) = {v ∈ L2(Ω); v|K ∈ Hk(K) ∀K ∈ Th,m}, (4.3)

with seminorm

|v|Hk(Ω,Th,m) =

( ∑
K∈Th,m

|v|2Hk(K)

)1/2

. (4.4)

In the same way as in Chapter 1, we use the symbols 〈v〉Γ and [v]Γ for the mean value and the jump of v ∈ Hk(Ω, Th,m) on
the face Γ ∈ Fh,m, see (1.32).

Let p, q ≥ 1 be integers. For each m = 1, . . . , r we define the finite-dimensional space

Sph,m =
{
ϕ ∈ L2(Ω);ϕ|K ∈ Pp(K) ∀K ∈ Th,m

}
. (4.5)

Over each mesh Th,m we shall use the L2-projections analogous to πK,p and Πhp defined in (1.89) and (1.90). For simplicity we
denote these projections by Πh,m. Hence, if K ∈ Th,m, m = 1, . . . , r, and v ∈ L2(K), then

(Πh,mv)|K ∈ Pp(K), (Πh,mv − v, ϕ)L2(K) = 0 ∀ϕ ∈ Pp(K), (4.6)

and, if v ∈ L2(Ω), then

Πh,mv ∈ Sph,m, (Πh,mv − v, ϕ) = 0 ∀ϕ ∈ Sph,m. (4.7)
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As in previous sections, (·, ·)L2(K) and (·, ·) denote the L2(K)-scalar product and the L2(Ω)-scalar product, respectively, and
Pp(K) denotes the space of all polynomials on K of degree ≤ p. Properties of these projections follow from Lemmas 1.22 and
1.24 and they are summarized in (??) – (??).

The approximate solution will be sought in the space of functions piecewise polynomial in space and time:

Sp,qh,τ =
{
ϕ ∈ L2(QT ); ϕ(x, t)

∣∣
Im

=

q∑
i=0

ti ϕm,i(x) (4.8)

with ϕm,i ∈ Sph,m, i = 0, . . . , q, m = 1, . . . , r
}
.

4.1.2 Space-time DG discretization

We derive the full space-time discontinuous Galerkin discretization in the similar way as the space discretization introduced in
detail in Chapter 1. We consider a regular exact solution satisfying the conditions

u ∈ L2(0, T ;H2(Ω)),
∂u

∂t
∈ L2(0, T ;H1(Ω)). (4.9)

Then u ∈ C([0, T ];H1(Ω)). Such solution satisfies (4.1) pointwise. Moreover, let m ∈ {1, . . . , r} be arbitrary but fixed. We
multiply (4.1a) by ϕ ∈ Sp,qh,τ , integrate over K × Im and sum over all elements K ∈ Th,m. Then∫

Im

(u′, ϕ) dt+ ε

∫
Im

( ∑
K∈Th,m

∫
K

∇u · ∇ϕdx−
∑

K∈Th,m

∫
∂K

∇u · nϕdS
)

dt (4.10)

=

∫
Im

(g, ϕ) dt,

where we use the notation u′ = ∂u/∂t.
First, we deal with the time derivative term. With the aid of the integration by parts, we have∫

Im

(u′, ϕ) dt = −
∫
Im

(u, ϕ′) dt+ (u−m, ϕ
−
m)− (u+

m−1, ϕ
+
m−1). (4.11)

Since the exact solution u is continuous with respect to t, we have u+
m−1 = u−m−1 (cf. (4.2)) and, thus,

(u+
m−1, ϕ

+
m−1) = (u−m−1, ϕ

+
m−1). (4.12)

The substitution of (4.12) into (4.11) and the integration by parts (in the reverse manner) yield∫
Im

(u′, ϕ) dt =−
∫
Im

(u, ϕ′) dt+ (u−m, ϕ
−
m)− (u−m−1, ϕ

+
m−1) (4.13)

=

∫
Im

(u′, ϕ) dt+ (u+
m−1, ϕ

+
m−1)− (u−m−1, ϕ

+
m−1)

=

∫
Im

(u′, ϕ) dt+
(
{u}m−1, ϕ

+
m−1

)
.

Remark 4.1. Identity (4.13) makes sense also for a function u, which is piecewise polynomial with respect to t on Im, m =
1, . . . , r. Then the equality (4.12) can be interpreted in such a way that the value of the function u at tm−1 from the right (on
the new time interval) is approximated by the L2(Ω)-projection of the value of u at tm−1 from the left (on the previous time
interval). Therefore, we can speak about the “upwinding” with respect to time – compare with the “space upwinding” in (2.16).

The discretization of the diffusion term and the right-hand side in (4.10) is the same as in Chapter 1. Hence, in virtue of
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(1.41) – (1.42) and (1.50) – (1.53), we define the diffusion, penalty and right-hand side forms as

ah,m(w,ϕ) =
∑

K∈Th,m

∫
K

∇w · ∇ϕdx−
∑

Γ∈FIh,m

∫
Γ

(〈∇w〉 · n[ϕ] + Θ〈∇ϕ〉 · n [w]) dS

−
∑

Γ∈FDh,m

∫
Γ

(∇w · nϕ+ Θ∇ϕ · nw) dS, (4.14)

Jσh,m(w,ϕ) =
∑

Γ∈FIh,m

CW
hΓ

∫
Γ

[w] [ϕ] dS +
∑

Γ∈FDh,m

CW
hΓ

∫
Γ

wϕdS, (4.15)

Ah,m(w,ϕ) =εah,m(w,ϕ) + εJσh,m(w,ϕ), (4.16)

`h,m(ϕ) =

∫
Ω

g ϕdx+

∫
∂ΩN

gNϕdS (4.17)

− εΘ
∑

Γ∈FDh,m

∫
Γ

∇ϕ · nuD dS + ε
∑

Γ∈FDh,m

CW
hΓ

∫
Γ

uD ϕdS,

where CW > 0 is a suitable constant and hΓ characterizes the face Γ (cf. Lemma 1.5). Moreover, in (4.14) and (4.17), we take
Θ = −1, Θ = 0 and Θ = 1 and obtain the nonsymmetric (NIPG), incomplete (IIPG) and symmetric (SIPG) variants of the
approximation of the diffusion terms, respectively. Obviously, forms (4.14) – (4.17) make sense for v, w, ϕ ∈ H2(Ω, Th,m).

In virtue of (4.10), (4.13) and (4.14) – (4.17), the exact regular solution u satisfies the identity∫
Im

((u′, ϕ) +Ah,m(u, ϕ)) dt+
(
{u}m−1, ϕ

+
m−1

)
=

∫
Im

`h,m(ϕ) dt ∀ϕ ∈ Sp,qh,τ ,

with u(0−) = u0. (4.18)

Based on (4.18), we introduce the approximate solution.

Definition 4.2. We say that a function U is a ST-DG approximate solution of problem (4.1), if U ∈ Sp,qh,τ and∫
Im

((U ′, ϕ) +Ah,m(U,ϕ)) dt+
(
{U}m−1, ϕ

+
m−1

)
=

∫
Im

`h,m(ϕ) dt (4.19)

∀ϕ ∈ Sp,qh,τ , m = 1, . . . , r, with U−0 := Πh,0u
0,

where U ′ = ∂U/∂t. We call (4.19) the space-time discontinuous Galerkin discrete problem.

Remark 4.3. The expression
(
{U}m−1, ϕ

+
m−1

)
in (4.19) patches together the approximate solution on neighbouring intervals

Im−1 and Im. At time t = t0 = 0 we have {U}0 = U+
0 − Πh,mu

0. It is also possible to consider q = 0. In this case, scheme
(4.19) represents a variant of the backward Euler method analyzed in Section ??. Therefore, we shall assume that q ≥ 1.

Remark 4.4. With respect to the notation in previous chapters, we should denote the approximate solution by uhτ , which would
express that the approximate solution depends of the space and time discretization parameters h and τ . However, for the sake
of simplicity we use the symbol U .

Theorem 4.5. There exists a unique approximate solution of (4.19).

Proof. Let m ∈ {1, . . . , r} be fixed and let U−m−1 be given either by the initial condition or from the previous interval Im−1.
Identity (4.19) can be written in the form

R(U,ϕ) =

∫
Im

`h,m(ϕ) dt+
(
U−m−1, ϕ

+
m−1

)
, ϕ ∈ Sp,qh,τ,m, (4.20)

where

R(U,ϕ) :=

∫
Im

((U ′, ϕ) +Ah,m(U,ϕ)) dt+
(
U+
m−1, ϕ

+
m−1

)
(4.21)

and

Sp,qh,τ,m :=
{
ϕ ∈ L2(Ω× Im); ϕ(x, t) =

q∑
i=0

ti ϕi(x) with ϕm,i ∈ Sph,m, i = 0, . . . , q
}
. (4.22)
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Obviously, the form R is a bilinear form on the finite dimension space Sp,qh,τ,m and the right-hand side of (4.20) is a linear

functional depending on ϕ ∈ Sp,qh,τ,m. Then, in virtue of Corollary 0.7, it is sufficient to prove the coercivity of the form R on

Sp,qh,τ,m with respect to a suitable norm. Hence, using (2.85), the coercivity of Ah,m following from (1.140) and integration over
Im, we obtain

R(ϕ,ϕ) =

∫
Im

((ϕ′, ϕ) +Ah,m(ϕ,ϕ)) dt+
(
ϕ+
m−1, ϕ

+
m−1

)
(4.23)

=

∫
Im

(
1

2

d

dt
‖ϕ‖2L2(Ω) +Ah,m(ϕ,ϕ)

)
dt+

∥∥ϕ+
m−1

∥∥2

L2(Ω)

=
1

2

(∥∥ϕ−m∥∥2

L2(Ω)
−
∥∥ϕ+

m−1

∥∥2

L2(Ω)

)
+

∫
Im

Ah,m(ϕ,ϕ) dt+
∥∥ϕ+

m−1

∥∥2

L2(Ω)

≥1

2

(∥∥ϕ−m∥∥2

L2(Ω)
+
∥∥ϕ+

m−1

∥∥2

L2(Ω)

)
+ εCC

∫
Im

|||ϕ|||2 dt =: ‖ϕ‖2?.

It is possible to show that ‖·‖? is a norm on the space Sp,qh,τ,m and, thus, the form R is coercive. Then Corollary 0.7 implies the
existence and uniqueness of the approximate solution.

Exercise 4.6. Show that ‖·‖? defined in (4.23) is a norm on the space Sp,qh,τ,m.

Our main goal will be the investigation of qualitative properties of the ST-DG scheme (4.19). In particular, we shall be
concerned with the analysis of error estimates.

Theorem 4.7. Let u be the exact solution of problem (4.1) satisfying the regularity condition (??) and let U ∈ Sp,qh,τ be its
approximation given by (4.19). Let inequality

τm ≥ CSh2
m (4.24)

hold for all m = 1, . . . , r and let the shape regularity assumption (??) and the equivalence condition (??) be satisfied. Then there
exists a constant C17 > 0 independent of h, τ and u such that

‖e−m‖2L2(Ω) +
ε

2

m∑
j=1

∫
Ij

|||e|||2j dt (4.25)

≤C17ε
(
h2(µ−1)|u|2C([0,T ];Hµ(Ω)) + τ2(q+γ)|u‖2Hq+1(0,T ;H1(Ω))

)
,

h ∈ (0, h̄), m = 1, . . . , r.

Here γ = 0, if (??) holds and the function uD from the boundary condition (4.1b) has a general behaviour. If uD is defined by
(??), then γ = 1 and condition (??) is not required. The symbol | · ‖ is defined by (??).

Theorem 4.8. Let u be the exact solution of problem (4.1) satisfying the regularity condition

u ∈W q+1,∞(0, T ;L2(Ω)) ∩ C([0, T ];Hs(Ω)), (4.26)

where s ≥ 2 is an integer and µ = min(p + 1, s). Let U ∈ Sp,qh,τ be its approximation given by (4.19). Let (4.24) hold for all
m = 1, . . . , r and let the shape regularity assumption (??) and the equivalence condition (??) be satisfied. Then there exists a
constant C18 > 0 independent of h, τ and u such that

sup
t∈Im

‖u(t)− U(t)‖2L2(Ω) (4.27)

≤C18

(
h2(µ−1)|u|2C([0,T ];Hµ(Ω)) + τ2(q+1)

m |u|2W q+1,∞(0,T ;L2(Ω))

)
,

h ∈ (0, h̄), m = 1, . . . , r.

4.2 Space-time DGM for nonlinear convection-diffusion problems

In this section we shall extend the space-time discontinuous Galerkin method (ST-DGM), explained in the previous section on a
simple initial-boundary value problem for the heat equation, to the solution of a more general problem for a convection-diffusion
equation with nonlinear convection and nonlinear diffusion. We shall derive the error estimates in the L2(0, T ;L2(Ω))-norm
and the DG-norm formed by the L2(0, T ;H1(Ω))-norm and penalty terms.

96



Let Ω ⊂ Rd (d = 2 or 3) be a bounded polygonal or polyhedral domain with Lipschitz boundary and T > 0. We consider
the following initial-boundary value problem: Find u : QT = Ω× (0, T )→ R such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs
−∇ · (β(u)∇u) = g in QT , (4.28a)

u
∣∣
∂Ω×(0,T )

= uD, (4.28b)

u(x, 0) = u0(x), x ∈ Ω. (4.28c)

We assume that g, uD, u
0, fs are given functions and fs ∈ C1(R), |f ′s| ≤ C, s = 1, . . . , d. Moreover, let

β : R→ [β0, β1], 0 < β0 < β1 <∞, (4.29a)

|β(u1)− β(u2)| ≤ Lβ |u1 − u2| ∀u1, u2 ∈ R. (4.29b)

Remark 4.9. In this section we consider problem (4.28) with a Dirichlet boundary condition only. This means that ∂ΩD = ∂Ω,
∂ΩN = ∅, FDh = FBh and FNh = ∅. The analysis of the problem with mixed Dirichlet-Neumann boundary conditions is more
complicated due to the properties of the convection form bh derived in Section 2.3.2 and represents an open challenging subject.

In the derivation and analysis of the discrete problem we assume that the exact solution is regular in the following sense:

u ∈ L2(0, T ;H2(Ω)),
∂u

∂t
∈ L2(0, T ;H1(Ω)), (4.30)

‖∇u(t)‖L∞(Ω) ≤ CB for t ∈ (0, T ). (4.31)

4.2.1 Discretization of the problem

We employ the same notation as in Section 4.1. Hence, we consider a partition 0 = t0 < t1 < · · · < tr = T of the time interval
[0, T ], time subintervals Im = (tm−1, tm), m = 1, . . . , r, and triangulations Th,m, m = 0, . . . , r, of the domain Ω associated with
the time instants tm, m = 0, . . . , r, and intervals Im, m = 1, . . . , r. Further, we consider function spaces Sph,m defined by (4.5)

and Sp,qh,τ defined by (4.8) and the projections Πm and π - see (4.7) and (??), respectively.

For the derivation of the space-time discontinuous Galerkin discretization we assume that u ∈ C1((0, T );H2(Ω)) is an exact
solution of problem (4.28). We multiply (4.28a) by ϕ ∈ Sp,qh,τ , integrate over K × Im, sum over all K ∈ Th,m and perform
some manipulation. The time derivative term is discretized in the same manner as in (4.11) – (4.13). The discretization of the
convection term and the source term (4.10) is the same as in Chapter 2.

The discretization of the diffusion term is a little more complicated due to the nonlinearity of the function β. Using the
technique from Section 1.4, the application of Green’s theorem to the diffusion term gives

−
∑

K∈Th,m

∫
K

∇ · (β(u)∇u)ϕdx (4.32)

=
∑

K∈Th,m

∫
K

β(u)∇u · ∇ϕdx−
∑

Γ∈FIBh,m

∫
Γ

〈β(u)∇u〉 · n[ϕ] dS.

In Section 1.4, we add to the right-hand side of (4.32) face integral terms, where the roles of the exact solution u and the test
function ϕ are mutually exchanged. However, in contrast to the case of a linear diffusion (see, e.g., (4.14)), to the right-hand
side we cannot add the expression

Θ
∑

Γ∈FIh,m

∫
Γ

〈β(ϕ)∇ϕ〉 · n[u] dS + Θ
∑

Γ∈FBh,m

∫
Γ

β(ϕ)∇ϕ · n(u− uD) dS,

obtained by the mutual exchange of u and ϕ, because it is not linear with respect to the test function ϕ. Therefore, in the
argument of β we keep the exact solution u, i.e., we use the expression

Θ
∑

Γ∈FIh,m

∫
Γ

〈β(u)∇ϕ〉 · n[u] dS + Θ
∑

Γ∈FBh,m

∫
Γ

β(u)∇ϕ · n(u− uD) dS, (4.33)

which vanishes for a regular function u satisfying the Dirichlet condition (4.28b).

97



Finally, we arrive at the definition of the following forms. If v, w, ϕ ∈ H2(Ω, Th,m) and CW > 0 is a fixed constant, we define
the diffusion, penalty, convection and righ-hand side forms

ah,m(v, w, ϕ) =
∑

K∈Th,m

∫
K

β(v)∇w · ∇ϕdx (4.34)

−
∑

Γ∈FIh,m

∫
Γ

(〈β(v)∇w〉 · n[ϕ] + Θ〈β(v)∇ϕ〉 · n [w]) dS

−
∑

Γ∈FBh,m

∫
Γ

(β(v)∇w · nϕ+ Θβ(v)∇ϕ · n (w − uD)) dS,

Jσh,m(w,ϕ) =
∑

Γ∈FIh,m

CW
hΓ

∫
Γ

[w] [ϕ] dS +
∑

Γ∈FBh,m

CW
hΓ

∫
Γ

wϕdS, (4.35)

Ah,m(w, v, ϕ) =ah,m(w, v, ϕ) + β0J
σ
h,m(v, ϕ), (4.36)

bh,m(w,ϕ) =−
∑

K∈Th,m

∫
K

d∑
s=1

fs(w)
∂ϕ

∂xs
dx+

∑
Γ∈FIh,m

∫
Γ

H
(
w

(L)
Γ , w

(R)
Γ ,n

)
[ϕ] dS

+
∑

Γ∈FBh,m

∫
Γ

H
(
w

(L)
Γ , w

(L)
Γ ,n

)
ϕdS. (4.37)

`h,m(ϕ) =(g, ϕ) + β0

∑
Γ∈FBh,m

CW
hΓ

∫
Γ

uD ϕdS. (4.38)

In (4.34), we take Θ = −1, Θ = 0 and Θ = 1 and obtain the nonsymmetric (NIPG), incomplete (IIPG) and symmetric (SIPG)
variants of the approximation of the diffusion terms, respectively. In (4.37), H is a numerical flux with the properties (2.18) –
(2.20) introduced in Section 2.2.

Similarly as in Section 4.1, the exact regular solution u of (4.28) satisfies the identity∫
Im

((u′, ϕ) +Ah,m(u, u, ϕ) + bh,m(u, ϕ)) dt+
(
{u}m−1, ϕ

+
m−1

)
(4.39)

=

∫
Im

`h,m(ϕ) dt ∀ϕ ∈ Sp,qh,τ , with u(0−) = u(0) = u0.

Here u′ := ∂u/∂t and (·, ·) denotes the L2(Ω)-scalar product.
Based on (4.39), we proceed to the definition of the approximate solution.

Definition 4.10. We say that a function U is an ST-DG approximate solution of problem (4.28), if U ∈ Sp,qh,τ and∫
Im

((U ′, ϕ) +Ah,m(U,U, ϕ) + bh,m(U,ϕ)) dt+
(
{U}m−1, ϕ

+
m−1

)
(4.40)

=

∫
Im

`h,m(ϕ) dt ∀ϕ ∈ Sp,qh,τ , m = 1, . . . , r, U−0 := Πh,0u
0.

where U ′ = ∂U/∂t. We call (4.40) the space-time discontinuous Galerkin discrete problem.

Exercise 4.11. Formulate the ST-DG discrete problem in the case, when mixed Dirichlet-Neumann boundary conditions are
used.

In the sequel, we shall analyze the ST-DGM, namely we derive an estimate of the error e = U − u, where u is the exact
solution of (4.28) and U is the approximate solution given by (4.40). We assume that the approximate solution U exists and is
unique.

4.2.2 Auxiliary results

In the analysis of the ST-DGM for the nonlinear problem we proceed in a similar way as in Section 4.1 for the heat equation.
We consider a system (??) of triangulations Th,m, satisfying the conditions of the shape regularity (??) and of the equivalence
(??). Let π : C([0, T ];L2(Ω)) → Sp,qh,τ be the projection operator given by (??). The error of the method is expressed again in
the form

e = U − u = ξ + η, (4.41)
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where

ξ = U − πu ∈ Sp,qh,τ , η = πu− u. (4.42)

Then, subtracting (4.39) from (4.40), and using (4.41), for each ϕ ∈ Sp,qh,τ we find that∫
Im

((ξ′, ϕ) +Ah,m(U,U, ϕ)−Ah,m(u, u, ϕ)) dt+
(
{ξ}m−1, ϕ

+
m−1

)
(4.43)

=

∫
Im

(bh,m(u, ϕ)− bh,m(U,ϕ)) dt−
∫
Im

(η′, ϕ) dt−
(
{η}m−1, ϕ

+
m−1

)
.

Hence, we need to estimate individual terms appearing in (4.43).
The convection form bh,m has the following property.

Lemma 4.12. For each kb > 0 there exists a constant Cb > 0 independent of U, u, h, τ, r and m such that

|bh,m(U,ϕ)− bh,m(u, ϕ)| (4.44)

≤β0

kb
|||ϕ|||2m + Cb

‖ξ‖2L2(Ω) + ‖η‖2L2(Ω) +
∑

K∈Th,m
h2
K |η|2H1(K)

 .

Let us note that in the following considerations in some places the simplified form of Young’s inequality ab ≤ 1
δa

2 + δb2 is
used.

As for the coercivity of the forms Ah,m, we can prove the following result.

Lemma 4.13. Let

CW >0, for Θ = −1 (NIPG), (4.45)

CW ≥
(

4β1

β0

)2

CMI for Θ = 1 (SIPG), (4.46)

CW ≥2

(
2β1

β0

)2

CMI for Θ = 0 (IIPG), (4.47)

where CMI = CM (CI + 1)CG. Then, for m = 1, . . . , r,

ah,m(U,U, ξ)− ah,m(U, πu, ξ) + β0J
σ
h,m(ξ, ξ) ≥ β0

2
|||ξ|||2m. (4.48)

Exercise 4.14. Prove that inequality (4.48) holds in the case Θ = 0 under condition (4.47).

Lemma 4.15. There exists a constant C > 0 independent of U, ξ, ϕ, h such that

ah,m(U,U, ϕ)− ah,m(U, πu, ϕ) + β0J
σ
h,m(ξ, ϕ) ≤ C(|||ξ|||2m + |||ϕ|||2m) (4.49)

for any ϕ ∈ Sph,m and m = 1, . . . , r.

Lemma 4.16. For arbitrary ka, kc > 0 there exist constants Ca = Ca(ka), Cc = Cc(kc) > 0 independent of U, ξ, ϕ and h such
that for each ϕ ∈ Sph,m the following estimates hold:

|ah,m(U, πu, ϕ)− ah,m(u, πu, ϕ)| ≤ β0

ka
|||ϕ|||2m + Ca(‖ξ‖2L2(Ω) +Rm(η)), (4.50)

|ah,m(u, πu, ϕ)− ah,m(u, u, ϕ)| ≤ β0

kc
|||ϕ|||2m + CcR̃m(η), (4.51)

where

Rm(η) = |||η|||2m + ‖η‖2L2(Ω) +
∑

K∈Th,m

(
|η|2H1(K) + h2

K |η|2H2(K)

)
, (4.52)

R̃m(η) = |||η|||2m +
∑

K∈Th,m

(
h2
K |η|2H2(K)

)
. (4.53)

Remark 4.17. In view of (4.52), estimate (4.44) can be written as

|bh,m(U,ϕ)− bh,m(u, ϕ)| ≤ β0

kb
|||ϕ|||2m + Cb

(
‖ξ‖2L2(Ω) +Rm(η)

)
. (4.54)
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4.2.3 Abstract error estimate

Estimate of ξ

In what follows, we shall use the conditions (??) of the shape regularity, (??) of the equivalence and assumptions from Lemma
4.13.

Let us substitute ϕ := ξ in (4.43). From the definition (4.36) of the form Ah,m it follows that∫
Im

(
(ξ′, ξ) + ah,m(U,U, ξ)− ah,m(U, πu, ξ) + β0J

σ
h,m(ξ, ξ)

)
dt (4.55)

+
(
{ξ}m−1, ξ

+
m−1

)
=

∫
Im

(−ah,m(U, πu, ξ) + ah,m(u, πu, ξ)− ah,m(u, πu, ξ) + ah,m(u, u, ξ)) dt

+

∫
Im

(
bh,m(u, ξ)− bh,m(U, ξ)− β0J

σ
h,m(η, ξ)− (η′, ξ)

)
dt−

(
{η}m−1 , ξ

+
m−1

)
.

By (??), we have ∫
Im

(ξ′, ξ)dt+
(
{ξ}m−1 , ξ

+
m−1

)
(4.56)

=
1

2

(∥∥ξ−m∥∥2

L2(Ω)
−
∥∥ξ−m−1

∥∥2

L2(Ω)
+
∥∥{ξ}m−1

∥∥2

L2(Ω)

)
.

Moreover, (??) with δ := 1 gives∫
Im

(η′, ϕ)dt+
(
{η}m−1 , ϕ

+
m−1

)
≤ ‖η−m−1‖2L2(Ω) +

1

4
‖{ϕ}m−1‖2L2(Ω), ϕ ∈ Sp,qh,m. (4.57)

The use of (??), (4.55), (4.56), (4.57), (4.54), Young’s inequality and Lemmas 4.13 and 4.16 imply that for arbitrary
δ, ka, kb, kc > 0 we have ∥∥ξ−m∥∥2

L2(Ω)
−
∥∥ξ−m−1

∥∥2

L2(Ω)
+

1

2
‖{ξ}m−1‖2L2(Ω)

+ β0

(
1− 2

ka
− 2

kb
− 2

kc
− 2δ

)∫
Im

|||ξ|||2mdt

≤C
(∫

Im

‖ξ‖2L2(Ω)dt+
∥∥η−m−1

∥∥2

L2(Ω)
+

∫
Im

Rm(η)dt

)
.

This and the choice ka = kb = kc = 16 and δ = 1
16 imply that∥∥ξ−m∥∥2

L2(Ω)
−
∥∥ξ−m−1

∥∥2

L2(Ω)
+

1

2
‖{ξ}m−1‖2L2(Ω) +

β0

2

∫
Im

|||ξ|||2m dt (4.58)

≤C
(∫

Im

‖ξ‖2L2(Ω) dt+
∥∥η−m−1

∥∥2

L2(Ω)
+

∫
Im

Rm(η) dt

)
, m = 1, . . . , r.

Estimate of
∫
Im
‖ξ‖2L2(Ω) dt

An important task is the estimation of the term
∫
Im
‖ξ‖2L2(Ω) dt. The case, when β(u) = const > 0, was analyzed in [?] using

the approach from [?] based on the application of the so-called Gauss-Radau quadrature and interpolation. However, in the
case of nonlinear diffusion, this technique is not applicable. It appears suitable to apply here the approach from [?] based on
the concept of discrete characteristic functions constructed to ξ in Section ??.

We shall proceed in several steps. Let us set

tm−1+l/q = tm−1 +
l

q
(tm − tm−1) for l = 0, ..., q,

and use the notation ξm−1+l/q = ξ(tm−1+l/q), ξm−1 = ξ+
m−1, ξm = ξ−m.

Lemma 4.18. There exist constants Lq,Mq > 0 dependent on q only such that

q∑
l=0

∥∥ξm−1+l/q

∥∥2

L2(Ω)
≥ Lq
τm

∫
Im

‖ξ‖2L2(Ω)dt, (4.59)

∥∥ξ+
m−1

∥∥2

L2(Ω)
≤ Mq

τm

∫
Im

‖ξ‖2L2(Ω)dt. (4.60)
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Further, we shall return to identity (4.43), where we set ϕ := ξ. It can be written in the form∫
Im

(
(ξ′, ξ) + ah,m(U,U, ξ)− ah,m(U, πu, ξ) + β0J

σ
h,m(ξ, ξ)

)
dt+

(
ξ+
m−1, ξ

+
m−1

)
=

∫
Im

(−ah,m(U, πu, ξ) + ah,m(u, πu, ξ)− ah,m(u, πu, ξ) + ah,m(u, u, ξ)) dt

+

∫
Im

(
−β0J

σ
h,m(η, ξ) + bh,m(u, ξ)− bh,m(U, ξ)− (η′, ξ)

)
dt

−
(
{η}m−1 , ξ

+
m−1

)
+
(
ξ−m−1, ξ

+
m−1

)
∀ϕ ∈ Sp,qh,τ .

Using the relations (??) with ϕ := ξ and∫
Im

(ξ, ξ′)dt+
(
ξ+
m−1, ξ

+
m−1

)
=

1

2

(∥∥ξ−m∥∥2

L2(Ω)
+
∥∥ξ+
m−1

∥∥2

L2(Ω)

)
, (4.61)

we get

1

2

(∥∥ξ−m∥∥2

L2(Ω)
+
∥∥ξ+
m−1

∥∥2

L2(Ω)

)
+

∫
Im

(
ah,m(U,U, ξ)− ah,m(U, πu, ξ) + β0J

σ
h,m(ξ, ξ)

)
dt

≤
∫
Im

(
|ah,m(U, πu, ξ)− ah,m(u, πu, ξ)| + |ah,m(u, πu, ξ)− ah,m(u, u, ξ)|

)
dt

+

∫
Im

(
β0

∣∣Jσh,m(η, ξ)
∣∣ + |bh,m(U, ξ)− bh,m(u, ξ)|

)
dt

+
∣∣(η−m−1, ξ

+
m−1

)∣∣ +
∣∣(ξ−m−1, ξ

+
m−1

)∣∣.
Now, Lemmas 4.13, 4.16, inequalities (??), (4.54) and Young’s inequality imply that

1

2

(∥∥ξ−m∥∥2

L2(Ω)
+
∥∥ξ+
m−1

∥∥2

L2(Ω)

)
+
β0

2

∫
Im

|||ξ|||2mdt

≤
∫
Im

(
β0

ka
|||ξ|||2m + Ca‖ξ‖2L2(Ω) + CaRm(η) +

β0

kc
|||ξ|||2m + CcR̃m(η)

)
dt

+

∫
Im

(
β0

δ
Jσh,m(η, η) + δβ0J

σ
h,m(ξ, ξ) +

β0

kb
|||ξ|||2m + Cb‖ξ‖2L2(Ω) +CbRm(η)

)
dt

+

∥∥η−m−1

∥∥2

L2(Ω)

δ1
+ δ1

∥∥ξ+
m−1

∥∥2

L2(Ω)
+

∥∥ξ−m−1

∥∥2

L2(Ω)

δ1
+ δ1

∥∥ξ+
m−1

∥∥2

L2(Ω)
.

After some manipulation, taking into account that R̃m(η) ≤ Rm(η), we get∥∥ξ−m∥∥2

L2(Ω)
+
∥∥ξ+
m−1

∥∥2

L2(Ω)
+ β0

(
1− 2

ka
− 2

kb
− 2

kc
− 2δ

)∫
Im

|||ξ|||2mdt

≤2(Ca + Cb)

∫
Im

‖ξ‖2L2(Ω)dt+

(
2(Ca + Cb + Cc) +

β0

δ

)∫
Im

Rm(η) dt

+ 2

∥∥η−m−1

∥∥2

L2(Ω)

δ1
+ 2

∥∥ξ−m−1

∥∥2

L2(Ω)

δ1
+ 4δ1

∥∥ξ+
m−1

∥∥2

L2(Ω)
.

Finally, the choice ka = kb = kc = 16 and δ = 1/16 yields∥∥ξ−m∥∥2

L2(Ω)
+
∥∥ξ+
m−1

∥∥2

L2(Ω)
+
β0

2

∫
Im

|||ξ|||2mdt (4.62)

≤C1

∫
Im

‖ξ‖2L2(Ω)dt+ C2

∫
Im

Rm(η)dt

+ 2

∥∥η−m−1

∥∥2

L2(Ω)

δ1
+ 2

∥∥ξ−m−1

∥∥2

L2(Ω)

δ1
+ 4δ1

∥∥ξ+
m−1

∥∥2

L2(Ω)
,

with constants C1 = 2(Ca + Cb), C2 = 2(Ca + Cb + Cc) + 16β0.

Now we prove the following important result.
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Lemma 4.19. There exist constants C, C∗ > 0 such that∫
Im

‖ξ‖2L2(Ω) dt ≤ C τm
(∥∥ξ−m−1

∥∥2

L2(Ω)
+
∥∥η−m−1

∥∥2

L2(Ω)
+

∫
Im

Rm(η) dt

)
, (4.63)

m = 1, . . . , r,

where Rm(η) is defined in (4.52), provided

0 < τm ≤ C∗. (4.64)

Now we finish the derivation of the abstract error estimate of the ST-DGM.

Theorem 4.20. Let (4.30), (4.31) and (4.64) hold. Then there exists a constant CAE > 0 such that the error e = U−u satisfies
the following estimates:

‖e−m‖2L2(Ω) +
β0

2

m∑
j=1

∫
Ij

|||e|||2j dt (4.65)

≤CAE
( m∑
j=1

‖η−j−1‖2L2(Ω) +

m∑
j=1

∫
Ij

Rj(η) dt
)

+ 2‖η−m‖2L2(Ω) + β0

m∑
j=1

∫
Ij

|||η|||2j dt,

m = 1, . . . , r, h ∈ (0, h̄),

and

‖e‖2L2(QT ) ≤ CAE
r∑

m=1

τm

(
‖η−m−1‖2L2(Ω) +

∫
Im

Rm(η) dt (4.66)

+

r∑
j=1

‖η−j−1‖2L2(Ω) +

r∑
j=1

∫
Ij

Rj(η) dt

)
+ 2‖η‖2L2(QT ), h ∈ (0, h̄),

where Rm(η) is defined by (4.52).

Remark 4.21. A detailed analysis shows that the constant CAE from the abstract error estimate (4.65) behaves in dependence
on β0 as exp(C/β0), which means that this constant blows up for β0 → 0+ and the obtained error estimates cannot be applied
to the case of nonlinear singularly perturbed convection-diffusion problems with degenerated diffusion. Uniform error estimates
with respect to the diffusion tending to zero were obtained, e.g. in [?] for the space-time DG approximations of linear convection-
diffusion-reaction problems. This will be treated in Section ??.

4.2.4 Main result

Here we present the final error estimate of the ST-DGM applied to the nonlinear convection-diffusion equation. We assume that
the exact solution satisfies the regularity conditions (4.31) and

u ∈ Hq+1
(
0, T ;H1(Ω)

)
∩ C([0, T ];Hs(Ω)) (4.67)

with integers s ≥ 2 and q ≥ 1. We set µ = min(p+ 1, s). Obviously, C([0, T ];Hs(Ω)) ⊂ L2(0, T ;Hs(Ω)) and condition (4.30) is
also satisfied.

Moreover, we assume that

τm ≥ CSh2
m, m = 1, . . . , r. (4.68)

Let us note that it will be shown in Remark 4.24 that this assumption is not necessary, if the meshes are not time-dependent,
i.e., if all meshes Th,m, m = 1, . . . , r, are identical.

We remind that the meshes are assumed to satisfy the shape regularity assumption (??) and the equivalence condition (??).
Now we can formulate the main results of the analysis of the error estimates for the ST-DGM.

Theorem 4.22. Let u be the exact solution of problem (4.28) satisfying the regularity conditions (4.31) and (4.67). Let the
system of triangulation satisfy the shape regularity assumption (??) and the equivalence condition (??) and the time steps
τm, m = 1, . . . , r satisfy the conditions (4.64) and (4.68). Let U be the approximate solution to problem (4.28) obtained by
scheme (4.40). Then there exists a constant C > 0 independent of h, τ, m, r, u, U such that

‖e−m‖2L2(Ω) +
β0

2

m∑
j=1

∫
Ij

|||e|||2j dt (4.69)

≤C
(
h2(µ−1)|u|2C([0,T ];Hµ(Ω)) + τ2(q+γ)|u‖Hq+1(0,T ;H1(Ω))

)
, m = 1, . . . , r, h ∈ (0, h̄),
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and

‖e‖2L2(QT ) ≤ C
(
h2(µ−1)|u|2L2(0,T ;Hµ(Ω)) + τ2(q+γ)|u‖2Hq+1(0,T ;H1(Ω))

)
, h ∈ (0, h̄). (4.70)

Here γ = 0, if (??) holds and the function uD from the boundary condition (4.28b) has a general behaviour with respect to t. If
uD is defined by (??), then γ = 1 and condition (??) is not required. (The symbol | · ‖ is defined by (??).)

Exercise 4.23. Prove estimate (4.70) in detail.

Remark 4.24. The case of identical meshes on all time levels. Similarly as in Section ??, assumption (4.24) can be avoided, if
all meshes Th,m, m = 1 . . . , r, are identical. Then relations (??) and (??) are valid and it is possible to show that the expression∑m
j=1 ‖η−j−1‖2L2(Ω) does not appear in estimate (??). We find that instead of (4.65) we get the abstract error estimate in the

form

‖e−m‖2L2(Ω) +
β0

2

m∑
j=1

∫
Ij

|||e|||2j dt (4.71)

≤C
m∑
j=1

∫
Ij

Rj(η) dt+ 2‖η−m‖2L2(Ω) + β0

m∑
j=1

∫
Ij

|||η|||2j dt,

m = 1, . . . , r, h ∈ (0, h̄).

Then Theorem 4.20 holds without assumption (4.68).

Remark 4.25. The error estimate (4.70) in the L2-norm is of order O(hµ−1) with respect to h, which is suboptimal in
comparison to the interpolation error estimate (??) and one would expect the error estimate in the L2-norm of order O(hµ).
This is a well-known phenomenon in the finite element method as well as in the DGM. In several discontinuous Galerkin
techniques, similarly as in conforming finite elements (cf. [Cia79]), it is possible to prove the optimal error estimate in the
L2-norm in the case of the SIPG version with the aid of the Nitsche method, as for example in [Arn82], [?], [?] and [?]. See also
Sections 1.7.2 and 2.5. The case, when the space-time DGM is applied to the nonlinear convection-diffusion problem, remains
to be solved.

Remark 4.26. Similarly, as in Remark 4.21, it is possible to show that in the above error estimates, the constants C depend on
β0 as exp(c/β0), which means that these constants blow up for β0 → 0+. Error estimates uniform with respect to the diffusion
coefficient will be proven in Section ?? in the case of a linear convection-diffusion problem. The case with a nonlinear convection
and linear diffusion was analyzed recently in [?] in the case, when backward Euler time discretization was used.
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Chapter 5

Generalization of the DGM

The aim of this chapter is to present some advanced aspects and special techniques of the discontinuous Galerkin method.
First, we present the hp-discontinuous Galerkin method. Then the DGM over nonstandard nonsimplicial meshes will be treated.
Finally, the effect of numerical integration in the DGM will be analyzed in the case of a nonstationary convection-diffusion
problem with nonlinear convection.

5.1 hp-discontinuous Galerkin method

Since the DGM is based on discontinuous piecewise polynomial approximations, it is possible to use different polynomial
degrees on different elements in a simple way. Then we speak of the hp-discontinuous Galerkin method (hp-DGM). A suitable
adaptive mesh refinement combined with the choice of the polynomial approximation degrees, representing the hp-adaptation,
can significantly increase the efficiency of the computational process. It allows us to achieve the given error tolerance with the
aid of the low number of degrees of freedom. The origins of hp finite element methods date back to the pioneering work of
Ivo Babuška et al., see the survey paper [BS94a]. Based on several theoretical works as, e.g., monographs [Sch98, Šol04] or
papers [BS94a, DRD02, ŠD04], it is possible to expect that the error decreases to zero at an exponential rate with respect to
the number of degrees of freedom.

We present here the analysis of error estimates for the hp-DGM in the case of a model of the Poisson boundary value problem.
We underline the similarity and differences with analysis of the h-version of the DGM presented in Chapter 1. Mostly the same
notation is used for several constants appearing also in Chapter 1, but some constants may have slightly different meaning.
However, we suppose that there is no danger of misunderstanding. On the contrary, it helps us to adapt the techniques from
Chapter 1 to this section.

The analysis of the hp-DGM can be directly extended to nonstationary convection-diffusion equations from Chapters 2 and
??. See, e.g., [Dol08a, Hoz09, Hol10].

5.1.1 Formulation of a model problem

Similarly, as in Section 1.1, let Ω be a bounded polygonal or polyhedral domain in Rd, d = 2, 3, with Lipschitz boundary ∂Ω.
We denote by ∂ΩD and ∂ΩN parts of the boundary ∂Ω such that ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ and measd−1(∂ΩD) > 0.

We consider the Poisson problem (1.1) to find a function u : Ω→ R such that

−∆u = f in Ω, (5.1a)

u = uD on ∂ΩD, (5.1b)

n · ∇u = gN on ∂ΩN , (5.1c)

where f, uD and gN are given functions. The weak solution of problem (5.1) is given by Definition 1.1.

5.1.2 Discretization

In this section we introduce the hp-DGM numerical solution of problem (5.1). We start from the generalization of the function
spaces defined in Chapter 1.

Function spaces

Let Th (h > 0) be a triangulation of Ω. In the same way as in Chapter 1, by the symbols Fh,FIh ,FBh ,FDh and FIDh we denote
sets of faces of elements K ∈ Th. To each K ∈ Th, we assign a positive integer sK – local Sobolev index and a positive integer
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pK – local polynomial degree. Then we define the sets

s = {sK ,K ∈ Th}, p = {pK ,K ∈ Th}. (5.2)

Over the triangulation Th, we define (instead of (1.29)) the broken Sobolev space corresponding to the vector s

Hs(Ω, Th) = {v; v|K ∈ HsK (K) ∀K ∈ Th} (5.3)

with the norm

‖v‖Hs(Ω,Th) =

( ∑
K∈Th

‖v‖2HsK (K)

)1/2

(5.4)

and the seminorm

|v|Hs(Ω,Th) =

( ∑
K∈Th

|v|2HsK (K)

)1/2

, (5.5)

where ‖ · ‖HsK (K) and | · |HsK (K) denotes the norm and seminorm in the Sobolev space HsK (K) = W sK ,2(K), respectively. If
sK = q ≥ 1 for all K ∈ Th, then we use the notation Hq(Ω, Th) = Hs(Ω, Th). Obviously,

H s̄(Ω, Th) ⊂ Hs(Ω, Th) ⊂ Hs(Ω, Th), (5.6)

where s̄ = max{sK , sK ∈ s} and s = min{sK , sK ∈ s}.
Furthermore, we define (instead of (1.34)) the space of discontinuous piecewise polynomial functions associated with the

vector p by

Shp = {v ∈ L2(Ω); v|K ∈ PpK (K) ∀K ∈ Th}, (5.7)

where PpK (K) denotes the space of all polynomials on K of degree ≤ pK . In the hp-error analysis we shall assume that there
exists a constant CP ≥ 1 such that

pK
pK′
≤ CP ∀K, K ′ ∈ Th such that K and K ′ are neighbours. (5.8)

Assumption (5.8) may seem rather restrictive. However, it appears that the application of the hp-methods to practical problems
is efficient and accurate, if the polynomial degrees of approximation on neighbouring elements do not differ too much.

hp-variant of the penalty parameter

In Section 1.6.1 we introduced the penalty parameter σ : ∪Γ∈FIDh → R, which was proportional to diam(Γ)−1 ∼ h−1
K where

Γ ⊂ ∂K, Γ ∈ FIDh . However, the following numerical analysis shows that for the hp-DGM, the penalty parameter σ has to
depend also on the degree of the polynomial approximation (see also [HRS05]). To this end, for each K ∈ Th we define the
parameter

d(K) =
hK
p2
K

, K ∈ Th. (5.9)

Now for each Γ ∈ FIDh we introduce the hp-analogue to the quantity hΓ from Section 1.6.1, which is now denoted by d(Γ). In
the theoretical analysis, we require that the quantity d(Γ), Γ ∈ Fh, h ∈ (0, h̄), satisfies the equivalence condition with d(K),
i.e., there exist constants CT , CG > 0 independent of h, K and Γ such that

CT d(K) ≤ d(Γ) ≤ CG d(K), K ∈ Th, Γ ∈ Fh, Γ ⊂ ∂K. (5.10)

Let K
(L)
Γ and K

(R)
Γ be the neighbouring elements sharing the face Γ ∈ FIh . There are several possibilities how to define the

parameter d(Γ) for all interior faces Γ ∈ FIh :

(i)

d(Γ) =
2 diam(Γ)

(p
K

(L)
Γ

)2 + (p
K

(R)
Γ

)2
, Γ ∈ FIh , (5.11)
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(ii)

d(Γ) = max(d(K
(L)
Γ ), d(K

(R)
Γ )), Γ ∈ FIh , (5.12)

(iii)

d(Γ) = min(d(K
(L)
Γ ), d(K

(R)
Γ )), Γ ∈ FIh . (5.13)

Moreover, for the boundary faces Γ ∈ FDh , we put

d(Γ) = d(K
(L)
Γ ), (5.14)

where K
(L)
Γ is the element adjacent to Γ.

In the sequel we consider a system {Th}h∈(0,h̄) of triangulations of the domain Ω satisfying the shape-regularity assumption
(1.19), i.e.,

hK
ρK
≤ CR, K ∈ Th, h ∈ (0, h̄). (5.15)

The following lemma characterizes the mesh assumptions and the choices of d(Γ), which guarantees the equivalence condition
(5.10).

Lemma 5.1. Let {Th}h∈(0,h̄) be a system of triangulations of the domain Ω satisfying assumption (5.15). Moreover, let p be the
polynomial degree vector given by (5.2), satisfying assumption (5.8). Then condition (5.10) is satisfied in the following cases:

(a) The triangulations Th, h ∈ (0, h̄), are conforming (i.e., assumption (MA4) from Section 1.3.2 is satisfied) and d(Γ) is
defined by (5.11) or (5.12) or (5.13).

(b) The triangulations Th, h ∈ (0, h̄), are, in general, nonconforming, assumption (A2) (i.e., (1.22) is satisfied and d(Γ) is
defined by (5.11).

(c) The triangulations Th, h ∈ (0, h̄), are, in general, nonconforming, assumption (A1) is satisfied (i.e., the system {Th}h∈(0,h̄)

is locally quasi-uniform) and d(Γ) is defined by (5.12) or (5.13).

Exercise 5.2. Prove the above lemma and determine the constants CT and CG.

Remark 5.3. If pK = p ∈ N for all K ∈ Th, then the constants CT and CG from (5.10) are identical with the constants from
(1.20).

Approximate solution

Now we are ready to introduce the hp-DGM approximate solution. Using the same process as in Chapter 1, we arrive at the
definition of the following forms. For u, v ∈ Hs(Ω, Th), where sK ≥ 2 for all K ∈ Th, we put

ah(u, v) =
∑
K∈Th

∫
K

∇u · ∇v dx−
∑

Γ∈FIDh

∫
Γ

(〈∇u〉 · n[v] + Θ〈∇v〉 · n[u]) dS, (5.16)

Jσh (u, v) =
∑

Γ∈FIDh

∫
Γ

σ[u] [v] dS, (5.17)

`h(v) =

∫
Ω

gv dx−Θ
∑

Γ∈FDh

∫
Γ

uD (∇v · n) dS +
∑

Γ∈FDh

∫
Γ

σuD v dS +

∫
∂ΩN

gNv dS, (5.18)

where the penalty parameter σ is given by

σ|Γ = σΓ =
CW
d(Γ)

, Γ ∈ FIDh , (5.19)

with d(Γ) introduced in (5.11) – (5.14), and a suitable constant CW > 0. In contrast to the penalty parameter σ defined
in Section 1.6.1, we have σ|Γ ∼ p2h−1, where h and p correspond to the diameter of Γ and the degree of the polynomial
approximation, respectively, in the vicinity of Γ.

Similarly as in Section 1.4, for Θ = −1, Θ = 0 and Θ = 1 the form ah (together with the form Jσh ) represents the
nonsymmetric variant (NIPG), incomplete variant (IIPG) and symmetric variant (SIPG), respectively, of the approximation of
the diffusion term. Moreover, we put

Ah(u, v) = ah(u, v) + Jσh (u, v), u, v ∈ Hs(Ω, Th). (5.20)

Now we shall define an approximate solution of problem (5.1).
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Definition 5.4. A function uh ∈ Shp is called an hp-DG approximate solution of problem (5.1), if it satisfies the identity

Ah(uh, vh) = `h(vh) ∀ vh ∈ Shp. (5.21)

From the construction of the forms Ah and `h one can see that the exact solution u ∈ H2(Ω) of problem (5.1) satisfies the
identity

Ah(u, v) = `h(v) ∀ v ∈ H2(Ω, Th), (5.22)

which represents the consistency of the method. Identities (5.21) and (5.22) imply the Galerkin orthogonality of the error
eh = uh − u of the method:

Ah(eh, vh) = 0 ∀ vh ∈ Shp, (5.23)

which will be used in the analysis of error estimates. (Compare with (1.57).)

5.1.3 Theoretical analysis

This section is devoted to the error analysis of the hp-DGM introduced above. Namely, an error estimate in the analogue to the
DG-norm introduced by (1.103) will be derived. We follow the analysis of the abstract method from Section 1.2 and present
several “hp-variants” of results from Chapter 1. We use the same notation for constants, although they attain different values
in Chapter 1 and Section 5.1.3.

Auxiliary results

Similarly as in Section 1.5, the numerical analysis is based on three fundamental results: the multiplicative trace inequality, the
inverse inequality and the approximation properties.

The multiplicative trace inequality presented in Lemma 1.19 remains the same. This means that under the shape-regularity
assumption (5.15), there exists a constant CM > 0 independent of v, h and K such that

‖v‖2L2(∂K) ≤ CM
(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2L2(K)

)
, (5.24)

K ∈ Th, v ∈ H1(K), h ∈ (0, h̄).

The proof of Lemma 1.21 gives us the hp-version of the inverse inequality: Let the shape-regularity assumption (5.15) be
satisfied. Then there exists a constant CI > 0 independent of v, h, pK , and K such that

|v|H1(K) ≤ CIp2
Kh
−1
K ‖v‖L2(K), v ∈ PpK (K), K ∈ Th, h ∈ (0, h̄). (5.25)

Finally, we introduce the hp-version of approximation properties of spaces Shp. We present the results from [BS87]. Since
the proof is very technical, we skip it and refer to the original work.

Lemma 5.5 (Approximation properties). There exists a constant CA > 0 independent of v, h, K and pK and a mapping
πKpK : HsK (K)→ PpK (K), sK ≥ 1, such that the inequality

‖πKpKv − v‖Hq(K) ≤CA
hµK−qK

psK−qK

‖v‖HsK (K) (5.26)

holds for all v ∈ HsK (K), K ∈ Th and h ∈ (0, h̄) with µK = min(pK + 1, sK), 0 ≤ q ≤ sK ,

Proof. See Lemma 4.5 in [BS87] for the case d = 2. If d = 3, the arguments are analogous.

Definition 5.6. Let s and p be the vectors introduced in (5.2). We define the mapping Πhp : Hs(Ω, Th)→ Shp by

(Πhpu) |K = πKpK (u|K) ∀K ∈ Th, (5.27)

where πKpK : HsK (K)→ PpK (K) is the mapping introduced in Lemma 5.5.

Lemma 5.7. Let s and p be the vectors introduced in (5.2) and Πhp : Hs(Ω, Th)→ Shp the corresponding mapping defined by
(5.27). If v ∈ Hs(Ω, Th), then

‖Πhpv − v‖2Hq(Ω,Th) ≤ C2
A

∑
K∈Th

h
2(µK−q)
K

p2sK−2q
K

‖v‖2HsK (K), (5.28)

where µK = min(pK + 1, sK), K ∈ Th and 0 ≤ q ≤ minsK∈s sK and CA is the constant from Lemma 5.5.
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Proof. Using definition (5.27) and the approximation properties (5.26), we obtain (5.28).

Moreover, using the previous results, we prove some technical inequalities analogous to Lemma 1.27.

Lemma 5.8. Let (5.10) be valid and let σ be defined by (5.19). Then for each v ∈ H1(Ω, Th) we have∑
Γ∈FIDh

d(Γ)−1

∫
Γ

[v]2 dS ≤ 2

CT

∑
K∈Th

d(K)−1

∫
∂K

|v|2 dS, (5.29)

∑
Γ∈FIDh

d(Γ)

∫
Γ

〈v〉2 dS ≤ CG
∑
K∈Th

d(K)

∫
∂K

|v|2 dS. (5.30)

Hence, ∑
Γ∈FIDh

σΓ‖[v]‖2L2(Γ) ≤
2CW
CT

∑
K∈Th

d(K)−1‖v‖2L2(∂K), (5.31)

∑
Γ∈FIDh

1

σΓ
‖〈v〉‖2L2(Γ) ≤

CG
CW

∑
K∈Th

d(K)‖v‖2L2(∂K), (5.32)

where the penalty parameter σ is given by (5.19).

Proof. (a) By definition (1.32), (1.33), inequality (1.110) and assumption (5.10), we have∑
Γ∈FIDh

d(Γ)−1

∫
Γ

[v]2 dS

=
∑

Γ∈FIh

d(Γ)−1

∫
Γ

∣∣∣v(L)
Γ − v(R)

Γ

∣∣∣2 dS +
∑

Γ∈FDh

d(Γ)−1

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS

≤ 2
∑

Γ∈FIh

d(Γ)−1

∫
Γ

(∣∣∣v(L)
Γ

∣∣∣2 +
∣∣∣v(R)

Γ

∣∣∣2) dS +
∑

Γ∈FDh

d(Γ)−1

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS

≤ 2C−1
T

∑
Γ∈FIDh

d(K
(L)
Γ )−1

∫
Γ

∣∣∣v(L)
Γ

∣∣∣2 dS + 2C−1
T

∑
Γ∈FIh

d(K
(R)
Γ )−1

∫
Γ

∣∣∣v(R)
Γ

∣∣∣2 dS

≤ 2C−1
T

∑
K∈Th

d(K)−1

∫
∂K

|v|2 dS,

which proves (5.29). Moreover, using (5.19) we immediately obtain (5.31).

(b) In the proof of (5.30), we proceed in a similar way, using (1.32), (5.10) and (1.110). Inequality (5.32) is a direct
consequence of (5.30) and (5.19).

Analogously to Lemma 1.32, we present its hp-variant.

Lemma 5.9. Let v ∈ H1(Ω, Th). Then

Jσh (v, v) ≤ 2CWCM
CT

∑
K∈Th

(
p2
K

h2
K

‖v‖2L2(K) +
p2
K

hK
‖v‖L2(K)|v|H1(K)

)
(5.33)

≤ CWCM
CT

∑
K∈Th

(
2p2
K

h2
K

‖v‖2L2(K) +
p3
K

h2
K

‖v‖2L2(K) + pK |v|2H1(K)

)
.

Proof. If v ∈ H1(Ω, Th), then the definition (5.17) of the form Jσh , (5.31) and (5.9) imply that

Jσh (v, v) =
∑

Γ∈FIDh

∫
Γ

σ[v]2 dS =
∑

Γ∈FIDh

σΓ‖[v]2‖L2(Γ)

≤ 2CW
CT

∑
K∈Th

d(K)−1‖v‖2L2(∂K) =
2CW
CT

∑
K∈Th

p2
K

hK
‖v‖2L2(∂K).
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Now, using the multiplicative trace inequality (5.24), we get

Jσh (v, v) ≤ 2CWCM
CT

∑
K∈Th

(
p2
K

h2
K

‖v‖2L2(K) +
p2
K

hK
‖v‖L2(K)|v|H1(K)

)
,

which gives the first inequality in (5.33). Moreover, the application of Young’s inequality yields the second one.

Finally, we introduce the hp-variant of Lemma 1.34.

Lemma 5.10. Under assumptions (5.15) and (5.10), for any v ∈ H2(Ω, Th) the following estimate holds:∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS ≤ CGCM
CW

∑
K∈Th

hK
p2
K

(
|v|H1(K) |v|H2(K) + h−1

K |v|2H1(K)

)
≤ CGCM

2CW

∑
K∈Th

(
3

p2
K

|v|2H1(K) +
h2
K

p2
K

|v|2H2(K)

)
. (5.34)

Moreover, for vh ∈ Shp we have ∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇vh〉)2 dS ≤ CGCM
CW

(CI + 1)|vh|2H1(Ω,Th). (5.35)

Proof. Using (5.32), the multiplicative trace inequality (5.24) and notation (5.9), we find that∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS ≤ CG
CW

∑
K∈Th

d(K)‖∇v‖2L2(∂K)

≤ CGCM
CW

∑
K∈Th

hK
p2
K

(
‖∇v‖L2(K) |∇v|H1(K) + h−1

K ‖∇v‖2L2(K)

)
,

=
CGCM
CW

∑
K∈Th

hK
p2
K

(
|v|H1(K) |v|H2(K) + h−1

K |v|2H1(K)

)
,

which is the first inequality in (5.34). The second one is obtained by the application of Young’s inequality.
Further, for vh ∈ Shp, estimate (5.34), the inverse inequality (5.25) and the inequality 1/p2

K ≤ 1 give∑
Γ∈FIDh

∫
Γ

σ−1(n · 〈∇vh〉)2 dS

≤ CGCM
CW

∑
K∈Th

hK
p2
K

(
‖∇vh‖L2(K) |∇vh|H1(K) + h−1

K ‖∇vh‖2L2(K)

)
,

≤ CGCM
CW

∑
K∈Th

hK
p2
K

(
CIp

2
Kh
−1
K ‖∇vh‖L2(K) ‖∇vh‖L2(K) + h−1

K ‖∇vh‖2L2(K)

)
,

≤ CGCM
CW

(CI + 1)
∑
K∈Th

‖∇vh‖2L2(K) =
CGCM
CW

(CI + 1)|vh|2H1(Ω,Th),

which implies (5.35).

Continuity of the bilinear forms

Now, we prove the continuity of the bilinear form Ah defined by (5.20). In the space Shp we again employ the DG-norm

|||u||| =
(
|u|2H1(Ω,Th) + Jσh (u, u)

)1/2

. (5.36)

Comparing (5.36) with (1.103), both relations are formally identical. However, the norm in (5.36) is p-dependent, because σ
depends on the polynomial degrees pK , K ∈ Th.

Exercise 5.11. Prove that ||| · ||| is a norm in the spaces Hs(Ω, Th) and Shp.
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Furthermore, due to (1.122), we have

|Ah(u, v)| ≤ 2‖u‖1,σ‖v‖1,σ ∀u, v ∈ H2(Ω, Th), (5.37)

where

‖v‖21,σ =|||v|||2 +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2 dS (5.38)

=|v|2H1(Ω,Th) + Jσh (v, v) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇v〉)2dS.

Now, we derive the hp-estimate of the ‖ · ‖1,σ-norm, compare with Lemma 1.35.

Lemma 5.12. Let (5.10) be valid and let σ be defined by (5.19). Then, there exist constants Cσ, C̃σ > 0 such that

Jσh (u, u)1/2 ≤ |||u||| ≤ ‖u‖1,σ ≤ Cσ Ra(u) ∀u ∈ H2(Ω, Th), h ∈ (0, h̄), (5.39)

Jσh (vh, vh)1/2 ≤ |||vh||| ≤ ‖vh‖1,σ ≤ C̃σ|||vh||| ∀ vh ∈ Shp, h ∈ (0, h̄), (5.40)

where

Ra(u) =

( ∑
K∈Th

(
p3
K

h2
K

‖u‖2L2(K) + pK |u|2H1(K) +
h2
K

p2
K

|u|2H2(K)

))1/2

, u ∈ H2(Ω, Th). (5.41)

Proof. The first two inequalities in (5.39) as well as in (5.40) follow immediately from the definition of the DG-norm (5.36) and
‖·‖1,σ-norm (5.38). Moreover, in view of (5.38), (5.4), (5.33) and (5.34), for u ∈ H2(Ω, Th), we have

‖u‖21,σ = |u|2H1(Ω,Th) + Jσh (u, u) +
∑

Γ∈FIDh

∫
Γ

σ−1(n · 〈∇u〉)2dS

≤
∑
K∈Th

|u|2H1(K) +
CWCM
CT

∑
K∈Th

(
2p2
K

h2
K

‖u‖2L2(K) +
p3
K

h2
K

‖u‖2L2(K) + pK |u|2H1(K)

)

+
CGCM
2CW

∑
K∈Th

(
3

p2
K

|u|2H1(K) +
h2
K

p2
K

|u|2H2(K)

)
.

Now, using the inequalities pk ≥ 1 and 1/pK ≤ 1, we get

‖u‖21,σ ≤
∑
K∈Th

((
1 +

3CG CM
2CW

+
CW CM
CT

)
pK |u|2H1(K)

+
CG CM
2CW

h2
K

p2
K

|u|2H2(K) +
3CW CM
CT

p3
K

h2
k

‖u‖2L2(K)

)
.

Hence, (5.39) holds with

Cσ =

(
max

(
1 +

3CG CM
2CW

+
CW CM
CT

,
CG CM
2CW

,
3CW CM
CT

))1/2

.

Further, if vh ∈ Shp, then (5.38) and (5.35) immediately imply (5.40) with C̃σ = (1 + CG CM (CI + 1)/CW )1/2.

Lemma 5.12 directly implies the continuity of the form Ah:

Corollary 5.13. Let (5.10) be valid and let σ be defined by (5.19). Then there exist constants CB > 0 and C̃B > 0 such that
the forms Ah defined by (5.20) satisfies the estimates

|Ah(uh, vh)| ≤ CB |||uh||| |||vh||| ∀uh, vh ∈ Shp, (5.42)

|Ah(u, vh)| ≤ C̃B Ra(u) |||vh||| ∀u ∈ H2(Ω, Th) ∀ vh ∈ Shp ∀h(0, h̄), (5.43)

where Ra is defined by (5.41).

Proof. Estimates (5.37), (5.39) and (5.40) give (5.42) with CB = 2C̃2
σ. Moreover, by (5.37) and (5.39),

|Ah(u, vh)| ≤ 2‖u‖1,σ‖vh‖1,σ ≤ 2CσC̃σRa(u)|||vh|||,

which is (5.43) with C̃B = 2CσC̃σ.
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Coercivity of the bilinear forms

In order to derive error estimates of the approximate solution (5.21), we need the coercivity of the form Ah. To this end, we
shall present here the generalization of the results from Section 1.6.3.

Lemma 5.14 (NIPG coercivity). For any CW > 0 the bilinear form Ah defined by (5.20) with Θ = −1 in (5.16) satisfies the
coercivity condition

Ah(v, v) ≥ |||v|||2 ∀ v ∈ H2(Ω, Th). (5.44)

Proof. If Θ = −1, then from (5.16) and (5.20) it immediately follows that

Ah(v, v) = ah(v, v) + Jσh (v, v) = |v|2H1(Ω,Th) + Jσh (v, v) = |||v|||2, (5.45)

which we wanted to prove.

The proof of coercivity of the symmetric bilinear form Ah defined by (5.16) with Θ = 1 is more complicated.

Lemma 5.15 (SIPG coercivity). Let assumptions (5.15) and (5.10) be satisfied, let

CW ≥ 4CGCM (1 + CI), (5.46)

where CM , CI and CG are the constants from (5.24), (5.25) and (5.10), respectively, and let the penalty parameter σ be given
by (5.19) for all Γ ∈ FIDh . Then the bilinear form Ah defined by (5.20) and (5.16) with Θ = 1 satisfies the coercivity condition

Ah(vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Shp, ∀h ∈ (0, h̄).

Proof. Let δ > 0. Then (5.17), (5.19), (5.16) with Θ = 1 and the Cauchy and Young’s inequalities imply that

ah(vh, vh) (5.47)

= |vh|2H1(Ω,Th) − 2
∑

Γ∈FIDh

∫
Γ

n · 〈∇vh〉[vh]dS

≥ |vh|2H1(Ω,Th) − 2

1

δ

∑
Γ∈FIDh

∫
Γ

d(Γ)(n · 〈∇vh〉)2dS


1
2
δ ∑

Γ∈FIDh

∫
Γ

[vh]2

d(Γ)
dS


1
2

≥ |vh|2H1(Ω,Th) − ω −
δ

CW
Jσh (vh, vh),

where

ω =
1

δ

∑
Γ∈FIDh

∫
Γ

d(Γ)|〈∇vh〉|2 dS. (5.48)

Further, from (5.9), assumption (5.10), inequality (5.30), the multiplicative trace inequality (5.24), the inverse inequality (5.25)
and the inequality p−2

K ≤ 1, we get

ω ≤ CG
δ

∑
K∈Th

hK
p2
K

‖∇vh‖2L2(∂K) (5.49)

≤ CGCM
δ

∑
K∈Th

hK
p2
K

(
|vh|H1(K)|∇vh|H1(K) + h−1

K |vh|2H1(K)

)
≤ CGCM

δ

∑
K∈Th

hK
p2
K

(
CIp

2
Kh
−1
K |vh|2H1(K) + h−1

K |vh|2H1(K)

)
≤ CGCM (1 + CI)

δ
|vh|2H1(Ω,Th).

Now let us choose

δ = 2CGCM (1 + CI). (5.50)
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Then it follows from (5.46) and (5.47) – (5.50) that

ah(vh, vh) ≥1

2

(
|vh|2H1(Ω,Th) −

4CGCM (1 + CI)

CW
Jσh (vh, vh)

)
(5.51)

≥1

2

(
|vh|2H1(Ω,Th) − Jσh (vh, vh)

)
.

Finally, from the definition (5.20) of the form Ah and from (5.51) we have

Ah(vh, vh) =ah(vh, vh) + Jσh (vh, vh) (5.52)

≥1

2

(
|vh|2H1(Ω,Th) + Jσh (vh, vh)

)
=

1

2
|||vh|||2,

which we wanted to prove.

Lemma 5.16 (IIPG coercivity). Let assumptions (5.15) and (5.10) be satisfied, let

CW ≥ CGCM (1 + CI), (5.53)

where CM , CI and CG are constants from (5.24), (5.25) and (5.10), respectively, and let the penalty parameter σ be given by
(5.19) for all Γ ∈ FIDh . Then the bilinear form Ah defined by (5.20) and (5.16) with Θ = 0 satisfies the coercivity condition

Ah(vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Shp.

Proof. The proof is almost identical with the proof of the previous lemma.

Corollary 5.17. We can summarize the above results in the following way. We have

Ah(vh, vh) ≥ CC |||vh|||2 ∀ vh ∈ Shp, (5.54)

with

CC = 1 for Θ = −1, if CW > 0,
CC = 1/2 for Θ = 1, if CW ≥ 4CGCM (1 + CI),
CC = 1/2 for Θ = 0, if CW ≥ CGCM (1 + CI).

Corollary 5.18. By virtue of Corollary 0.7, the coercivity of the form Ah implies the existence and uniqueness of the solution
of the discrete problem.

Error estimates in the DG-norm

In this section we will be concerned with the derivation of the error estimates of the hp-discontinuous Galerkin method (5.21).
Let u and uh denote the exact solution of problem (5.1) and the approximate solution obtained by method (5.21), respectively.
The error eh = uh − u can be written in the form

eh = ξ + η, with ξ = uh −Πhpu ∈ Shp, η = Πhpu− u, (5.55)

where Πhp is the Shp-interpolation defined by (5.27). The estimation of the error eh will be carried out in several steps.
We suppose that the system of triangulations {Th}h∈(0,h̄) satisfies the shape-regularity assumption (5.15) and that the

relations (5.10) between d(Γ) and d(K) are valid.
First, we prove the abstract error estimate, representing a bound of the error in terms of the Shp-interpolation error η, cf.

Theorem 1.43.

Theorem 5.19. Let (5.10) be valid, let σ be defined by (5.19) and let the exact solution of problem (5.1) satisfy the condition
u ∈ H2(Ω). Then there exists a constant CAE > 0 such that

|||eh||| ≤ CAERa(η) = CAERa(Πhpu− u) ∀h ∈ (0, h̄), (5.56)

where Ra(u) is given by (5.41).

Proof. The proof is completely identical with the proof of Theorem 1.43. We obtain again CAE = Cσ + C̃B/CC , where Cσ and
C̃B and CC are constants from (5.39) and (5.43) and (5.54).

The abstract error estimate is the basis for the estimation of the error eh in terms of the mesh size h.
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Theorem 5.20 (DG-norm error estimate). Let {Th}h∈(0,h̄) be a system of triangulations of the domain Ω satisfying the shape-
regularity assumption (5.15). Let s and p be the vectors (5.2) such that sK ≥ 2, pK ≥ 1 and µK = min(pK + 1, sK) for each
K ∈ Th. Let the condition of equivalence (5.10) between d(Γ) and d(K) be valid (cf. Lemma 5.1). Let u be the solution of
problem (5.1) such that u ∈ H2(Ω)∩Hs(Ω, Th) for any h ∈ (0, h̄). Moreover, let the penalty constant CW satisfy the conditions
from Corollary 5.17. Let uh ∈ Shp be the approximate solution obtained by means of method (5.21). Then the error eh = uh−u
satisfies the estimate

|||eh||| ≤ C̃
( ∑
K∈Th

h
2(µK−1)
K

p2sK−3
K

‖u‖2HsK (K)

) 1
2

, h ∈ (0, h̄), (5.57)

where C̃ is a constant independent of h and p.

Proof. It is enough to use the abstract error estimate (5.56), where the expressions |η|H1(K), |η|H2(K) and ‖η‖L2(K), K ∈ Th,
are estimated on the basis of the approximation properties (5.26), rewritten for η|K = (Πhpu − u)|K = πK,p(u|K) − u|K and
K ∈ Th:

‖η‖L2(K) ≤CA
hµKK
psKK
‖u‖Hµ(K), (5.58)

|η|H1(K) ≤CA
hµK−1
K

psK−1
K

‖u‖Hµ(K),

|η|H2(K) ≤CA
hµK−2
K

psK−2
K

‖u‖HµK (K).

The above, the definition (5.41) of the expression Ra and the inequalities 1/p2s−2
K ≤ 1/p2s−3

K , pK ≥ 1 imply

Ra(η)2 =
∑
K∈Th

(
p3
K

h2
K

‖η‖2L2(K) + pK |η|2H1(K) +
h2
K

p2
K

|η|2H2(K)

)

≤C2
A

∑
K∈Th

(
p3
K

h2
K

h2µK
K

p2sK
K

+ pK
h

2(µK−1)
K

p2sK−2
K

+
h2
K

p2
K

h2µK−4
K

p2sK−4
K

)
‖u‖2HµK (K)

≤C2
A

∑
K∈Th

(
h

2(µK−1)
K

p2sK−3
K

+
h

2(µK−1)
K

p2sK−3
K

+
h

2(µK−1)
K

p2sK−3
K

)
‖u‖2HµK (K)

=3C2
A

∑
K∈Th

h
2(µK−1)
K

p2sK−3
K

‖u‖2HµK (K).

Together with (5.56) this gives (5.57) with the constant C̃ =
√

3CAE CA.

Comparing error estimate (5.57) with the approximation property (5.28) with q = 1, we see that (5.57) is suboptimal with
respect to the polynomial degrees pK , K ∈ Th. This is caused by the presence of the interior penalty form Jσh , see the last two
terms in the second inequality in (5.33), namely the terms

p3
K

h2
K

‖v‖2L2(K) + pK |v|2H1(K) = pK

(
p2
K

h2
K

‖v‖2L2(K) + |v|2H1(K)

)
, K ∈ Th.

The error estimates optimal with respect to p were derived in [GS05] using an augmented Sobolev space.
As for the analysis of further subjects concerned with the hp-DGM, we refer to several works, namely [HSW08], [HSW07]

dealing with the hp-DGM for quasilinear elliptic problems, [Geo06], [GHH07] dealing with the hp-DGM on anisotropic meshes,
[WFS03] proving the exponential rate of the convergence of the hp-DGM, [HSS02], [CCSS02] dealing with the hp-DGM for
convection-diffusion problems and [Tos02], [SW03] analyzing the hp-DGM for the Stokes problem.

5.1.4 Computational performance of the hp-DGM

In the previous sections we analyzed the hp-DGM, where the mesh Th and the approximation polynomial degrees pK , K ∈ Th,
were given in advance. In practice, the hp-DGM can be applied in the combination with an adaptive algorithm, where the size
hK of the elements K ∈ Th as well as the polynomial degrees pK on elements K ∈ Th are adaptively determined. The aim of
this section is to demonstrate the ability of the hp-DGM to deal with refined grids and with different polynomial degrees on
different K ∈ Th. We present one numerical example showing the efficiency and a possible potential of the hp-DGM.
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Mesh adaptation — an overview

Numerical examples presented in Section 1.8.2 show that if the exact solution of the given problem is not sufficiently regular,
then the experimental order of convergence of the DGM is low for any polynomial approximation degree. Therefore, a high
number of degrees of freedom (DOF) (=dimShp) has to be used in order to achieve a given accuracy. A significant reduction of
the number of DOF can be achieved by a local mesh refinement of the given grid Th, in which we look for elements K ∈ Th, for
which the computational error is too large. Then these marked elements are refined. In practice, for each element K ∈ Th we
define an error estimator ηK such that

‖u− uh‖K ≈ ηK , (5.59)

where ‖·‖K denotes a suitable norm of functions defined on K ∈ Th. The elements, where ηK is larger than a prescribed
tolerance, are split into several daughter elements. E.g., for d = 2, by connecting the mid points of edges of the triangle marked
for refinement, new four daughter triangles arise in place of the original one. This refinement strategy leads to hanging nodes,
see Section 1.3.1. Figure 5.2 shows a sequence of adaptively refined triangular grids.

There exist a number of works dealing with strategies for the error estimation and the corresponding mesh adaptive tech-
niques. Since a posteriori error analysis and mesh adaption are out of the scope of this book, we refer only to [EEHJ95], where an
introduction to adaptive methods for partial differential equations can be found. Moreover, an overview of standard approaches
was presented in [Ver96], [Ver13] and [Voh10].

Here we use the residual error estimator ηK , K ∈ Th, developed in [Dol13b], which is based on the approximation of the
computational error measured in the dual norm. We suppose that similar results can be obtained by any other reasonable
error estimator. However, a single error estimator ηK cannot simultaneously decide whether it is better to accomplish h or p
refinement. Several strategies for making this decision have been proposed. See, e.g., [HS05] or [EM07] for a survey.

In the following numerical examples, we employ the approach from [Dol13b], where the regularity indicator is based on
measuring the interelement jumps of the DG solution.

Numerical example

We illustrate the efficiency of the hp-discontinuous Galerkin method by the following example. Let Ω = (0, 1)×(0, 1), ∂ΩD := ∂Ω.
We consider the Poisson problem (5.1), where the right-hand side f and the Dirichlet boundary condition uD are chosen so that
the exact solution has the form

u(x1, x2) = 2(x2
1 + x2

2)−3/4 x1x2(1− x1)(1− x2), (5.60)

cf. Section 1.8.2. The function u has a singularity at the origin and, hence, u ∈ H1(Ω) but u 6∈ H2(Ω). Numerical examples pre-
sented in Section 1.8.2 showed that the experimental order of convergence of DGM in the H1(Ω, Th)-seminorm is approximately
O(h1/2) for any tested polynomial approximation degree.

In order to study the computational properties of the hp-DGM, we carried out three types of calculations:

• fix-DGM: Pp, p = 1, 3, 5, approximations on uniformly refined grids, i.e., the computation with fixed polynomial approxi-
mation degree (pK = p for all K ∈ Th) on uniform triangular grids with h` = 1/22+`, ` = 0, 1, . . . . Figure 5.1 shows the
uniformly refined grids for ` = 0, 2, 4.

• h-DGM: h-adaptive DGM for Pp, p = 1, 3, 5, polynomial approximations, i.e., the computation with fixed polynomial
approximation degree (pK = p for all K ∈ Th) on adaptively (locally) refined grids. Figure 5.2 shows the example of the
sequence of meshes generated by the h-refinement algorithm for p = 3 together with details at the singularity corner.

• hp-DGM: hp-adaptive DGM, i.e., the computation with adaptively chosen polynomial approximation degree pK , K ∈ Th,
on adaptively (locally) refined grids using the algorithm from [Dol13b]. Figure 5.3 shows the hp-grids generated by this
algorithm for selected levels of adaptation. Each K ∈ Th is marked by the colour corresponding to the used polynomial
approximation degree.

Our aim is to identify the experimental order of convergence (EOC), similarly as in Section 1.8. Since we employ locally
adaptive grids and possible different polynomial approximation degrees on K ∈ Th, it does not make sense to use formula (1.176)
and to define the EOC by (1.177). Therefore, we expect that the computational error eh = uh − u behaves according to the
formula

‖eh‖ ≈ CN−
EOC
d

h , (5.61)

where ‖eh‖ is the computational error in the (semi-)norm of interest, d = 2 is the space dimension, C > 0 is a constant, EOC ∈ R
is the experimental order of convergence and Nh is the number of degrees of freedom given by (cf., e.g., [BS94b, Chapter 3] or
[Cia79])

Nh = dimShp =
∑
K∈Th

1

d!

d∏
j=1

(pK + j). (5.62)
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Figure 5.1: Computation fix-DGM: the uniformly refined computational grids for ` = 0, 2, 4.

` = 0, . . . , 3 (the whole mesh)

` = 4, . . . , 7 (the whole mesh)

` = 4, . . . , 7 (zoom 50× at the singularity)

Figure 5.2: Computation h-DGM: example of the sequence of the meshes ` = 0, . . . , 7, generated by the h-refinement algorithm
for p = 3; the last row shows the details at the singularity corner.
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Figure 5.3: Computation hp-DGM: the hp-meshes for the levels of adaptation ` = 3, 5, 7, 9, 11; each K ∈ Th is marked by
the colour corresponding to the used polynomial approximation degree; the whole domain (left), zooms 10× and 100× at the
singularity corner (center and right), respectively.
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h-DGM P1
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hp-DGM     

slope EOC = 1/2

Figure 5.4: Convergence of errors in the H1(Ω, Th)-seminorm with respect to the number of DOF for fix-DGM, h-DGM, hp-DGM
computations. Moreover the slope corresponding to EOC= 1/2 is plotted.

Obviously, if the mesh Th is quasi-uniform (cf. Remark 1.3) and pK = p for all K ∈ Th, then the experimental orders of
convergence defined by (5.61) and by (1.176) are identical.

Since the exact solution is known and, therefore, ‖eh‖ can be exactly evaluated, it is possible to determine the EOC in the
following way. Let ‖eh1

‖ and ‖eh2
‖ be the computational errors of numerical solutions obtained on two different meshes Th1

and Th2 having the numbers of degrees of freedom Nh1 and Nh2 , respectively. Then eliminating the constant C from (5.61), we
come to the definition of the EOC in the form

EOC = − log(‖eh1
‖/‖eh2

‖)
log((Nh1

/Nh2
)1/d)

. (5.63)

Table 5.1 shows the results of all types of computations (fix-DGM, h-DGM, hp-DGM), namely, the computational errors in the
L∞(Ω)-norm, the L2(Ω)-norm and the H1(Ω, Th)-seminorm and the corresponding EOC together with the computational time
in seconds. The results with the error in the H1(Ω, Th)-seminorm are visualized in Figure 5.4. We observe that the fix-DGM
computations give a low experimental order of convergence in agreement with results in Tables 1.5 and 1.6. Moreover, the
h-mesh refinements h-DGM achieve the same error level with smaller number of DOF. Namely, for P3 and P5 approximation
the decrease of the number of DOF is essential. Finally, the hp-adaptive strategy hp-DGM leads to the lower number of DOF
(and a shorter computational time) in comparison to h-DGM.

We observe that in some cases EOC is negative for the hp-DGM. The relation (5.63) gives EOC < 0 in two situations:

• The adaptive algorithm increases the number of degrees of freedom Nh but the computational error eh increases too. This
is the usual property of hp-adaptive methods, when at the beginning of the adaptation algorithm we use high polynomial
degrees on coarse grids. The polynomial approximation oscillates and thus eh is large.

• The adaptive algorithm reduces the number of degrees of freedom Nh together with a decrease of the computational error
eh (see level 7 of hp-DGM in Table 5.1). This is in fact a positive property of the used algorithm.

Furthermore, from Table 5.1, we find out that for the hp-DGM computations, the error in the L2(Ω)-norm is almost constant
for the levels ` = 8, 9, 10 and 11, whereas the errors in the L∞(Ω)-norm and in the H1(Ω, Th)-seminorm are decreasing. This
is caused be the fact that the piecewise constant function F 0 : Ω→ R given by

F 0|K = ‖u− uh‖L2(K), K ∈ Th
attains the maximal values for K far from the singularity (if the mesh is already sufficiently refined), whereas the piecewise
constant function F 1 : Ω→ R given by

F 1|K = |u− uh|H1(K), K ∈ Th
attains the maximal values for K near the singularity even for sufficiently refined grids. Figure 5.3 shows that for ` ≥ 5 only
elements near the singularity are adapted, and hence the error in the L2(Ω)-norm cannot be further decreased.

The presented numerical experiments show that the hp-DGM can treat locally refined grids with hanging nodes and different
approximation polynomial degrees generated by an hp-adaptive technique. This approach allows us to achieve the given error
tolerance with the aid of a low number of DOF.
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fix-DGM
level p #Th DOF ‖eh‖L∞(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖H1(Ω,Th) EOC CPU(s)

0 1 32 96 2.47E-01 – 4.22E-02 – 7.01E-01 – 0.3
1 1 128 384 1.99E-01 0.3 1.83E-02 1.2 5.61E-01 0.3 0.5
2 1 512 1536 1.50E-01 0.4 7.28E-03 1.3 4.26E-01 0.4 1.4
3 1 2048 6144 1.09E-01 0.5 2.77E-03 1.4 3.14E-01 0.4 6.3
4 1 8192 24576 7.84E-02 0.5 1.02E-03 1.4 2.27E-01 0.5 38.9
0 3 32 320 1.51E-01 – 5.79E-03 – 4.63E-01 – 0.4
1 3 128 1280 1.07E-01 0.5 2.13E-03 1.4 3.34E-01 0.5 1.0
2 3 512 5120 7.55E-02 0.5 7.71E-04 1.5 2.39E-01 0.5 3.9
3 3 2048 20480 5.34E-02 0.5 2.76E-04 1.5 1.70E-01 0.5 16.8
4 3 8192 81920 3.78E-02 0.5 9.83E-05 1.5 1.20E-01 0.5 82.2
0 5 32 672 2.29E-01 – 5.09E-03 – 3.85E-01 – 0.6
1 5 128 2688 1.62E-01 0.5 1.81E-03 1.5 2.75E-01 0.5 2.2
2 5 512 10752 1.15E-01 0.5 6.42E-04 1.5 1.95E-01 0.5 9.2
3 5 2048 43008 8.12E-02 0.5 2.28E-04 1.5 1.38E-01 0.5 41.2
4 5 8192 172032 5.74E-02 0.5 8.05E-05 1.5 9.80E-02 0.5 235.3

h-DGM
level p #Th DOF ‖eh‖L∞(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖H1(Ω,Th) EOC CPU(s)

0 1 32 96 2.47E-01 – 4.22E-02 – 7.01E-01 – 0.3
1 1 128 384 1.99E-01 0.3 1.83E-02 1.2 5.61E-01 0.3 0.5
2 1 410 1230 1.50E-01 0.5 7.34E-03 1.6 4.26E-01 0.5 1.3
3 1 959 2877 1.09E-01 0.7 2.89E-03 2.2 3.15E-01 0.7 3.2
4 1 1952 5856 7.84E-02 0.9 1.15E-03 2.6 2.30E-01 0.9 8.2
5 1 3491 10473 5.59E-02 1.2 5.28E-04 2.7 1.67E-01 1.1 21.1
6 1 5567 16701 3.96E-02 1.5 3.11E-04 2.3 1.21E-01 1.4 47.8
7 1 7922 23766 2.81E-02 2.0 2.40E-04 1.5 8.95E-02 1.7 86.0
8 1 11387 34161 1.99E-02 1.9 1.77E-04 1.7 6.73E-02 1.6 168.6
0 3 32 320 1.51E-01 – 5.79E-03 – 4.63E-01 – 0.4
1 3 44 440 1.07E-01 2.2 2.14E-03 6.3 3.34E-01 2.0 0.7
2 3 56 560 7.55E-02 2.9 7.99E-04 8.2 2.39E-01 2.8 1.0
3 3 68 680 5.34E-02 3.6 3.42E-04 8.7 1.70E-01 3.5 1.3
4 3 80 800 3.78E-02 4.3 2.23E-04 5.3 1.21E-01 4.2 1.8
5 3 86 860 2.67E-02 9.5 2.03E-04 2.6 8.67E-02 9.3 2.2
6 3 92 920 1.89E-02 10.3 2.00E-04 0.4 6.25E-02 9.7 2.7
7 3 98 980 1.34E-02 11.0 2.00E-04 0.1 4.57E-02 9.9 3.1
0 5 32 672 2.29E-01 – 5.09E-03 – 3.85E-01 – 0.6
1 5 38 798 1.62E-01 4.0 1.81E-03 12.0 2.75E-01 3.9 1.0
2 5 44 924 1.15E-01 4.7 6.43E-04 14.1 1.95E-01 4.7 1.5
3 5 50 1050 8.12E-02 5.4 2.29E-04 16.1 1.38E-01 5.4 2.1
4 5 56 1176 5.74E-02 6.1 8.53E-05 17.5 9.80E-02 6.1 2.8
5 5 62 1302 4.06E-02 6.8 3.99E-05 15.0 6.94E-02 6.8 3.6

hp-DGM
level p #Th DOF ‖eh‖L∞(Ω) EOC ‖eh‖L2(Ω) EOC ‖eh‖H1(Ω,Th) EOC CPU(s)

0 – 32 96 2.47E-01 – 4.22E-02 – 7.01E-01 – 0.3
1 – 32 192 1.14E-01 2.2 8.68E-03 4.6 4.14E-01 1.5 0.4
2 – 32 232 1.51E-01 -3.0 5.86E-03 4.1 4.63E-01 -1.2 0.5
3 – 32 252 2.01E-01 -7.0 5.98E-03 -0.5 3.77E-01 5.0 0.6
4 – 35 303 1.43E-01 3.7 2.25E-03 10.6 2.71E-01 3.6 0.8
5 – 38 354 1.01E-01 4.4 1.03E-03 10.0 1.95E-01 4.3 1.0
6 – 44 424 5.34E-02 7.1 7.40E-04 3.7 1.72E-01 1.3 1.2
7 – 44 420 3.78E-02 -81.5 6.93E-04 -15.4 1.25E-01 -76.1 1.4
8 – 47 455 2.67E-02 8.7 6.86E-04 0.2 9.15E-02 7.7 1.7
9 – 50 490 1.89E-02 9.4 6.86E-04 0.0 6.91E-02 7.6 1.9
10 – 53 525 1.34E-02 10.1 6.85E-04 0.0 5.46E-02 6.9 2.2
11 – 59 585 9.45E-03 6.4 6.85E-04 0.0 4.55E-02 3.3 2.4

Table 5.1: Computational errors in the L∞(Ω)-norm, the L2(Ω)-norm and the H1(Ω, Th)-seminorm, the corresponding EOC
and the CPU time for all types of computations.
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Chapter 6

Inviscid compressible flow

In previous chapters we introduced and analyzed the discontinuous Galerkin method (DGM) for the numerical solution of several
scalar equations. However, many practical problems are described by systems of partial differential equations. In the second part
of this book, we present the application of the DGM to solving compressible flow problems. The numerical schemes, analyzed
for a scalar equation, are extended to a system of equations and numerically verified. We also deal with an efficient solution of
resulting systems of algebraic equations.

One of the models used for the numerical simulation of a compressible (i.e., gas) flow is based on the assumption that the
flow is inviscid and adiabatic. This means that in gas we neglect the internal friction and heat transfer. Inviscid adiabatic
flow is described by the continuity equation, the Euler equations of motion and the energy equation, to which we add closing
thermodynamical relations. See, for example, [FFS03, Section 1.2]. This complete system is usually called the Euler equations.

The Euler equations, similarly as other nonlinear hyperbolic systems of conservation laws, may have discontinuous solutions.
This is one of the reasons that the finite volume method (FVM) using piecewise constant approximations became very popular
for the numerical solution of compressible flow. For a detailed treatment of finite volume techniques, we can refer to [EGH00] and
[Krö97]. See also [Fei93] and [FFS03]. Moreover, the FVM is applicable on general polygonal meshes and its algorithmization
is relatively easy. Therefore, many fluid dynamics codes and program packages are based on the FVM. However, the standard
FVM is only of the first order, which is not sufficient in a number of applications. The increase of accuracy in finite volume
schemes applied on unstructured and/or anisotropic meshes seems to be problematic and is not theoretically sufficiently justified.

As for the finite element method (FEM), the standard conforming finite element techniques were considered to be suitable for
the numerical solution of elliptic and parabolic problems, linear elasticity and incompressible viscous flow, when the exact solution
is sufficiently regular. Of course, there are also conforming finite element techniques applied to the solution of compressible flow,
but the treatment of discontinuous solutions is rather complicated. For a survey, see [FFS03, Section 4.3].

A combination of ideas and techniques of the FV and FE methods yields the discontinuous Galerkin method using advantages
of both approaches and allowing to obtain schemes with a higher-order accuracy in a natural way. In this chapter we present
the application of the DGM to the Euler equations. We describe the discretization, a special attention is paid to the choice of
boundary conditions and we also discuss an efficient solution of the resulting discrete problem.

6.1 Formulation of the inviscid flow problem

6.1.1 Governing equations

We shall consider the unsteady compressible inviscid adiabatic flow in a domain Ω ⊂ Rd (d = 2 or 3) and time interval (0, T ),
0 < T < ∞. In what follows, we present only the governing equations, their derivation can be found, e.g., in [FFS03, Section
3.1].

We use the standard notation: ρ - density, p - pressure (symbol p denotes the degree of polynomial approximation), E - total

energy, vs, s = 1, . . . , d - components of the velocity vector v = (v1, . . . , vd)
T

in the directions xs, θ - absolute temperature,
cv > 0 - specific heat at constant volume, cp > 0 - specific heat at constant pressure, γ = cp/cv > 1 - Poisson adiabatic constant,
R = cp − cv > 0 - gas constant. We shall be concerned with the flow of a perfect gas, for which the equation of state has the
form

p = Rρθ, (6.1)

and assume that cp, cv are constants. Since the gas is light, we neglect the outer volume force.
The system of governing equations formed by the continuity equation, the Euler equations of motion and the energy equation
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(see [FFS03, Section 3.1]) considered in the space-time cylinder QT = Ω× (0, T ) can be written in the form

∂ρ

∂t
+

d∑
s=1

∂(ρvs)

∂xs
= 0, (6.2)

∂(ρvi)

∂t
+

d∑
s=1

∂(ρvivs + δisp)

∂xs
= 0, i = 1, . . . , d, (6.3)

∂E

∂t
+

d∑
s=1

∂((E + p)vs)

∂xs
= 0. (6.4)

To the above system, we add the thermodynamical relations defining the pressure

p = (γ − 1)(E − ρ|v|2/2), (6.5)

and the total energy

E = ρ(cvθ + |v|2/2), (6.6)

in terms of other quantities.
We define the speed of sound a and the Mach number M by

a =
√
γp/ρ, M =

|v|
a
. (6.7)

The flow is called subsonic and supersonic in a region ω, if M < 1 and M > 1, respectively, in ω. If M � 1, we speak about
hypersonic flow. If there are two subregions ω1 and ω2 in the flow field such that M < 1 in ω1 and M > 1 in ω2, the flow is
called transonic.

Exercise 6.1. Derive (6.5) from (6.1) and (6.6).

System (6.2)–(6.4) has m = d+ 2 equations and it can be written in the form

∂w

∂t
+

d∑
s=1

∂fs(w)

∂xs
= 0, (6.8)

where

w = (w1, . . . , wm)
T

= (ρ, ρv1, . . . , ρvd, E)
T ∈ Rm, (6.9)

is the so-called state vector, and

fs(w) =


fs,1(w)
fs,2(w)

...
fs,m−1(w)
fs,m(w)

 =


ρvs

ρv1vs + δ1sp
...

ρvdvs + δdsp
(E + p)vs

 (6.10)

=



ws+1
w2ws+1

w1
+ δ1s(γ − 1)

(
wm − 1

2w1

∑m−1
i=2 w2

i

)
...

wm−1ws+1

w1
+ δds(γ − 1)

(
wm − 1

2w1

∑m−1
i=2 w2

i

)
ws+1

w1

(
γwm − γ−1

2w1

∑m−1
i=2 w2

i

)


,

is the flux of the quantity w in the direction xs, s = 1, . . . , d. By δij we denote the Kronecker symbol. Often, fs, s = 1, . . . , d,
are called inviscid Euler fluxes.

Usually, system (6.2)–(6.4), i.e., (6.8), is called the system of the Euler equations, or simply the Euler equations. The
functions ρ, v1, . . . , vd,p are called primitive (or physical) variables, whereas w1 = ρ, w2 = ρv1, . . . , wm−1 = ρvd, wm = E are
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conservative variables. It is easy to show that

vi =wi+1/w1, i = 1, . . . , d, (6.11)

p =(γ − 1)

(
wm −

m−1∑
i=2

w2
i /(2w1)

)
,

θ =

(
wm/w1 −

1

2

m−1∑
i=2

(wi/w1)2

)
/cv.

The domain of definition of the vector-valued functions fs, s = 1, . . . , d, is the open set D ⊂ Rm of vectors w = (w1, . . . , wm)
T

such that the corresponding density and pressure are positive:

D =
{
w ∈ Rm; w1 = ρ > 0, wm −

m−1∑
i=2

w2
i /(2w1) = p/(γ − 1) > 0

}
. (6.12)

Obviously, fs ∈ (C1(D))m.
Differentiation in (6.8) and the use of the chain rule lead to a first-order quasilinear system of partial differential equations

∂w

∂t
+

d∑
s=1

As(w)
∂w

∂xs
= 0, (6.13)

where As(w) is the m×m Jacobi matrix of the mapping fs defined for w ∈ D:

As(w) =
Dfs(w)

Dw
=

(
∂fs,i(w)

∂wj

)m
i,j=1

, s = 1, . . . , d. (6.14)

Let

B1 = {n ∈ Rd; |n| = 1} (6.15)

denote the unit sphere in Rd. For w ∈ D and n = (n1, . . . , nd)
T ∈ B1 we denote

P (w,n) =

d∑
s=1

fs(w)ns, (6.16)

which is the physical flux of the quantity w in the direction n. Obviously, the Jacobi matrix DP (w,n)/Dw can be expressed
in the form

DP (w,n)

Dw
= P(w,n) :=

d∑
s=1

As(w)ns. (6.17)

Exercise 6.2. Let d = 2. Prove that the Jacobi matrices As, s = 1, 2, have the form

A1(w) =


0 1 0 0

γ1

2 |v|2 − v2
1 (3− γ)v1 −γ1v2 γ1

−v1v2 v2 v1 0

v1

(
γ1|v|2 − γEρ

)
γEρ − γ1v

2
1 − γ1

2 |v|2 −γ1v1v2 γv1

 , (6.18)

A2(w) =


0 0 1 0

−v1v2 v2 v1 0
γ1

2 |v|2 − v2
2 −γ1v1 (3− γ)v2 γ1

v2

(
γ1|v|2 − γEρ

)
−γ1v1v2 γEρ − γ1v

2
2 − γ1

2 |v|2 γv2

 , (6.19)

where γ1 = γ − 1.

Exercise 6.3. Let d = 2. With the aid of (6.18) – (6.19) show that the matrix P(w,n) has the form

P(w,n) =


0 n1 n2 0

γ1

2 |v|2n1 − v1v ·n −γ2v1n1 + v ·n v1n2 − γ1v2n1 γ1n1
γ1

2 |v|2n2 − v2v ·n v2n1 − γ1v1n2 −γ2v2n2 + v ·n γ1n2(
γ1|v|2 − γE

ρ

)
v ·n Gn1 − γ1v1v ·n Gn2 − γ1v2v ·n γv ·n

 , (6.20)

where n = (n1, n2), γ1 = γ − 1, γ2 = γ − 2 and G = γEρ −
γ1

2 |v|2.
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Exercise 6.4. Let d = 3. Prove that the Jacobi matrices As, s = 1, 2, 3, have the form

A1 =


0 1 0 0 0

γ1

2 |v|2 − v2
1 (3− γ)v1 −γ1v2 −γ1v3 γ1

−v1v2 v2 v1 0 0
−v1v3 v3 0 v1 0

v1

(
γ1|v|2 − γEρ

)
γEρ − γ1v

2
1 − γ1

2 |v|2 −γ1v1v2 −γ1v1v3 γv1

 , (6.21)

A2 =


0 0 1 0 0

−v1v2 v2 v1 0 0
γ1

2 |v|2 − v2
2 −γ1v1 (3− γ)v2 −γ1v3 γ1

−v2v3 0 v3 v2 0

v2

(
γ1|v|2 − γEρ

)
−γ1v1v2 γEρ − γ1v

2
2 − γ1

2 |v|2 −γ1v2v3 γv2

 , (6.22)

A3 =


0 0 0 1 0

−v1v3 v3 0 v1 0
−v2v3 0 v3 v2 0

γ1

2 |v|2 − v2
3 −γ1v1 −γ1v2 (3− γ)v3 γ1

v3

(
γ1|v|2 − γEρ

)
−γ1v1v3 −γ1v2v3 γEρ − γ1v

2
3 − γ1

2 |v|2 γv3

 , (6.23)

where γ1 = γ − 1.

Exercise 6.5. Let d = 3. With the aid of (6.21) – (6.23), show that the matrix P(w,n) has the form

P(w,n) = (6.24)
0 n1 n2 n3 0

γ1

2 |v|2n1 − v1v ·n −γ2v1n1 + v ·n v1n2 − γ1v2n1 v1n3 − γ1v3n1 γ1n1
γ1

2 |v|2n2 − v2v ·n v2n1 − γ1v1n2 −γ2v2n2 + v ·n v2n3 − γ1v3n2 γ1n2
γ1

2 |v|2n3 − v3v ·n v3n1 − γ1v1n3 v3n2 − γ1v2n3 −γ2v3n3 + v ·n γ1n3(
γ1|v|2 − γE

ρ

)
v ·n Gn1 − γ1v1v ·n Gn2 − γ1v2v ·n Gn3 − γ1v3v ·n γv ·n

 ,

where n = (n1, n2, n3), γ1 = γ − 1, γ2 = γ − 2 and G = γEρ −
γ1

2 |v|2.

Let us summarize some important properties of the system of the Euler equations (6.8).

Lemma 6.6. (a) The vector-valued functions fs defined by (6.10) are homogeneous mappings of order 1:

fs(αw) = αfs(w), α > 0. (6.25)

Moreover, we have

fs(w) = As(w)w. (6.26)

(b) Similarly,

P (αw,n) =αP (w,n), α > 0, (6.27)

P (w,n) =P(w,n)w. (6.28)

(c) The system of the Euler equations is diagonally hyperbolic. This means that the matrix P =
∑d
j=1 Aj(w)nj has only real

eigenvalues λi = λi(w,n), i = 1, . . . ,m, and is diagonalizable: there exists a nonsingular matrix T = T(w,n) such that

T−1PT = ΛΛΛ = ΛΛΛ(w,n) = diag(λ1, . . . , λm) =


λ1 0 . . . 0 0
0 λ2 0 . . . 0
...

. . .
...

0 . . . 0 λm−1 0
0 0 . . . 0 λm

 . (6.29)

The columns of the matrix T are the eigenvectors of the matrix P.
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(d) The eigenvalues of the matrix P(w,n), w ∈ D, n ∈ B1 have the form

λ1(w,n) =v · n− a, (6.30)

λ2(w,n) = · · · = λd+1(w,n) = v · n,
λm(w,n) =v · n + a,

where a =
√
γp/ρ is the speed of sound and v is the velocity vector given by v = (w2/w1, w3/w1, . . . , wd+1/w1)

T

.
(e) The system of the Euler equations is rotationally invariant. Namely, for n = (n1, . . . , nd) ∈ B1,w ∈ D it holds

P (w,n) =

d∑
s=1

fs(w)ns = Q−1(n)f1(Q(n)w), (6.31)

P(w,n) =

d∑
s=1

As(w)ns = Q−1(n)A1(Q(n)w)Q(n), (6.32)

where Q(n) is the m×m matrix corresponding to n ∈ B1 given by

Q(n) =

 1 0 0

0
T Q0(n) 0

T

0 0 1

 , (6.33)

where the d× d rotation matrix Q0(n) is defined for d = 2 by

Q0(n) =

(
n1 n2

−n2 n1

)
, n = (n1, n2), (6.34)

and for d = 3 by

Q0(n) =

 cosα cosβ sinα cosβ sinβ
− sinα cosα 0

− cosα sinβ − sinα sinβ cosβ

 , (6.35)

n = (cosα cosβ, sinα cosβ, sinβ), α ∈ [0, 2π), β ∈ [−π/2, π/2].

By 0 we denote the vector (0, 0), if d = 2, and (0, 0, 0), if d = 3.

Proof. See [FFS03, Lemma 3.1, Lemma 3.3, Theorem 3.4].

6.1.2 Initial and boundary conditions

In order to formulate the problem of inviscid compressible flow, the system of the Euler equations (6.8) has to be equipped with
initial and boundary conditions. Let Ω ⊂ Rd, d = 2, 3, be a bounded computational domain with a piecewise smooth Lipschitz
boundary ∂Ω. We prescribe the initial condition

w(x, 0) = w0(x), x ∈ Ω, (6.36)

where w0 : Ω→ D is a given vector-valued function. Moreover, the boundary conditions are given formally by

B(w) = 0 on ∂Ω× (0, T ), (6.37)

where B is a boundary operator.
The choice of appropriate boundary conditions is a very important and delicate question in the numerical simulation of

fluid flow. Determining of boundary conditions is, basically, a physical problem, but it must correspond to the mathematical
character of the solved equations. Great care is required in their numerical implementation. Usually two types of boundaries
are considered: reflective and transparent or transmissive. The reflective boundaries usually consist of fixed walls. Transmissive
or transparent boundaries arise from the need to replace unbounded or rather large physical domains by bounded or sufficiently
small computational domains. The corresponding boundary conditions are devised so that they allow the passage of waves
without any effect on them. For 1D problems the objective is reasonably well attained. For multidimensional problems this
is a substantial area of current research, usually referred to open-end boundary conditions, transparent boundary conditions,
far-field boundary conditions, radiation boundary conditions or non-reflecting boundary conditions. Useful publications dealing
with boundary conditions are [BT80], [Hed79], [Roe89], [Gil90], [GF87], [GF88], [GK79], [HH88], [Krö91], [GR96, Chapter V]. A
rigorous mathematical theory of boundary conditions to conservation laws was developed only for a scalar equation in [BLN79].
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The choice of well-posed boundary conditions for the Euler equations (or, in general, of conservation laws) is a delicate
question, not completely satisfactorily solved (see, e.g., the paper [BLN79] dealing with the boundary conditions for a scalar
equation). We discuss the choice of the boundary conditions in Section 6.3 in relation to the definition of the numerical solution
of (6.8).

Let us only mention that we distinguish several disjoint parts of the boundary ∂Ω, namely inlet ∂Ωi, outlet ∂Ωo and
impermeable walls ∂ΩW , i.e., ∂Ω = ∂Ωi ∪ ∂Ωo ∪ ∂ΩW . In some situations the inlet and outlet parts are considered together.
Therefore, we speak about the inlet/outlet part of the boundary. On ∂ΩW we prescribe the impermeability condition

v · n = 0 on ∂ΩW , (6.38)

where n denotes the outer unit normal to ∂ΩW and v is the velocity vector.
Concerning the inlet/outlet part of the boundary ∂Ωi ∪ ∂Ωo, the boundary conditions are usually chosen in such a way that

problem (6.8) is linearly well–posed. (See, e.g., [FFS03, Section 3.3.6].) Practically it means that the number of prescribed
boundary conditions is equal to the number of negative eigenvalues of the matrix P(w,n) defined by (6.31). See Section 6.3.

6.2 DG space semidiscretization

In the following, we shall deal with the discretization of the Euler equations (6.8) by the DGM. We recall some notation
introduced in Chapters 1 and 2. Similarly as in Chapter 2, we shall derive the DG space semidiscretization leading to a system
of ordinary differential equations. Moreover, we develop a (semi-)implicit time discretization technique which is based on a
formal linearization of nonlinear terms. We shall also pay attention to some further aspects of the DG discretization of the Euler
equations, namely the choice of boundary conditions, the approximation of nonpolygonal boundary and the shock capturing.

6.2.1 Notation

We shall recall and extend notation introduced in Chapters 1 and 2. In the finite element method, the computational domain
Ω is usually approximated by a polygonal (if d = 2) or polyhedral (if d = 3) domain Ωh, which is the domain of definition
of the approximate solution. For the sake of simplicity, we shall assume that the domain Ω is polygonal, and thus Ωh = Ω.
By Th we denote a partition of Ω consisting of closed d-dimensional simplexes with mutually disjoint interiors. We call Th the
triangulation of Ω.

By Fh we denote the set of all open (d − 1)-dimensional faces (open edges when d = 2 or open faces when d = 3) of all
elements K ∈ Th. Further, the symbol FIh stands for the set of all Γ ∈ Fh that are contained in Ω (inner faces). Moreover,
we define FWh , F ih and Foh as the sets of all Γ ∈ Fh such that Γ ⊂ ∂ΩW , Γ ⊂ ∂Ωi and Γ ⊂ ∂Ωo, respectively. In order to
simplify the notation, we put F ioh = F ih ∪Foh and FBh = FWh ∪F ih ∪Foh. Finally, for each Γ ∈ Fh we define a unit normal vector
nΓ = (nΓ,1, . . . , nΓ,d). We assume that for Γ ∈ FBh the vector nΓ has the same orientation as the outer normal of ∂Ω. For each
Γ ∈ FIh , the orientation of nΓ is arbitrary but fixed.

Over the triangulation Th we define the broken Sobolev space of vector-valued functions (cf. (1))

H1(Ω, Th) = (H1(Ω, Th))m, (6.39)

where

H1(Ω, Th) = {v; v : Ω→ R, v|K ∈ H1(K) ∀K ∈ Th} (6.40)

is the broken Sobolev space of scalar functions introduced by (1.29).

For each Γ ∈ FIh there exist two elements K
(L)
Γ ,K

(R)
Γ ∈ Th such that Γ ⊂ K

(L)
Γ ∩K(R)

Γ . We use again the convention that

K
(R)
Γ lies in the direction of nΓ and K

(L)
Γ in the opposite direction of nΓ, see Figure 1.2.

In agreement with Section 1.3.3, for u ∈H1(Ω, Th) and Γ ∈ FIh , we introduce the notation:

u
(L)
Γ is the trace of u|

K
(L)
Γ

on Γ, u
(R)
Γ is the trace of u|

K
(R)
Γ

on Γ (6.41)

and

〈u〉Γ =
1

2

(
u

(L)
Γ + u

(R)
Γ

)
, (6.42)

[u]Γ =u
(L)
Γ − u

(R)
Γ . (6.43)

In case that [·]Γ, 〈·〉Γ and nΓ are arguments of
∫

Γ
. . . dS, Γ ∈ Fh, we usually omit the subscript Γ and write simply [·], 〈·〉 and

n, respectively. The value [u]Γ depends on the orientation of nΓ, but the value [u]Γ · nΓ is independent of this orientation.

Finally, for u ∈H1(Ω, Th) and Γ ∈ FBh , we denote by u
(L)
Γ the trace of u|K(L) on Γ, where K(L) ∈ Th such that Γ ⊂ K(L)∩∂Ω.
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The discontinuous Galerkin (DG) approximate solution of (6.8) is sought in a finite-dimensional subspace of H1(Ω, Th) which
consists of piecewise polynomial functions. Hence, over the triangulation Th we define the space of vector-valued discontinuous
piecewise polynomial functions

Shp = (Shp)
m, (6.44)

where

Shp = {v ∈ L2(Ω); v|K ∈ Pp(K) ∀K ∈ Th} (6.45)

is the space of scalar functions defined by (1.34). Here Pp(K) denotes the space of all polynomials on K of degree ≤ p, K ∈ Th.
Obviously, Shp ⊂H1(Ω, Th).

6.2.2 Discontinuous Galerkin space semidiscretization

In order to derive the discrete problem, we assume that there exists an exact solution w ∈ C1([0, T ];H1(Ω, Th)) of the Euler
equations (6.8). Then we multiply (6.8) by a test function ϕϕϕ ∈ H1(Ω, Th), integrate over any element K ∈ Th, apply Green’s
theorem and sum over all K ∈ Th. Then we get

∑
K∈Th

∫
K

∂w

∂t
·ϕϕϕdx−

∑
K∈Th

∫
K

d∑
s=1

fs(w) · ∂ϕϕϕ
∂xs

dx+
∑
K∈Th

∫
∂K

d∑
s=1

fs(w)ns ·ϕϕϕdS = 0, (6.46)

where n = (n1, . . . , nd) denotes the outer unit normal to the boundary of K ∈ Th. Similarly as in Section 1.4, we rewrite (6.46)
in the form

∑
K∈Th

∫
K

∂w

∂t
·ϕϕϕdx−

∑
K∈Th

∫
K

d∑
s=1

fs(w) · ∂ϕϕϕ
∂xs

dx (6.47)

+
∑

Γ∈FIh

∫
Γ

d∑
s=1

fs(w)nΓ,s · [ϕϕϕ] dS +
∑

Γ∈FBh

∫
Γ

d∑
s=1

fs(w)nΓ,s ·ϕϕϕdS = 0.

The crucial point of the DG approximation of conservation laws is the evaluation of the integrals over Γ ∈ Fh in (6.47).
These integrals are approximated with the aid of the numerical flux H : D ×D × B1 → Rm by∫

Γ

d∑
s=1

fs(w)nΓ,s ·ϕϕϕdS ≈
∫

Γ

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) ·ϕϕϕdS, (6.48)

where the functions w
(L)
Γ and w

(R)
Γ are defined by (6.41) and B1 by (6.15). The meaning of w

(R)
Γ for Γ ∈ FBh will be specified

later in the treatment of boundary conditions in Section 6.3. The numerical flux is an important concept in the finite volume
method (see, e.g., [FFS03, Section 3.2] or [Wes01]). It has to satisfy some basic conditions:

• continuity: H(w1,w2,n) is locally Lipschitz-continuous with respect to the variables w1 and w2,

• consistency:

H(w,w,n) =

d∑
s=1

fs(w)ns, w ∈ D, n = (n1, . . . , nd) ∈ B1, (6.49)

• conservativity:

H(w1,w2,n) = −H(w2,w1,−n), w1,w2 ∈ D, n ∈ B1. (6.50)

Examples of numerical fluxes can be found, e.g., in [Fei93], [FFS03], [Krö97], [Tor97].
Now, we complete the DG space semidiscretization of (6.8). Approximating the face integrals in (6.47) by (6.48) and

interchanging the derivative and integral in the first term, we obtain the identity

d

dt
(w(t),ϕϕϕ) + bh(w(t),ϕϕϕ) = 0 ∀ϕϕϕ ∈H1(Ω, Th) ∀ t ∈ (0, T ), (6.51)
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where

(w,ϕϕϕ) =

∫
Ω

w ·ϕϕϕdx, (6.52)

bh(w,ϕϕϕ) =
∑

Γ∈FIh

∫
Γ

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) · [ϕϕϕ] dS +

∑
Γ∈FBh

∫
Γ

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) ·ϕϕϕdS

−
∑
K∈Th

∫
K

d∑
s=1

fs(w) · ∂ϕϕϕ

∂xs
dx. (6.53)

The meaning of w
(R)
Γ for Γ ∈ FBh will be specified in Section 6.3. We call bh the convection (or inviscid) form. The expressions

in (6.51) – (6.53) make sense for w,ϕϕϕ ∈H1(Ω, Th). The approximation of the exact solution w(t) of (6.8) will be sought in the
finite-dimensional space Shp ⊂ H1(Ω, Th) for each t ∈ (0, T ). Therefore, using (6.51), we immediately arrive at the definition
of an approximate solution.

Definition 6.7. We say that a function wh : Ω× (0, T )→ Rm is the space semidiscrete solution of the Euler equations (6.8),
if the following conditions are satisfied:

wh ∈ C1([0, T ];Shp), (6.54a)

d

dt
(wh(t),ϕϕϕh) + bh(wh(t),ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp ∀ t ∈ (0, T ), (6.54b)

wh(0) = Πhw
0, (6.54c)

where Πhw
0 is the Shp-approximation of the function w0 from the initial condition (6.36). Usually it is defined as the L2-

projection of w0 on the space Shp.

Problem (6.54) represents a system of Nhp ordinary differential equations (ODEs), where Nhp is equal to the dimension of
the space Shp. Its solution will be discussed in Section 6.4.

Remark 6.8. If we consider the case p = 0 (i.e., the approximate solution is piecewise constant on Th), then the numerical
scheme (6.54) represents the standard finite volume method. See, e.g., [FFS03], [Wes01], [Krö97]. Actually, for p = 0 we
choose the basis functions of Sh0 as characteristic functions χK of K ∈ Th. Let us recall that χK = 1 on K and χK = 0
elsewhere. Therefore, putting ϕϕϕh = χK , K ∈ Th, in (6.54b), we obtain

d

dt
wK(t) +

∑
K′∈N (K)

|ΓK,K′ |H(wK(t),wK′(t),nK,K′) = 0, (6.55)

where

wK =
1

|K|

∫
K

wh dx, K ∈ Th, (6.56)

and N (K) = {K ′, ∂K ∩ ∂K ′ ∈ Fh} is the set of all elements K ′ having a common face ΓK,K′ with K. The set N (K) contains
also fictitious elements outside of Ω having a common face ∂K ∩ Ω with K ∈ Th. In this case, the value wK′ in the numerical
flux H is determined from boundary conditions. By |ΓK,K′ | and |K| we denote the (d−1)-Lebesgue measure of the common face
ΓK,K′ between K and K ′ and the d-dimensional measure of the element K, respectively. The symbol nK,K′ denotes the outer
unit normal to ∂K on ΓK,K′ .

6.3 Numerical treatment of boundary conditions

If Γ ∈ FBh , then it is necessary to specify the boundary state w
(R)
Γ appearing in the numerical flux H in the definition (6.53)

of the convection form bh. In what follows, we shall describe the treatment of the boundary conditions for impermeable walls
and the inlet/outlet part of the boundary. The boundary conditions should be theoretically determined at all boundary points.
In practical computations, when the integrals are evaluated with the aid of quadrature formulae, it is enough to consider the

boundary conditions at only integration boundary points. Therefore, for the sake of simplicity, the symbol w
(R)
Γ will mean the

value of this function at a boundary point in consideration.

6.3.1 Boundary conditions on impermeable walls

For Γ ∈ FWh we should interpret in a suitable way the impermeability condition (6.38), i.e., v·n = 0, where v is the velocity vector

and n the outer unit normal to ∂ΩW . This condition has to be incorporated in some sense into the expression H(w
(L)
Γ ,w

(R)
Γ ,nΓ)

appearing in the definition (6.53) of the form bh.
We shall describe two possibilities. The first one is based on the direct use of the impermeability condition in the physical

flux P (w,n). The second one applies the mirror operator to the state w.
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Direct use of the impermeability condition

Let n = (n1, . . . , nd) ∈ B1. Then from (6.16) and (6.10) we have

P (w,n) =

d∑
s=1

fs(w)ns =

d∑
s=1


fs,1(w)
fs,2(w)

...
fs,m−1(w)
fs,m(w)

ns =


ρv · n

ρv1v · n + pn1

...
ρvdv · n + pnd
(E + p)v · n

 . (6.57)

Using the condition v · n = 0 in (6.57), we obtain

P (w,n) =

d∑
s=1

fs(w)ns = (0,pn1, . . . ,pnd, 0)
T

=: f1
W(w,n), (6.58)

where the pressure satisfies the relation p = (γ − 1)(wm − (w2
2 + · · · + w2

m−1)/(2w1)). Then, taking into account (6.48) and
(6.58), for Γ ∈ FWh we can put∫

Γ

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) ·ϕϕϕh dS =

∫
Γ

f1
W(w

(L)
Γ ,nΓ) ·ϕϕϕh dS, Γ ∈ FWh . (6.59)

For the purpose of the solution strategy developed in Section 6.4, we introduce a linearization of f1
W. By virtue of (6.28),

we have

d∑
s=1

fs(w)ns = P (w,n) = P(w,n)w ∀w ∈ D ∀n = (n1, . . . , nd) ∈ B1. (6.60)

Our aim is to introduce a matrix (denoted by PW hereafter), which is the simplest possible and such that

P(w,n)w = PW (w,n)w (6.61)

provided that w ∈ D and n ∈ B1 satisfy the impermeability condition v · n = 0, where v is the velocity vector corresponding
to w. Taking into account the explicit expression (6.24) for P, we remove some of its entries and define the matrix

PW (w,n) = (γ − 1)


0 0 . . . 0 0

|v|2 n1/2 −v1n1 . . . −vdn1 n1

...
...

. . .
...

...
|v|2 nd/2 −v1nd . . . −vdnd nd

0 0 . . . 0 0

 , (6.62)

where w ∈ D, n = (n1, . . . , nd) ∈ B1, vj = wj+1/w1, j = 1, . . . , d, are the components of the velocity vector and |v|2 =
v2

1 + · · ·+ v2
d. We can verify by a simple calculation that (6.61) is valid.

Moreover, we define the linearized form of f1
W by

f1,L
W (w̄,w,n) = PW (w̄,n)w, w̄,w ∈ D, n ∈ B1, (6.63)

which is linear with respect to the argument w. Obviously, due to (6.58), (6.61) and (6.63), we find that under the condition

v · n = 0, the linearized form f1,L
W is consistent with f1

W, i.e.,

f1,L
W (w,w,n) = f1

W(w,n) ∀w ∈ D ∀n ∈ B1 such that v · n = 0. (6.64)

Exercise 6.9. Verify relation (6.61) for PW given by (6.62), provided v · n = 0.

Inviscid mirror boundary conditions

This approach is based on the definition of the state vector w
(R)
Γ , Γ ∈ FWh in the form

w
(R)
Γ = M (w

(L)
Γ ), (6.65)

where the boundary operator M , called the inviscid mirror operator, is defined in the following way. If w ∈ D, w = (ρ, ρv, E)
T

and n ∈ B1 is the outer unit normal to ∂Ω at a point in consideration lying on ∂ΩW , then we set

v⊥ = v − 2(v · n)n, (6.66)
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n

v

v⊥

Γ ⊂ ∂Ωh

Figure 6.1: Impermeability conditions defined by the mirror operator, vectors of velocity of v and v⊥ = v − 2(v · n)n.

and

M (w) = (ρ, ρv⊥, E)
T

. (6.67)

The vectors v and v⊥ have the same tangential component but opposite normal components, see Figure 6.1. Obviously, the
operator M is linear.

Now we define the mapping f2
W : D × B1 → Rm by

f2
W(w,n) = H(w,M (w),n) (6.68)

and, if Γ ∈ FWh , then in (6.53) we have

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) = f2

W(w
(L)
Γ ,nΓ). (6.69)

6.3.2 Boundary conditions on the inlet and outlet

The definition of the boundary state w
(R)
Γ in (6.53) for Γ ∈ F ioh ⊂ ∂Ωi ∪ ∂Ωo (i.e., Γ ⊂ ∂Ωi ∪ ∂Ωo) is more delicate. The

determination of the inlet/outlet boundary conditions is usually based on a given state vector function wBC prescribed on
(∂Ωi ∪ ∂Ωo) × (0, T ). For example, when we solve flow around an isolated profile, the state vector wBC corresponds to the
unperturbed far-field flow (flow at infinity). For flow in a channel, the state vector wBC may correspond to a flow at the inlet
and outlet of the channel.

However, since system (6.8) is hyperbolic, we cannot simply put w
(R)
Γ = wBC. As we shall show later (see also [FFS03]), for

a linear hyperbolic system with one space variable

∂q

∂t
+ Ā

∂q

∂x
= 0, (x, t) ∈ (−∞, 0)× (0,∞), (6.70)

where q : (−∞, 0)× [0,∞)→ Rm and Ā is a constant m×m matrix, only some quantities defining q at x = 0 can be prescribed,
whereas other quantities have to be extrapolated from the interior of the computational domain. We shall see that the number
of prescribed components of q is equal to the number of negative eigenvalues of Ā.

However, for nonlinear hyperbolic systems the theory is missing. Therefore, a usual approach is to choose the boundary
conditions in such a way that a linearized initial-boundary value problem is well-posed, i.e., it has a unique solution. We
describe this method in the following part of this section.

Approach based on the solution of the linearized Riemann problem

Let Γ ∈ F ioh and let xΓ ∈ Γ be a point in consideration, at which we want to determine boundary conditions. We introduce a new
coordinate system (x̃1, . . . , x̃d) such that the coordinate origin lies at the point xΓ, the axis x̃1 is parallel to the normal direction
n to the boundary, and the coordinate axes x̃2, . . . , x̃d are tangential to the boundary, see Figure 6.2. This transformation of
the space coordinates is carried out by the mapping x̃ = Q0(n)(x− xΓ), where Q0(n) is the rotation matrix defined by (6.34)
for d = 2 and (6.35) for d = 3.

Let w
(L)
Γ be the value of the trace of the state vector w on Γ from the interior of Ω at the point xΓ and let

q
(L)
Γ = Q(nΓ)w

(L)
Γ , (6.71)
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K

x̃1

x̃2, . . . , x̃d

Γ

∂Ω

w
(L)
Γ

wBCn

Figure 6.2: The new coordinate system (x̃1, . . . , x̃d).

x̃1 x̃1

QT Q′
T

t t

q
(x̃

1
=

0
,t

>
0
)

q
(R)
Γ

q
(L)
Γ q

(L)
Γ qBC

(0, 0) (0, 0)

Figure 6.3: Initial-boundary value problem (6.72)–(6.73) (left) and the Riemann problem (6.74)–(6.75) (right), the computational
domains (−∞, 0)× (0,∞) and (−∞,∞)× (0,∞) are grey.

where Q(nΓ) is given by (6.33).
Using rotational invariance of the Euler equations introduced in Lemma 6.6, e), we transform them to the coordinates

x̃1, . . . , x̃d, neglect the derivative with respect to x̃j , j = 2, . . . , d, and linearize the resulting system around the state q
(L)
Γ . Then

we obtain the linear system

∂q

∂t
+ A1(q

(L)
Γ )

∂q

∂x̃1
= 0, (x̃1, t) ∈ (−∞, 0)× [0,∞) (6.72)

for the transformed vector-valued function q = Q(nΓ)w, see Figure 6.3, left. To this system we add the initial and boundary
conditions

q(x̃1, 0) = q
(L)
Γ , x̃1 < 0, (6.73)

q(0, t) = q
(R)
Γ , t > 0,

where q
(L)
Γ is given by (6.71) and the unknown state vector q

(R)
Γ should be determined in such a way that it reflects the state

vector qBC = Q(nΓ)wBC with a prescribed state wBC, and the initial-boundary value problem (6.72) – (6.73) is well–posed, i.e.,
has a unique solution.

In order to find the vector q
(R)
Γ , we consider the linearized Riemann problem

∂q

∂t
+ A1(q

(L)
Γ )

∂q

∂x̃1
= 0, (x̃1, t) ∈ (−∞,∞)× [0,∞) (6.74)

with the initial condition

q(x̃1, 0) =

{
q

(L)
Γ , if x̃1 < 0,

qBC, if x̃1 > 0,
(6.75)

see Figure 6.3 (right).
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The exact solution of problem (6.74)–(6.75) can be found by the method of characteristics in the following way: Let

gs, s = 1, . . . ,m, be the eigenvectors corresponding to the eigenvalues λ̃s, s = 1, . . . ,m, of the matrix A1 = A1(q
(L)
Γ ). Hence,

A1gs = λ̃sgs, s = 1, . . . ,m.

Taking into account (6.32), we see that the eigenvalues of the matrices A1(q
(L)
Γ ) and P(w

(L)
Γ ,nΓ) attain the same values, i.e.,

λ̃s = λs, s = 1, . . . ,m, (6.76)

where λs are the eigenvalues of the matrix P(w
(L)
Γ ,nΓ).

The explicit formulae for the eigenvectors gs, s = 1, . . . ,m, can be found in [FFS03], Section 3.1. These eigenvectors form
a basis of Rm, and thus the exact solution of (6.74) can be written in the form

q(x̃1, t) =

m∑
s=1

µs(x̃1, t)gs, x̃1 ∈ R, t > 0, (6.77)

where µs, s = 1, . . . ,m, are unknown functions defined in (−∞,∞) × [0,∞). Similarly, the initial states from (6.75) can be
expressed as

q
(L)
Γ =

m∑
s=1

αsgs, qBC =

m∑
s=1

βsgs. (6.78)

The vectors ααα = (α1, . . . , αm) and βββ = (β1, . . . , βm) are given by the relations

ααα = T−1q
(L)
Γ , βββ = T−1qBC, (6.79)

where T is the m×m-matrix whose columns are the eigenvectors gs, s = 1, . . . ,m. The functions µs, s = 1, . . . ,m, are called
the characteristic variables.

Substituting (6.77) into (6.74), we get

0 =

m∑
s=1

(
∂µs
∂t

+ λ̃s
∂µs
∂x̃1

)
gs, s = 1, . . . ,m, (6.80)

which holds if and only if

∂µs
∂t

+ λ̃s
∂µs
∂x̃1

= 0, x̃1 ∈ R, t > 0, s = 1, . . . ,m. (6.81)

These equations are equipped with initial conditions following from (6.75) and (6.78)

µs(x̃1, 0) = µ̄s(x̃1) :=

{
αs, x̃1 < 0,
βs, x̃1 > 0,

s = 1, . . . ,m. (6.82)

We can simply verify that the exact solution of (6.81) – (6.82) reads

µs(x̃1, t) = µ̄s(x̃1 − λ̃st), x̃1 ∈ R, t ≥ 0,

where µ̄s is given by (6.82). This together with (6.82) gives

µs(x̃1, t) =

{
αs, if x̃1 − λ̃st < 0,

βs, if x̃1 − λ̃st > 0,
s = 1, . . . ,m. (6.83)

We define the sought state q
(R)
Γ as the solution of problem (6.74)–(6.75) at x̃1 = 0. Hence, we put q

(R)
Γ = q(0, t), and by

(6.77) and (6.83), we get

q
(R)
Γ =

m∑
s=1

ηsgs, ηs =

{
αs, λ̃s ≥ 0,

βs, λ̃s < 0.
(6.84)

Finally, we introduce the inlet/outlet boundary operator based on the solution of the linearized Riemann problem

BLRP(w
(L)
Γ ,wBC) := Q−1(nΓ)q

(R)
Γ . (6.85)

Then we define the sought boundary state

w
(R)
Γ := BLRP(w

(L)
Γ ,wBC). (6.86)
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flow regime mpr mex

supersonic inlet m 0
subsonic inlet m− 1 1

subsonic outlet 1 m− 1
supersonic outlet 0 m

Table 6.1: Boundary conditions based on the well-posedness of the linearized problem: number of prescribed mpr and extrapo-
lated mex components of w for subsonic/supersonic inlet/outlet.

Remark 6.10. From the above process (taking into account (6.76)) we can conclude that the sought boundary state w
(R)
Γ

is determined using mpr quantities characterizing the prescribed boundary state wBC, where mpr is the number of negative

eigenvalues of the matrix P(w
(L)
Γ ,nΓ), whereas we extrapolate mex quantities defining the state w

(L)
Γ , where mex = m−mpr is

the number of nonnegative eigenvalues of the matrix P(w
(L)
Γ ,nΓ).

This observation is in agreement with the definitions of boundary conditions on impermeable walls. Taking into account that

by (6.30) the eigenvalues of the matrix P(w
(L)
Γ ,nΓ) read

λ1 = v · n− a, λ2 = . . . = λd+1 = v · n, λd+2 = v · n + a, (6.87)

where v and a represent the velocity vector and the speed of sound, respectively, corresponding to the state w
(L)
Γ , and n = nΓ.

Then the impermeability condition v · n = 0 implies that λ1 < 0, λ2 = . . . = λd+1 = 0, λd+2 > 0. Hence, in this case we
prescribe only one quantity, namely v ·n = 0 or the opposite normal component −v ·n of the velocity vector and the remaining

quantities defining the state w
(R)
Γ are obtained by extrapolation.

Approach based on physical properties of the flow

It follows from the above considerations and the form (6.87) of eigenvalues λs, s = 1, . . . ,m = d+ 2, that in the case of the inlet
or outlet, on which v ·n < 0 or v ·n > 0, respectively, it is necessary to distinguish between the subsonic or supersonic regime,
when |v ·n| < a or |v ·n| > a, respectively. The number of prescribed and extrapolated boundary conditions for the mentioned
possibilities is shown in Table 6.1.

On the basis of these results, it is possible to introduce a widely used method for determining the inlet/outlet boundary
conditions based on the use of physical variables. In this approach we extrapolate or prescribe directly some physical variables.
Particularly, we distinguish the following cases:

• supersonic inlet, mpr = m, we prescribe all components of the boundary state w
(R)
Γ . Hence, we set w

(R)
Γ = wBC,

• subsonic inlet, mpr = m − 1, we extrapolate the pressure from the interior of the domain, and prescribe the density and
the components of the velocity on the boundary,

• subsonic outlet, mpr = 1, we prescribe the pressure and extrapolate the density and the components of the velocity on the
boundary,

• supersonic outlet, mpr = 0, we extrapolate all components of w from the interior of Ω on the boundary. This means that

we set w
(R)
Γ = w

(L)
Γ .

Hence, we define the inlet/outlet boundary operator based on physical variables:

Bphys(w
(L)
Γ ,wBC)=


wBC if v · n < −a supersonic inlet

Phys(ρBC, vBC, p
(L)
Γ ) if − a ≤ v · n < 0 subsonic inlet

Phys(ρ
(L)
Γ , v

(L)
Γ , pBC) if 0 < v · n ≤ a subsonic outlet

w
(L)
Γ if v · n > a supersonic outlet

(6.88)

where ρBC, vBC, pBC are the density, the velocity vector and the pressure, respectively, corresponding to the prescribed state

wBC and ρ
(L)
Γ , v

(L)
Γ , p

(L)
Γ denote the density, the velocity vector and the pressure corresponding to w

(L)
Γ . The symbol Phys

denotes the transformation from the physical variables to the conservative ones, namely, for ρ > 0, p > 0 and v ∈ Rd we set

Phys(ρ,v,p) =
(
ρ, ρv, p/(γ − 1) + ρ|v|2/2

)T

∈ Rm. (6.89)

This approach is usually used with success for the transonic flow. However, its application to low Mach number flows does
not give reasonable results, because these boundary conditions are not transparent for acoustic waves coming from inside of
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the computational domain Ω. In numerical simulations, we observe some reflection from the inlet/outlet parts of the boundary.
Therefore, in a low Mach number flow, it is suitable to apply the method based on the solution of a linearized Riemann problem.

This means that the boundary state w
(R)
Γ is defined by (6.86). Another more sophisticated method will be treated in the

following section.

Boundary conditions based on the exact solution of the nonlinear Riemann problem

The generalization of the method based on the solution of the linearized Riemann problem uses the exact solution of the
nonlinear Riemann problem. The only difference is that we do not linearize the system of the Euler equations around the state

w
(L)
Γ , but instead of (6.72) we consider the nonlinear system

∂q

∂t
+ A1(q)

∂q

∂x̃1
= 0, (x̃1, t) ∈ (−∞, 0)× [0,∞) (6.90)

with the initial and boundary conditions (6.73). This means that instead of (6.74), we consider the Riemann problem

∂q

∂t
+ A1(q)

∂q

∂x̃1
= 0, (x̃1, t) ∈ (−∞,∞)× [0,∞) (6.91)

equipped with the initial condition (6.75). The solution of problem (6.91), (6.75) is much more complicated than the solution
of the linearized problem (6.74) – (6.75) but for the Euler equations it can be constructed analytically, see e.g., [FFS03, Section
3.1.6] or [Wes01, Section 10.2]. This analytical solution contains an implicit formula for the pressure p, which has to be obtained
iteratively.

When the solution q of the Riemann problem (6.91), (6.75) is obtained, then we define the inlet/outlet boundary operator
based on the solution of the nonlinear Riemann problem as

BRP(w
(L)
Γ ,wBC) := Q−1(nΓ)q(0, t) (6.92)

and set w
(R)
Γ := BRP(w

(L)
Γ ,wBC).

Finally, based on the presented approaches to the choice of boundary conditions we specify the definition (6.53) of the form
bh by

bh(w,ϕϕϕ) =−
∑
K∈Th

∫
K

d∑
s=1

fs(w) · ∂ϕϕϕ

∂xs
dx (6.93)

+
∑

Γ∈FIh

∫
Γ

H(w
(L)
Γ ,w

(R)
Γ ,nΓ) · [ϕϕϕ] dS

+
∑

Γ∈FWh

∫
Γ

f iW(w
(L)
Γ ,nΓ) ·ϕϕϕdS

+
∑

Γ∈Fioh

∫
Γ

H
(
w

(L)
Γ ,B(w

(L)
Γ ,wBC),nΓ

)
·ϕϕϕdS,

where i = 1 or i = 2, if we use the impermeability boundary condition (6.58) or (6.68), respectively. Moreover, the inlet/outlet
boundary operator B represents Bphys, BLRP and BRP given by (6.88), (6.85) and (6.92), respectively.

Remark 6.11. The definitions of the boundary operators Bphys, BLRP and BRP and of the form bh and their evaluations
may seem to be rather complicated and CPU time demanding. However, it is necessary to take into account that the integrals
appearing in the definition of the form bh are computed with the aid of numerical integration and the boundary conditions have
to be determined only at integration points.

6.4 Time discretization

The space semidiscrete problem (6.54) represents a system of ordinary differential equations (ODEs), which has to be solved with
the aid of suitable numerical schemes. In the framework of the finite difference and finite volume methods, the explicit Euler
or Runge–Kutta time discretization is very popular for solving the Euler equations. In early works on the DGM for the Euler
equations ([CS89], [BR97b], [BO99]), explicit time discretization was also used. Their advantage is a simple algorithmization,
but on the other hand, the size of the time step τ is strongly restricted by the Courant–Friedrichs–Lewy (CFL) stability condition
written, for example, in the form

τ ≤ CFL min
K∈Th
Γ⊂∂K

|K|
%(P(wh,n)|Γ)|Γ| , (6.94)
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where %(P(wh,n)|Γ) denotes the spectral radius of the matrix P(wh,n)|Γ given by (6.17) and evaluated at the points of Γ ∈ Fh,
|K| is the d-dimensional measure of K ∈ Th and |Γ| denotes the (d−1)-dimensional measure of Γ ∈ Fh. Moreover, 0 < CFL ≤ 1
is the Courant–Friedrichs–Lewy (CFL) number. Our numerical experiments indicate that whereas the value CFL = 0.85 was
sufficient for almost all flow regimes in finite volume computations, the P1 discontinuous Galerkin approximation requires the
value CFL ≈ 0.15 in order to guarantee stability. Moreover, the stability condition (6.94) becomes more and more restrictive
with increasing polynomial approximation degree p.

Therefore, it is suitable to consider implicit methods for numerically solving compressible flow problems, see, e.g., [BR00],
[BBHN09], [HH06a], [HH06b]. It is well known that the use of implicit methods contributes to improving the efficiency of
numerical schemes for solving the Euler equations in some cases, because implicit methods allow using longer time steps. In the
framework of the finite volume methods, implicit schemes were used, for example in [Sto85], [FS89] and [Mei98]. The drawback
of the implicit schemes is having to solve a large nonlinear algebraic system on each time level. To this end, the Newton method
is often applied leading to a sequence of linear discrete problems. One variant of this approach is a well-known ∆-scheme by
Beam and Warming [BW76], [BW78], see also [Hir88]. This approach is often combined with multigrid techniques, see e.g.,
[HS86], [KH91], [Dic91].

The application of the Newton schemes requires, of course, the differentiability of the numerical flux and the computation
of its partial derivatives, which is usually rather complicated. This is the reason that some authors use artificial pseudo-time-
integration, as was applied together with multigrid in [vdVvdV02a] and [vdVvdV02b] for the DG discrete problem. Multigrid
techniques usually require using structured meshes and, in the case of the mesh refinement, a sequence of nested meshes. This
is not the case when the anisotropic mesh adaptation (AMA) method is used. Then the algebraic multigrid would have to
be applied, but its efficiency is not high. Therefore, one often uses the Krylov subspace methods for solving linear systems in
linearized schemes for the Euler equations (cf., e.g., [Mei98]).

In the following we will be concerned with developing several numerical schemes for the full space-time discretization of the
Euler equations. The presented techniques were developed on the basis of results from [DF03], [DF04a], [DFS03], [FDK06],
[FDK07], [FK07].

6.4.1 Backward Euler method

The implicit backward Euler time discretization of (6.54) is the simplest implicit method for numerically solving ODEs. It can
be formally considered either as the first-order implicit Runge–Kutta method or as the first-order backward difference formula
(BDF), or as the first-order time discontinuous Galerkin method, see [HNW00], [Tho06]. The higher-order time discretizations
will be discussed in Section 6.4.5.

In what follows we consider a partition 0 = t0 < t1 < t2 · · · < tr = T of the time interval [0, T ] and set τk = tk − tk−1 for
k = 1, . . . , r. We use the symbol wk

h for the approximation of wh(tk), k = 1, . . . , r.
Using the backward Euler scheme for the time discretization of (6.54), we can define the following method for the numerical

solution of problem (6.8).

Definition 6.12. We say that the finite sequence of functions wk
h, k = 0, . . . , r, is an approximate solution of problem (6.8)

obtained by the backward Euler – discontinuous Galerkin method (BE-DGM) if the following conditions are satisfied:

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.95a)

1

τk

(
wk
h −wk−1

h ,ϕϕϕh
)

+ bh(wk
h,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp, k = 1, . . . , r, (6.95b)

w0
h = Πhw

0, (6.95c)

where Πhw
0 is the Shp-approximation (usually L2(Ω)-projection on the space Shp) of the function w0 from the initial condition

(6.36).

Remark 6.13. The BE-DGM has formally the order of convergence O(hp+1 +τ) in the L∞(0, T ; (L2(Ω))m)-norm and the order
of convergence O(hp + τ) in the L2(0, T ; (H1(Ω))m)-seminorm, provided that the exact solution is sufficiently regular. These
results were verified numerically in [DF04a] and [Dol13a].

Problem (6.95) represents a nonlinear algebraic system for each k = 1, . . . , r. Its solution will be discussed in the following
sections. First, we shall present its solution with the aid of the standard Newton method [Deu04]. Then we shall develop
a Newton-like method based on the approximation of the Jacobi matrix by the flux matrix.

6.4.2 Newton method based on the Jacobi matrix

In order to develop the solution strategy for the nonlinear systems (6.95b), we introduce their algebraic representation. Let Nhp
denote the dimension of the space Shp and let Bhp = {ϕϕϕi(x), i = 1, . . . , Nhp} denote a set of linearly independent functions
forming a basis of Shp. It is possible to construct a basis Bhp as a composition of local bases constructed separately for each
K ∈ Th. See Section 6.4.8, where one possibility is described in detail.
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Any function wk
h ∈ Shp can be expressed in the form

wk
h(x) =

Nhp∑
j=1

ξk,jϕϕϕj(x) ∈ Shp ←→ ξξξk = (ξk,j)
Nhp
j=1 ∈ RNhp , k = 1, . . . , r, (6.96)

where ξk,j ∈ R, j = 1, . . . , Nhp, k = 1, . . . , r, are its basis coefficients. Obviously, (6.96) defines an isomorphism between
wk
h ∈ Shp and ξξξk ∈ RNhp . We call ξξξk the algebraic representation of wk

h.
In order to rewrite the nonlinear algebraic systems (6.95b), we define the vector-valued function Fh : RNhp × RNhp → RNhp

by

Fh
(
ξξξk−1;ξξξk

)
=

(
1

τk

(
wk
h −wk−1

h ,ϕϕϕi
)

+ bh(wk
h,ϕϕϕi)

)Nhp
i=1

, k = 1, . . . , r, (6.97)

where ξξξk−l ∈ RNhp is the algebraic representation of wk−l
h ∈ Shp for l = 0, 1. We do not emphasize that Fh depends explicitly

on τk. Therefore, the algebraic representation of the systems (6.95b) reads: For a given vector ξξξk−1 ∈ RNhp find ξξξk ∈ RNhp such
that

Fh(ξξξk−1;ξξξk) = 0, k = 1, . . . , r. (6.98)

Here 0 denotes a generic zero vector (i.e., all entries of 0 are equal to zero) and ξξξ0 is given by the initial condition (6.95c) and
the isomorphism (6.96). Systems (6.98) are strongly nonlinear and their efficient and accurate solution is demanding.

A natural strategy is to apply the (damped) Newton method ([Deu04]) which generates a sequence of approximations

ξξξlk, l = 0, 1, . . . , to the actual numerical solution ξξξk using the following algorithm. Given an iterate ξξξlk ∈ RNhp , the update of

ξξξlk reads

ξξξl+1
k = ξξξlk + λlδδδl, (6.99)

where δδδl ∈ RNhp is defined as the solution of the system

Dh(ξξξlk)δδδl = −Fh(ξξξk−1;ξξξlk). (6.100)

Here λl ∈ (0, 1] is the damping parameter (for its choice see Section 6.4.4) and Dh is the Jacobi matrix of the vector-valued
function Fh given by (6.97), i.e.,

Dh(ξξξlk) =
DFh(ξξξk−1;ξξξlk)

Dξξξlk
. (6.101)

From (6.96), (6.97) and (6.101) we obtain

Dh(ξξξk) =(dij(ξξξk))
Nhp
i,j=1, (6.102)

dij(ξξξk) =
1

τk
(ϕϕϕj ,ϕϕϕi) +

∂bh

(∑Nhp
l=1 ξ

k,lϕϕϕl,ϕϕϕi

)
∂ξk,j

, i, j = 1, . . . , Nhp.

For λl = 1 we get the standard Newton method. This technique was also successfully applied in [HH06a], [BR00] for computing
viscous flow.

Evaluating of the Jacobi matrix Dh is not quite easy, since the form bh depends nonlinearly on its first argument. Moreover,
there are difficulties with the differentiability of the mapping Fh, because the numerical flux H is sometimes only Lipschitz-
continuous, but not differentiable.

In the following section we present an alternative approach inspired by the semi-implicit technique from [DF04a], [FK07]
and based on the so-called flux matrix.

6.4.3 Newton-like method based on the flux matrix

Evaluating of the Jacobi matrix Dh in (6.100) can be avoided with the aid of a formal linearization of the convection form bh.
The aim is to define the form bLh : Shp × Shp × Shp → R such that it is linear with respect to its second and third arguments
and is consistent with bh, i.e.,

bh(wh,ϕϕϕh) = bLh (wh,wh,ϕϕϕh)− b̃h(wh,ϕϕϕh) ∀wh,ϕϕϕh ∈ Shp, (6.103)
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where b̃h : Shp × Shp → R is some “residual” form, vanishing for the majority of functions ϕϕϕh ∈ Shp, see (6.121).
By (6.93), we defined the form

bh(wh,ϕϕϕh) =−
∑
K∈Th

∫
K

d∑
s=1

fs(wh) · ∂ϕϕϕh
∂xs

dx (=: η1) (6.104)

+
∑

Γ∈FIh

∫
Γ

H(w
(L)
hΓ ,w

(R)
hΓ ,nΓ) · [ϕϕϕh] dS (=: η2)

+
∑

Γ∈FWh

∫
Γ

f iW(w
(L)
hΓ ,n) ·ϕϕϕh dS (=: η3)

+
∑

Γ∈Fioh

∫
Γ

H
(
w

(L)
hΓ ,B(w

(L)
hΓ ,wBC),nΓ

)
·ϕϕϕhdS (=: η4),

where w
(L)
hΓ and w

(R)
hΓ denote the traces of wh on Γ ∈ Fh, cf. (6.41). The individual terms η1, . . . , η4 will be partially linearized.

For η1 we use the property (6.26) of the Euler fluxes and define the form ηL
1 : Shp × Shp × Shp → R by

ηL
1 (w̄h,wh,ϕϕϕh) = −

∑
K∈Th

∫
K

d∑
s=1

As(w̄h)wh ·
∂ϕϕϕh
∂xs

dx. (6.105)

Obviously, ηL
1 (wh,wh,ϕϕϕh) = η1 and ηL

1 is linear with respect to its second and third arguments.
Linearizing of the term η2 can be carried out on the basis of a suitable choice of the numerical flux H. For example, let

us use in (6.104) the Vijayasundaram numerical flux, see [Vij86], [Fei93, Section 7.3] or [FFS03, Section 3.3.4]. It is defined
in the following way. By (6.29), the matrix P = P(w,n) defined in (6.17) is diagonalizable: there exists a nonsingular matrix
T = T(w,n) such that

P = TΛΛΛT−1, (6.106)

where ΛΛΛ = diag (λ1, . . . , λm) and λ1, . . . , λm are the eigenvalues of P. The columns of the matrix T are the eigenvectors of the
matrix P. We define the “positive” and “negative” part of P by

P± = TΛΛΛ±T−1, ΛΛΛ± = diag (λ±1 , . . . , λ
±
m), (6.107)

where a+ = max(a, 0) and a− = min(a, 0) for a ∈ R. Then the Vijayasundaram numerical flux reads as

HV S(w1,w2,n) = P+

(
w1 + w2

2
,n

)
w1 + P−

(
w1 + w2

2
,n

)
w2. (6.108)

We can characterize the properties of the Vijayasundaram numerical flux.

Lemma 6.14. The Vijayasundaram numerical flux HV S = H(w1,w2,n) is Lipschitz-continuous with respect to w1,w2 ∈ D
and satisfies conditions (6.49) and (6.50), i.e., it is consistent and conservative.

Proof. (a) From (6.10) it follows that the entries of the matrix P are continuously differentiable. This fact, the definition of
the matrices P±, definition (6.108) and the Lipschitz-continuity of the functions λ ∈ R → λ+ and λ ∈ R → λ− imply that the
Vijayasundaram numerical flux is locally Lipschitz-continuous.

(b) The consistency of HV S is a consequence of the relations (6.16), (6.28) and P(w,n) = P+(w,n) + P−(w,n).
(c) The proof of the consistency of HV S is more complicated. First, we show that

P±(w, −n) = −P∓(w, n) (6.109)

for w ∈ D and n = (n1, . . . , nd) ∈ B1. It follows from (6.16) that

P (w, −n) = −P (w, n).

By differentiation,
P(w, −n) = −P(w, n),

and thus
P±(w, −n) = (−P(w, n))±. (6.110)
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Further, by (6.106),
±P(w, n) = T(w,n) (±ΛΛΛ(w, n))T−1(w, n),

where
ΛΛΛ(w, n) = diag (λ1(w, n), . . . , λm(w, n)) .

Thus,
P±(w, n) = T(w, n)ΛΛΛ±(w, n)T−1(w, n) (6.111)

and
(−P(w, n))± = T(,w, n) (−ΛΛΛ(w, n))± T−1(w, n). (6.112)

Here

ΛΛΛ±(w, n) = diag
(
λ±1 (w, n), . . . , λ±m(w, n)

)
,

(−ΛΛΛ(w, n))
±

= diag
(
(−λ1)±(w, n), . . . , (−λm)±(w, n)

)
,

It is easy to find that (−λ)± = −λ∓, which implies that

(−ΛΛΛ(w, n))
±

= −ΛΛΛ∓(w, n).

The above, (6.111) and (6.112) yield

(−P(w, n))
±

= −T(w, n)ΛΛΛ∓(w, n)T(w, n) (6.113)

= −P∓(w, n).

Now, by (6.110) and (6.113) we get (6.109).
Finally, by virtue of (6.109), for w1,w2 ∈ D and n ∈ B1,

HV S(w1,w2,n) = P+

(
w1 + w2

2
, n

)
w1 + P−

(
w1 + w2

2
, n

)
w2

= −P−
(
w1 + w2

2
, −n

)
w1 − P+

(
w1 + w2

2
, −n

)
w2 = −HV S(w2,w1,−n),

which is what we wanted to prove. �

The form of HV S is a way of defining the form ηL
2 : Shp × Shp × Shp → R by

ηL
2 (w̄h,wh,ϕϕϕh) =

∑
Γ∈FIh

∫
Γ

[
P+ (〈w̄h〉Γ ,nΓ)w

(L)
hΓ + P− (〈w̄h〉Γ ,nΓ)w

(R)
hΓ

]
·ϕϕϕhdS, (6.114)

where 〈w̄h〉Γ denotes the mean value of w̄h on Γ ∈ Fh defined by (6.42). Obviously, ηL
2 (wh,wh,ϕϕϕh) = η2 and ηL

2 is linear with
respect to its second and third arguments.

Concerning the term η3 in (6.104), we distinguish between the direct use of the impermeability condition and the inviscid
mirror boundary condition presented in Section 6.3.1. For the former case we define the form

ηL
3 (w̄h,wh,ϕϕϕh) =

∑
Γ∈FWh

∫
Γ

f1,L
W (w̄

(L)
hΓ ,w

(L)
hΓ ,n) ·ϕϕϕh dS, (6.115)

where f1,L
W is defined by (6.63), i.e.,

f1,L
W (w̄,w,n) = PW (w̄,n)w, w̄,w ∈ D, n ∈ B1, (6.116)

with PW given in (6.62).
In the case of inviscid mirror boundary conditions we use relations (6.68) and (6.108) and put

f2,L
W (w̄h,wh,n) = P+ (w̄h,n)wh + P− (w̄h,n) M (wh), (6.117)

where P± are defined by (6.107). Now, on the basis of (6.68), (6.69) and (6.117), we put

ηL
3 (w̄h,wh,ϕϕϕh) =

∑
Γ∈FWh

∫
Γ

f2,L
W (w̄

(L)
hΓ ,w

(L)
hΓ ,n) ·ϕϕϕh dS. (6.118)
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Therefore, (6.115) and (6.118) can be written as

ηL
3 (w̄h,wh,ϕϕϕh) =

∑
Γ∈FWh

∫
Γ

fα,LW (w̄
(L)
hΓ ,w

(L)
hΓ ,n) ·ϕϕϕh dS, (6.119)

where α = 1 for directly using the impermeability condition and α = 2 for the inviscid mirror boundary condition. It follows
from (6.116) – (6.119) and the linearity of the operator M that ηL

3 is linear with respect to its second and third arguments.
Moreover, ηL

3 (wh,wh,ϕϕϕh) = η3.
Finally, η4 is approximated with the aid of the forms

ηL
4 (w̄h,wh,ϕϕϕh) =

∑
Γ∈Fioh

∫
Γ

(
P+(w̄

(L)
hΓ ,nΓ)w

(L)
hΓ

)
·ϕϕϕhdS, (6.120)

and

b̃h(w̄h,ϕϕϕh) = −
∑

Γ∈Fioh

∫
Γ

(
P−(w̄

(L)
hΓ ,nΓ)B(w̄

(L)
Γ ,wBC)

)
·ϕϕϕhdS, (6.121)

where B represents the boundary operators Bphys, BLRP and BRP given by (6.88), (6.85) and (6.92), respectively. Let us
underline that in the arguments of P± we do not use the mean value of the state vectors from the left- and right-hand side of Γ
as in (6.108). Moreover, if suppϕϕϕh ∩ (∂Ωi ∪ ∂Ωo) = ∅, then b̃h(w̄h,ϕϕϕh) = 0.

Obviously, due to (6.93) and (6.120), we have

ηL
4 (wh,wh,ϕϕϕh)− b̃h(wh,ϕϕϕh) = η4. (6.122)

Taking into account (6.93), (6.105), (6.114), (6.119) and (6.120), we introduce the form

bLh (w̄h,wh,ϕϕϕh) = −
∑
K∈Th

∫
K

d∑
s=1

As(w̄h)wh ·
∂ϕϕϕh
∂xs

dx (6.123)

+
∑

Γ∈FIh

∫
Γ

[
P+ (〈w̄h〉Γ ,nΓ)w

(L)
hΓ + P− (〈w̄h〉Γ ,nΓ)w

(R)
hΓ

]
·ϕϕϕhdS

+
∑

Γ∈FWh

∫
Γ

fα,LW (w̄
(L)
hΓ ,w

(L)
hΓ ,n) ·ϕϕϕh dS

+
∑

Γ∈Fioh

∫
Γ

(
P+
(
w̄

(L)
hΓ ,nΓ

)
w

(L)
hΓ + P−(w̄

(L)
hΓ ,nΓ)B(w̄

(L)
Γ ,wBC)

)
·ϕϕϕhdS.

From the definitions (6.93) of bh, (6.123) of bLh and (6.121) of b̃h we can see that relation (6.103) is valid. Moreover, the form
bLh is linear with respect to the arguments wh and ϕϕϕh.

Now we introduce the Newton-like method for solving systems (6.98) based on the flux matrix. We again return to the
algebraic representation of the method. Using notation from Section 6.4.2, we define the Nhp ×Nhp flux matrix

Ch
(
ξ̄ξξ
)

=

(
1

τk

(
ϕϕϕj ,ϕϕϕi

)
+ bLh (w̄h,ϕϕϕj ,ϕϕϕi)

)Nhp
i,j=1

(6.124)

and the vector

dh
(
ξξξk−1, ξ̄ξξ

)
=

(
1

τk

(
wk−1
h ,ϕϕϕi

)
+ b̃h(w̄h,ϕϕϕi)

)Nhp
i=1

, (6.125)

where ϕϕϕi ∈ Bhp, i = 1, . . . , Nhp, are the basis functions in the space Shp, ξ̄ξξ ∈ RNhp and ξξξk−l ∈ RNhp , l = 0, 1, are the algebraic

representations of w̄h ∈ Shp and wk−l
h ∈ Shp, l = 0, 1, respectively. (We do not emphasize that Ch and dh depend explicitly

on τk.) Finally, using (6.97), (6.103) and (6.124) – (6.125), we have

Fh(ξξξk−1;ξξξk) = Ch(ξξξk)ξξξk − dh(ξξξk−1, ξξξk), k = 1, . . . , r. (6.126)

Obviously, the sparsity of Ch is identical with the sparsity of the Jacobi matrix Dh introduced in (6.101). Therefore, in the
following Newton-like method for solving systems (6.98), we use Ch as the approximation of Dh in the definition of our iterative
Newton-like method, which is represented as the following algorithm.
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If the approximate solution wk−1
h ∈ Shp, represented by ξξξk−1, was already computed, then we set ξξξ0

k = ξξξk−1 and apply the
iterative process

ξξξl+1
k = ξξξlk + λlδδδl, l = 0, 1, . . . , (6.127)

with δδδl defined by

Ch(ξξξlk)δδδl = −Fh(ξξξk−1;ξξξlk). (6.128)

The term λl ∈ (0, 1] is a damping parameter which should ensure convergence of (6.127) – (6.128) in case when the initial guess
ξξξ0
k is far from the solution of (6.98). The initial guess ξξξ0

k can be defined as

ξξξ0
k = ξξξk−1, k = 1, . . . , r, (6.129)

where ξξξk−1 corresponds to the approximate solution wk−1
h .

In the following section we discuss several aspects of the iterative method (6.127) – (6.128).

Remark 6.15. Let us note that if we carry out only one Newton-like iteration at each time level, put λ0 = 1, and the matrix Ch
is updated at each time step, then the implicit method (6.95) reduces to the semi-implicit time discretization approach presented
in [DF04a] and [FK07]. It can be formulated in the following way: We seek the finite sequence of functions wk

h, k = 0, 1, . . . , r,
such that

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.130a)

1

τk

(
wk
h −wk−1

h ,ϕϕϕh
)

+ b̂h(wk−1
h ,wk

h,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp, k = 1, . . . , r, (6.130b)

w0
h = Πhw

0, (6.130c)

where Πhw
0 is the Shp-approximation of w0 from the initial condition (6.36) and

b̂h(w̄h,wh,ϕϕϕh) = bLh (w̄h,wh,ϕϕϕh)− b̃h(w̄h,ϕϕϕh) (6.131)

with bLh and b̃h given by (6.123) and (6.121), respectively.

6.4.4 Realization of the iterative algorithm

In this section we mention some aspects of the Newton-like iterative process (6.127) – (6.128).

Choice of damping parameters

The damping parameters λl, l = 0, 1, . . . , should guarantee convergence of the iterative process (6.127) – (6.128). Following the
analysis presented in [Deu04], we start from the value λl = 1 and evaluate a monitoring function

κl =

∥∥∥Fh(ξξξk−1;ξξξl+1
k )

∥∥∥∥∥∥Fh(ξξξk−1;ξξξlk)
∥∥∥ , (6.132)

where ‖·‖ is a norm in the space RNhp . If κl < 1, we proceed to the next Newton-like iteration. Otherwise, we put λl = λl/2
and repeat the actual lth Newton-like iteration.

Update of the flux matrix

As numerical experiments show in the iterative process it is not necessary to update the flux matrix Ch(ξξξlk) at each Newton-like
iteration l = 1, 2, . . . and each time level k = 1, . . . , r. Computational costs of the evaluation of Fh are much smaller than the
evaluation of Ch. For simplicity, let us consider the case d = 2 and assume that Th is a conforming triangulation. By #Th
we denote the number of elements of Th. Then Fh has Nhp = #Th(p + 1)(p + 1)/2 components and Ch has approximately
4#Th((p+ 1)(p+ 1)/2)2 non-vanishing components. Hence, the evaluation of Fh is approximately 2(p+ 1)(p+ 2)-times cheaper
than the evaluation of Ch.

Therefore, it is more efficient to perform more Newton-like iterations than to update the matrix Ch. In practice, we update
Ch, when either the damping parameter λ achieves a minimal prescribed value (using the algorithm described in Section 6.4.4)
or the prescribed maximal number of Newton-like iterations is achieved.
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Termination of the iterative process

The iterative process (6.127) – (6.128) is terminated if a suitable algebraic stopping criterion is achieved. The standard approach
is based on the condition ∥∥∥Fh(ξξξk−1;ξξξlk)

∥∥∥ ≤ TOL, (6.133)

where ‖·‖ is a norm in RNhp and TOL is a given tolerance. However, it is difficult to choose TOL in order to guarantee the
accuracy of the solution and to avoid a too long iterative process. The optimal stopping criterion, which balances the accuracy
and efficiency, should be derived from a posteriori estimates taking into account algebraic errors. This is out of the scope of
this monograph and we refer, for example, to [CS07] and [AEV11], dealing with this subject. In [Dol13a] a heuristic stopping
criterion solving this problem was proposed.

Solution of the linear algebraic systems (6.128)

The linear algebraic systems (6.128) can be solved by a direct solver (e.g., UMFPACK [DD99]) in case that the number of
unknowns is not high (the limit value is usually 105). In general, iterative solvers are more efficient, because a good initial
approximation is obtained from the previous Newton-like iteration or the previous time level. Usually it is necessary to compute
only a few iterations. Among the iterative solvers, very efficient are the Krylov subspace methods, see [LS13].

It is possible to apply, e.g., the GMRES method ([SS86]) with block diagonal or block ILU(0) preconditioning ([DHH11]).
Usually, the GMRES iterative process is stopped, when the preconditioned residuum is two times smaller than the initial one.
This criterion may seem to be too weak, but numerical experiments show that it is sufficient in a number of applications.

6.4.5 Higher-order time discretization

In Section 6.4.1, we have introduced the space-time discretization of the Euler equations (6.8) with the aid of the backward
Euler – discontinuous Galerkin method (BE-DGM). However, by virtue of Remark 6.13, this method is only of the first order in
time. In solving nonstationary flows, it is necessary to apply schemes that are sufficiently accurate in space as well as in time.
There are several possibilities (see, e.g., [HNW00], [Tho06]) how to obtain a higher-order time discretizations.

We shall mention three techniques having the order n with respect to the time discretization, i.e., the error is of order O(τn):

• backward difference formula (BDF) method, which is a multistep method using computed approximate solutions from n
previous time levels. On each time level, it is necessary to solve one nonlinear algebraic system with Nhp equations, where
Nhp is the dimension of the space Shp. Hence, the BDF method has (approximately) the same computational costs as the
backward Euler method.

• implicit Runge–Kutta (IRK) method, which is a one-step method and it evaluates several (at least n) stages within one
time step. This means that we solve (at least) n-nonlinear algebraic systems with Nhp equations at each time level. Hence,
the IRK method has approximately n-times higher computational cost than the backward Euler method.

• time discontinuous Galerkin (TDG) method, which is based on a polynomial approximation of degree n− 1 with respect
to time. The TDG method was introduced in Section 4.2 for a scalar equation. We solve one nonlinear algebraic system
with nNhp equations at each time level. As we see, the TDG method has approximately n2-times higher computational
cost than the backward Euler method or the BDF method.

The BDF, IRK and TDG time discretizations reduce to backward Euler method for the limit case n = 1. An overview of
theoretical aspects of the higher-order time discretization in combination with the DG space discretization can be found in
[Vla10].

It follows from the above discussion that the cheapest approach is the BDF technique, which will be described in this section.
Again let 0 = t0 < t1 < t2 < . . . tr = T be a partition of the time interval [0, T ], τk = tk − tk−1, k = 1, . . . r, and let wk

h ∈ Shp
denote a piecewise polynomial approximation of wh(tk), k = 0, 1, . . . , r. We define the following scheme.

Definition 6.16. We say that the finite sequence of functions wk
h, k = 0, . . . , r, is the approximate solution of (6.8) computed

by the n-step backward difference formula – discontinuous Galerkin method (BDF-DGM) if the following conditions are satisfied:
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constant time step variable time step
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

αn,0 1 3
2

11
6 1 2 θk+1

θk+1
θkθk−1

θkθk−1+θk−1+1 + 2θk+1
θk+1

αn,1 −1 −2 −3 −1 −(θk + 1) − (θk+1)(θkθk−1+θk−1+1)
θk−1+1

αn,2
1
2

3
2

θ2
k

θk+1
θ2
k(θkθk−1+θk−1+1)

θk+1

αn,3 − 1
3 − (θk+1)θ2

kθ
3
k−1

(θk−1+1)(θkθk−1+θk−1+1)

Table 6.2: Values of αn,l, l = 0, . . . , n, for n = 1, 2, 3 for constant and variable time steps, θk = τk/τk−1, k = 1, 2, . . . , r.

n = 1 n = 2 n = 3

αn,0 1 2τk+τk−1

τk+τk−1

(2τk+τk−1)(2τk+τk−1+τk−2)−τ2
k

(τk+τk−1)(τk+τk−1+τk−2)

αn,1 −1 − τk+τk−1

τk−1
− (τk+τk−1)(τk+τk−1+τk−2)

τk−1(τk−1+τk−2)

αn,2
τ2
k

τk−1(τk+τk−1)
τ2
k(τk+τk−1+τk−2)
τk−1τk−2(τk+τk−1)

αn,3 − τ2
k(τk+τk−1)

τk−2(τk+τk−1+τk−2)(τk−1+τk−2)

Table 6.3: Values of the coefficients αn,l expressed in terms of the time steps.

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.134a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ bh

(
wk
h,ϕϕϕh

)
= 0 ∀ϕϕϕh ∈ Shp, k = n, . . . , r, (6.134b)

w0
h is the Shp-approximation (usually L2(Ω)-projection on Shp) of the (6.134c)

initial condition w0,

wl
h ∈ Shp, l = 1, . . . , n− 1, are determined by a suitable q-step method (6.134d)

with q ≤ l or by an explicit Runge–Kutta method.

Some Runge–Kutta schemes can be found in Section ??. Their application to a system of partial differential equations can
be written in the same form.

The BDF coefficients αn,l, l = 0, . . . , n, depend on time steps τk−l, l = 0, . . . , n. They can be derived from the Lagrange
interpolation of pairs (tk−l,w

k−l
h ), l = 0, . . . , n, see, e.g. [HNW00]. Table 6.2 shows their values in the case of constant and

variable time steps for n = 1, 2, 3. Obviously, the one-step BDF-DGM is identical with the BE-DGM defined by (6.95). In Table
6.3 these coefficients are expressed directly in terms of the time steps τj .

Remark 6.17 (Stability of the BDF-DGM). The n-step BDF method is unconditionally stable for n = 1 and n = 2, and for
increasing n the region of stability decreasing. For n > 7 this method is unconditionally unstable, see [HNW00, Section III.5].
In practice, the n-BDF-DGM with n = 1, 2, 3 is usually used.

Remark 6.18 (Accuracy of the BDF-DGM). The n-step BDF-DGM has formally the order of convergence O(hp+1 +τn) in the
L∞(0, T ; (L2(Ω))m)-norm and O(hp + τn) in the L2(0, T ; (H1(Ω))m)-seminorm, provided that the exact solution is sufficiently
regular. These orders of convergence were numerically verified for a scalar equation.

Problem (6.134) represents a nonlinear algebraic system for each k = 1, . . . , r, which can be solved with the strategy presented
in Section 6.4.3.

Again, let Nhp denote the dimension of the space Shp of the piecewise polynomial functions and let Bhp = {ϕϕϕi(x), i =
1, . . . , Nhp} be a basis of Shp. Using the isomorphism (6.96) between wk

h ∈ Shp and ξξξk ∈ RNhp , we define the vector-valued
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function Fh : (RNhp)n × RNhp → RNhp by

Fh
({
ξξξk−l

}n
l=1

;ξξξk
)

=

(
1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕi

)
+ bh(wk

h,ϕϕϕi)

)Nhp
i=1

, k = 1, . . . , r, (6.135)

where ξξξk−l ∈ RNhp is the algebraic representation of wk−l
h ∈ Shp for l = 1, . . . , n. Then scheme (6.134) has the following

algebraic representation. If ξξξk−l, l = 1, . . . , n, (k = 1, . . . , r) are given vectors, then we want to find ξξξk ∈ RNhp such that

Fh(
{
ξξξk−l

}n
l=1

;ξξξk) = 0. (6.136)

System (6.136) is strongly nonlinear. It can be solved with the aid of the Newton-like method based on the flux matrix, presented
in Section 6.4.3. Let bLh and b̃h be the forms defined by (6.123) and (6.121), respectively. Then (6.103) implies the consistency

bh(wh,ϕϕϕh) =bLh (wh,wh,ϕϕϕh)− b̃h(wh,ϕϕϕh) ∀wh,ϕϕϕh ∈ Shp, (6.137)

where the form bLh is defined in (6.123).
We see that instead of (6.124) and (6.125), we define the flux matrix Ch and the vector dh by

Ch
(
ξ̄ξξ
)

=

(
αn,0
τk

(
ϕϕϕj ,ϕϕϕi

)
+ bLh (w̄h,ϕϕϕj ,ϕϕϕi)

)Nhp
i,j=1

(6.138)

and

dh
({
ξξξk−l

}n
l=1

, ξ̄ξξ
)

=

(
1

τk

(
n∑
i=1

αn,iw
k−l
h ,ϕϕϕi

)
+ b̃h(w̄h,ϕϕϕi)

)Nhp
i=1

, (6.139)

respectively. Here ϕϕϕi ∈ Bhp, i = 1, . . . , Nhp, are the basis functions, ξ̄ξξ ∈ RNhp and ξξξk−l ∈ RNhp , l = 1, . . . , n, are the algebraic

representations of w̄h ∈ Shp and wk−l
h ∈ Shp, l = 1, . . . , n, respectively. Finally, using (6.135) and (6.137) – (6.139), we have

Fh(
{
ξξξk−l

}n
l=1

;ξξξk) = Ch(ξξξk)ξξξk − dh(
{
ξξξk−l

}n
l=1

, ξξξk), k = 1, . . . , r. (6.140)

Let us note that the flux matrix Ch given by (6.138) has the same block structure as the matrix Ch defined by (6.124). The
sequence of nonlinear algebraic systems can be solved by the damped Newton-like iterative process (6.127) – (6.128) treated in
Section 6.4.4.

Concerning the initial guess ξξξ0
k for the iterative process (6.127) – (6.128), we use either the value known from the previous

time level given by (6.129), i.e, ξξξ0
k = ξξξk−1, k = 1, . . . , r, or it is possible to apply a higher-order extrapolation from previous

time levels similarly as in the high-order semi-implicit time discretization from [Dol08b]. Hence, we put

ξξξ0
k =

n∑
l=1

βn,lξξξk−l, k = 1, . . . , r, (6.141)

where ξξξk−l, l = 1, . . . , n, correspond to the solution wk−l
h at the time level tk−l and βn,l, l = 1, . . . , n, are coefficients depending

on time steps τk−l, l = 0, . . . , n. Table 6.4 shows the values of βn,l, l = 1, . . . , n, for n = 1, 2, 3. In Table 6.5, these coefficients
are expressed in terms of the time steps.

Remark 6.19. Similarly as in Remark 6.15, if we carry out only one Newton-like iteration at each time level, put λ0 = 1,
the matrix C is updated at each time step and use the extrapolation (6.141); then the implicit method (6.134) reduces to the
high-order semi-implicit time discretization approach presented in [DF04a] and [FK07], which can be formulated in the following
way: We seek the finite sequence of functions {wk

h}rk=0 such that

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.142a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ b̂h

(
n∑
l=1

βn,lw
k−l
h ,wk

h,ϕϕϕh

)
= 0 (6.142b)

∀ϕϕϕh ∈ Shp, k = 1, . . . , r.

Similarly as in (6.134), w0
h, . . . ,w

n−1
h are defined by (6.134c) and (6.134d). Here, βn,l, l = 1, . . . , n, are coefficients introduced

above and b̂h is the form given by (6.131), i.e.,

b̂h(w̄h,wh,ϕϕϕh) = bLh (w̄h,wh,ϕϕϕh)− b̃h(w̄h,ϕϕϕh), wh,ϕϕϕh ∈ Shp.

Obviously, b̂h is consistent with bh because bh(wh,ϕϕϕh) = b̂h(wh,wh,ϕϕϕh) for all wh,ϕϕϕh ∈ Shp. Problem (6.142) represents a
sequence of systems of linear algebraic equations.
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constant time step variable time step
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

βn,1 1 2 3 1 1 + θk (1 + θk) θkθk−1+θk−1+1
θk−1+1

βn,2 −1 −3 −θk −θk(θkθk−1 + θk−1 + 1)

βn,3 1 θkθk−1
θkθk−1+θk−1

θk−1+1

Table 6.4: Values of βn,l, l = 0, . . . , n, for n = 1, 2, 3 for constant and variable time steps, θk = τk/τk−1, k = 1, 2, . . . , r.

n = 1 n = 2 n = 3

βn,1 1 τk+τk−1

τk−1

(τk+τk−1+τk−2)(τk+τk−1)
τk−1(τk−1+τk−2)

βn,2 − τk
τk−1

− τk(τk+τk−1+τk−2)
τk−1τk−2

βn,3
τk(τk+τk−1)

τk−2(τk−1+τk−2)

Table 6.5: Values of βn,l expressed in terms of time steps.

6.4.6 Choice of the time step

The choice of the time step has a great influence on the efficiency of the BDF-DGM. We already mentioned that the implicit
time discretization allows us to choose the time step many times larger than an explicit scheme. Too large time step causes the
loss of accuracy and too small time step reduces the efficiency of the computation.

On the other hand, in the beginning of the computation, we usually start from a nonphysical initial condition and a large
time step may cause failure of the computational process. Therefore, the aim is to develop a sufficiently robust algorithm which
automatically increases the time step from small values in the beginning of the computation to larger values, but which also
ensures accuracy with respect to time.

The standard ODE strategy chooses the size of the time step so that the corresponding local discretization error is below
a given tolerance, see, e.g., [HNW00]. Very often, the local discretization error is estimated by a difference of two numerical
solutions obtained by two time integration methods. However, we have to solve two nonlinear algebraic systems at each time
level which leads to higher computational costs, see [DK08].

In this section we present a strategy, which is based on a very low cost estimation of the local discretization error. For
simplicity, we deal only with the first-order method, but these considerations can be simply extended to higher-order schemes.
Let us consider the ordinary differential equation

y′ :=
dy

dt
= f(y), y(0) = y0, (6.143)

where y : [0, T ]→ R, f : R→ R and y0 ∈ R. We assume that problem (6.143) has a unique solution y ∈ C2([0, T ]). Moreover,
let 0 = t0 < t1 < t2 < · · · < tr = T be a partition of [0, T ]. We denote by yk ≈ y(tk) an approximation of the solution y at
tk, k = 1, . . . , r. The backward Euler method reads as

yk = yk−1 + τkf(yk), k = 1, 2, . . . , r, (6.144)

where τk = tk − tk−1. By the Taylor theorem, there exists θk ∈ [tk−1, tk] such that the corresponding local discretization error
Lk has the form

Lk =
1

2
τ2
ky
′′(θk), θk ∈ (tk−1, tk), (6.145)

where y′′ denotes the second-order derivative of y.
Our idea is the following. We define the quadratic function ỹk : [tk−2, tk] → R such that ỹk(tk−l) = yk−l, l = 0, 1, 2. The

second-order derivative of ỹk is constant on (tk−2, tk). We use the approximation

|Lk| ≈ Lapp
k =

1

2
τ2
k |ỹ′′k |. (6.146)

Let ω > 0 be a given tolerance for the local discretization error. Our aim is to choose the time step as large as possible but
guaranteeing the condition Lapp

k ≤ ω, k = 1, . . . , r. On the basis of (6.146), we shall assume that

ω ≈ 1

2
(τopt
k )2|ỹ′′k |, (6.147)
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where τopt
k denotes the optimal size of τk. We express |ỹ′′k | from (6.146), insert it in (6.147) and express τopt

k as

τopt
k := τk

(
ω

Lapp
k

)1/2

. (6.148)

On the basis of the above considerations, we define the following
Adaptive time step algorithm

(1) let ω > 0, k > 1, yk−1, yk−2 ∈ R and τk > 0 be given,

(2) compute yk by (6.144),

(3) from [tk−l, yk−l], l = 0, 1, 2, construct ỹk,

(4) compute τopt
k by (6.146) and (6.148),

(5) if τopt
k ≥ τk

then

(i) put τk+1 = min(τopt
k , c1τk, τ

max),

(ii) put k = k + 1

(iii) go to step 2)

else

(i) put τk = τopt
k ,

(ii) go to step 2).

The constant c1 > 1 restricts the maximal ratio of two successive time steps. It is possible to use the value c1 = 2.5. The value
τmax restricts the maximal size of the time step for practical reasons. For example, τmax = 2τ01012, but any sufficiently large
value yields similar results. If the else branch in step (5) of the algorithm is reached, then on each time level we solve more
than one algebraic problem, which is expensive. However, this branch is reached very rarely in practice. It may occur only if
the initial time step τ0 or the constant c1 are chosen too large.

This approach is extended to a system of ODEs in the following way. Let yk ∈ RN be an approximation of the solution of the
system of ODEs at tk, k = 0, 1, . . . . For each time level tk, we define a vector-valued quadratic function ỹk(t) : [tk−2, tk]→ RN
such that ỹk(tk−l) = yk−l, l = 0, 1, 2. Then the optimal time step is given by (6.148) with the approximation of the local
discretization error

Lapp
k =

1

2
τ2
k |ỹ′′k |, (6.149)

where ỹ′′k ∈ RN denotes the second-order derivative of ỹk(t) with respect to t. The adaptive time stepping algorithm remains
the same, ỹk is replaced by ỹk and (6.146) is replaced by (6.149).

Concerning the choice of the first two time steps in the case of the solution of the Euler equations, we use the relation (6.94),
namely

τk = CFL min
K∈Th

|K|
maxΓ⊂∂K %(P(wk

h|Γ))|Γ| , k = 0, 1, (6.150)

where %(P(wk
h|Γ)) is the spectral radius of the matrix P(wk

h|Γ,nΓ) given by (6.17) on Γ ∈ Fh and the value CFL is the initial
Courant–Friedrichs–Lewy number. In order to avoid drawback resulting from a nonphysical initial condition (which is the usual
case), we put CFL = 0.5. Thus τ0 and τ1 correspond to the time steps used for the explicit time discretization with this CFL
value. This choice may be underestimated in some cases, but based on our numerical experiments, it is robust with respect to
the flow regime.

Remark 6.20. The presented technique can be simply extended to n-step BDF-DGM. For n ≥ 1 we derive (instead of (6.146))

the relation Lapp
k = γnτ

n+1
k |ỹ(n+1)

k |, where γn > 0. Then relations (6.147) and (6.148) have to be modified.

Remark 6.21. In order to accelerate the convergence to the steady state solutions, it is possible to apply local time stepping.
However, our aim is to develop a scheme which can also be applied to nonstationary problems. Therefore, we consider only
global time stepping.
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Figure 6.4: Example of a triangular mesh with elements Kµ, µ = 1, . . . , 6 (top) and the corresponding block structure of the
matrices Mh (left bottom) and Ch (right bottom).

6.4.7 Structure of the flux matrix

The flux matrix Ch given by (6.124) can be written in the form

Ch
(
ξ̄ξξ
)

=
1

τk
Mh + Bh

(
ξ̄ξξ
)
, (6.151)

where

Mh =
((
ϕϕϕj ,ϕϕϕi

))Nhp
i,j=1

, Bh
(
ξ̄ξξ
)

=
(
bLh (w̄h,ϕϕϕj ,ϕϕϕi)

)Nhp
i,j=1

. (6.152)

The matrix Mh is called the mass matrix. If the basis in Shp is constructed elementwise (i.e., the support of each basis function
is just one simplex from Th), then Mh is block diagonal. Similarly, the matrices Bh and therefore Ch have a block structure.
By virtue of (6.123), we easily find that each block-row of Bh corresponds to one element K ∈ Th and contains a diagonal block
and several off-diagonal blocks. Each off-diagonal block corresponds to one face Γ ∈ Fh. See Figure 6.4, where an illustrative
mesh and the corresponding block structures of matrices Mh and Ch are shown.

Similarly, the vector dh from (6.125) can be written as

dh
(
ξξξk−1, ξ̄ξξ

)
=

1

τk
mh

(
ξξξk−1

)
+ uh

(
ξ̄ξξ
)
, (6.153)

where

mh

(
ξξξk−1

)
=
((
wk−l
h ,ϕϕϕi

))Nhp
i=1

, uh
(
ξ̄ξξ
)

=
(
b̃h(w̄h,ϕϕϕi)

)Nhp
i=1

. (6.154)

If the time step τk in (6.151) is small enough, then the matrix Mh/τk dominates over Bh. Hence, if we construct a basis
of Shp which is orthonormal with respect to the L2-scalar product, then Mh is the identity matrix and the linear algebraic
problems (6.128) is solved easily for small τk.

Remark 6.22. On the other hand, there exists a limit value τ∞ � 1, such that for any τk ≥ τ∞ we have

Ch
(
ξ̄ξξ
) .

= Bh
(
ξ̄ξξ
)
, ξ̄ξξ ∈ RNhp , (6.155)

where the symbol
.
= denotes the equality in the finite precision arithmetic. Similarly, for any τk ≥ τ∞ from (6.153) – (6.154)

we obtain the relation

dh
(
ξξξk−1, ξ̄ξξ

) .
= uh

(
ξ̄ξξ
)
. (6.156)
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This means that Ch as well as dh are independent of the size of τk. Moreover, by virtue of (6.126), problem (6.98)

0 = Fh(ξξξk−1;ξξξk) =Ch(ξξξk)ξξξk − dh(ξξξk−1, ξξξk) (6.157)
.
=Bh(ξξξk)ξξξk − uh(ξξξk), k = 1, . . . , r,

is independent (in the finite precision arithmetic) on the size of τk provided that τk ≥ τ∞. Our numerical experiments indicated
that limit value τ∞ ≈ 1012 in the double precision arithmetic.

6.4.8 Construction of the basis in the space Shp

In this section we present one possibility, how to construct a basis Bhp = {ϕϕϕi(x), i = 1, . . . , Nhp} in the space Shp, in order
to solve efficiently the Euler equations with the aid of the DGM. Obviously, it is advantageous to use functions from Bhp with
small supports. Since Shp consists of discontinuous functions, for each element K ∈ Th it is possible to define a local basis

BK =
{
ψψψK,i ∈ Shp; supp(ψψψK,i) ⊂ K, i = 1, . . . , N̂

}
, (6.158)

with ψψψK,i ∈ (Pp(K))m (= the space of vector-valued polynomials of degree ≤ p on K ∈ Th), where N̂ = d+2
d! Πd

j=1(p + j) is its
dimension. Then the basis Bhp will be a composition of the local bases BK , K ∈ Th.

Let

K̂ = {(x̂1, . . . , x̂d); x̂i ≥ 0, i = 1, . . . , d,

d∑
i=1

x̂i ≤ 1} (6.159)

be the reference simplex. We consider affine mappings

FK : K̂ → Rd, FK(K̂) = K, K ∈ Fh. (6.160)

(In Section 6.6 we deal with curved elements. In this case FK is a polynomial mapping of degree > 1.)
On the reference element K̂ we define a basis in the space of vector-valued polynomials of degree ≤ p by

Ŝp = (Ŝp)
m, (6.161)

Ŝp =
{
φn1,...,nd(x̂1, . . . , x̂d) = Πd

i=1(x̂i − x̂ci )ni ; n1, . . . , nd ≥ 0,

d∑
j=1

nj ≤ p
}
,

where (x̂c1, . . . , x̂
c
d) is the barycenter of K̂. The dimension of the space spanned over the set Ŝp is N̂ = d+2

d! Πd
j=1(p + j). By

the Gram–Schmidt L2(K̂)-orthonormalization process applied to Ŝp we obtain the orthonormal system {φ̂j , j = 1, . . . , N̂}.
The Gram–Schmidt orthonormalization on the reference element can be easily computed, because N̂ is small (moreover, the
orthonormalization can be done for each component of Shp independently). Hence, this orthonormalization does not cause any
essential loss of accuracy.

Furthermore, let FK , K ∈ Th, be the mapping introduced in (6.160). We put

BK = {ψψψK,j ; ψψψK,j(x) = φ̂j(F
−1
K (x)), x ∈ K, j = 1, . . . , N̂}, (6.162)

which defines a local basis BK for each element K ∈ Th separately. For an affine mapping FK the basis BK is L2(K)-orthogonal
with respect to the L2-scalar product and the blocks MK,K of the mass matrix M given by (6.152) are diagonal. If FK is not
afine, then the orthogonality of BK is violated. However, in practical applications, the curved face KK ∩∂Ω is close to a straight
(polygonal) one (see Section 6.6), and thus the matrix block MK,K is strongly diagonally dominant.

Finally, a composition of the local bases BK , K ∈ Th, defines a basis of Shp, i.e.,

Bhp = {ψψψK,j ; ψψψK,j ∈ BK , j = 1, . . . , N̂ , K ∈ Th}, (6.163)

which is, for affine mappings FK , K ∈ Th, the L2-orthogonal basis of Shp. In case that FK is not an affine mapping for some

K ∈ Th, the L2-orthogonality is violated, i.e.,
(
ψψψK,i,ψψψK,j

)
6= 0 for i, j = 1, . . . , N̂ , i 6= j. However, since FK is usually close to

an affine mapping, we have |
(
ψψψK,i,ψψψK,j

)
| �

∣∣(ψψψK,i,ψψψK,i)∣∣ for i, j = 1, . . . , N̂ , i 6= j.

Remark 6.23. It is possible to find that every entry of Fh and/or Ch depends on wh on at most two neighbouring elements.
This is a favourable property which simplifies the parallelization of the algorithm.
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6.4.9 Steady-state solution

Very often, we are interested in the solution of the stationary Euler equations, i.e., we seek w : Ω → D (D is given by (6.12))
such that

d∑
s=1

∂fs(w)

∂xs
= 0, (6.164)

where w is the steady-state vector and fs, s = 1, . . . , d, are the Euler fluxes defined in (6.9) and (6.10), respectively. This
system is equipped with boundary conditions (6.37), discussed in detail in Section 6.3.

The stationary Euler equations can be discretized in the same way as the non-stationary ones, omitting only the approxi-
mation of the time derivative.

Definition 6.24. We say that wh ∈ Shp is a DG approximate solution of (6.164) if

bh(wh,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp, (6.165)

where bh is given by (6.93). We call wh the steady-state solution of the Euler equations.

With the aid of the notation introduced in Section 6.4.2, we can formulate (6.165) as the algebraic problem to find ξξξ ∈ RNhp
such that

F SS
h (ξξξ) = 0, (6.166)

where ξξξ is the algebraic representation of wh by the isomorphism (6.96) and

F SS
h (ξξξ) =

bh

(Nhp∑
j=1

ξjϕϕϕj ,ϕϕϕi

)Nhp

i=1

∈ RNhp . (6.167)

By virtue of (6.137), (6.152) and (6.154), we have

F SS
h (ξξξ) = B(ξξξ)ξξξ − uh(ξξξ), ξξξ ∈ RNhp . (6.168)

Problem (6.166) represents a system of nonlinear algebraic equations. It can be solved directly by the (damped) Newton
method, see [HH02]. Another very often used possibility is to apply the time-marching (or time stabilization) method based
on the solution of the nonstationary Euler equations (6.8) and to seek the steady-state solution as a limit of the nonstationary
solution for t → ∞. This means that the methods for solving unsteady flow are applied as iterative processes, assuming that
wh = limk→∞wk

h. The nonstationary computational process is stopped, when a suitable steady-state criterion is achieved.
The usual steady-state criterion often used for explicit time discretization reads (for an othonormal basis) as∥∥∥∥∂wh

∂t

∥∥∥∥
L2(Ω)

≈ ηk =
1

τk
‖wk

h −wk−1
h ‖L2(Ω) =

1

τk
|ξξξk − ξξξk−1| ≤ TOL, (6.169)

where wk−l
h , l = 0, 1, denote the values of the approximate solution at time levels tk−l, l = 0, 1, ξξξk−l, l = 0, 1, are their algebraic

representations given by the isomorphism (6.96) and TOL is a given tolerance.
Criterion (6.169) is not suitable for the implicit time discretization, when very large time steps are used, see [DHH11, Section

4.3.1.]. Then it is suitable to use the steady-state residual criterion

|F SS
h (ξξξk)| = |B(ξξξk)ξξξk − uh(ξξξk)| ≤ TOL, (6.170)

which is independent of τk and measures the residuum of the nonlinear algebraic system (6.167).
However, it is an open question as to how to choose the tolerance TOL in (6.170), since the residuum depends on the size

of the computational domain Ω, on the magnitude of components of wk
h, etc. Therefore, from the practical reasons, we use the

relative residuum steady-state criterion

SSres(k) :=
|F SS
h (ξξξk)|
|F SS
h (ξξξ0)| ≤ TOL, (6.171)

which already does not suffer from the mentioned drawbacks. Here ξξξ0 is the algebraic representation of the initial state w0
h.

Another possibility are the stopping criteria which follow from the physical nature of the considered problem. E.g., in
aerodynamics, when we solve flow around a 2D profile, we are often interested in the aerodynamic coefficients of the considered
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flow, namely coefficients of drag (cD), lift (cL) and momentum (cM ). In the 2D case, the coefficients cD and cL are defined as
the first and second components of the vector

1
1
2ρ∞|v∞|2Lref

∫
Γprof

pn dS, (6.172)

where ρ∞ and v∞ are the far-field density and velocity, respectively, Lref is the reference length, Γprof is the profile, n is outer
unit normal to the profile pointing into the profile and p is the pressure. Moreover, cM is given by

1
1
2ρ∞|v∞|2L2

ref

∫
Γprof

(x− xref)× pn dS, (6.173)

where xref is the moment reference point. We adopt the notation x× y = x1y2 − x2y1 for x = (x1, x2), y = (y1, y2) ∈ R2.
Then it is natural to stop the computation when these coefficients achieve a given tolerance tol, e.g.,

∆cα(k) ≤ tol, ∆cα(k) = max
l=k,...,k

cα(l)− min
l=k,...,k

cα(l), (6.174)

where α = D, L and M (for the drag, lift and momentum), cα(k) is the value of the corresponding aerodynamic coefficient at
the kth-time level and k is the entire part of the number 0.9k. This means that the minimum and maximum in (6.174) are taken
over the last 10% of the number of time levels.

In contrast to the tolerance TOL in (6.171), which has to be chosen empirically, the tolerance tol in (6.174) can be chosen
only on the basis of our accuracy requirements (without any previous numerical experiments). Since the absolute values of
aerodynamic coefficient are (usually) less than one, the stopping criterion (6.174) with tolerance, e.g., tol = 10−4, gives accuracy
of the aerodynamic coefficients for 3 decimal digits.

Finally, let us note that since we seek only the steady-state solution, we do not need to take care of an accurate approximation
of the evolution process. Therefore, we can choose the time step τk relatively large. Hence, the tolerance ω appearing in (6.148)
can also be large.

6.5 Shock capturing

In higher-order numerical methods applied to the solution of high speed flows with shock waves and contact discontinuities
the Gibbs phenomenon appears manifested by spurious (nonphysical) oscillations in computed quantities propagating from
discontinuities. In the standard Galerkin finite element methods, these oscillations propagate far into the computational domain.
However, in DG numerical solutions the Gibbs phenomenon is manifested only by spurious overshoots and undershoots appearing
in the vicinity of discontinuities. These phenomena do not occur in low Mach number regimes, when the exact solution is regular,
but in the high-speed flow they cause instabilities in the numerical solution and collapse of the computational process.

In order to cure this undesirable feature, in the framework of higher-order finite volume methods one uses suitable limiting
procedures. They should preserve the higher-order accuracy of the method in regions where the solution is regular, and decrease
the order to 1 in a neighbourhood of discontinuities or steep gradients. These methods are based on the use of the flux limiter.
See e.g., [FFS03] and citations therein. In [CS89] and [CHS90], the finite volume limiting procedures were generalized also to
DGM.

Here we present another technique, based on the concept of artificial viscosity applied locally on the basis of a suitable jump
(discontinuity) indicator.

6.5.1 Jump indicators

Approximate solutions obtained by the DGM are, in general, discontinuous on interfaces between neighbouring elements. If the
exact solution is sufficiently regular, then the jumps in the approximate solution are small and, as follows from the theory as
well as numerical experiments, tend to zero if h→ 0.

The DG solution of inviscid flow can contain large inter-element jumps in subdomains, where the solution is not sufficiently
smooth, i.e., in areas with discontinuities (shock waves or contact discontinuities). Numerical experiments show that the inter-
element jumps in the approximate solution are [wh]Γ = O(1) on discontinuities, but [wh]Γ = O(hp+1) in the areas where the
solution is regular. This inspires us to define a jump indicator , which evaluates the inter-element jumps of the approximate
solution. On general unstructured grids, it appears to be suitable to measure the magnitude of inter-element jumps in the
integral form by ∫

∂K∩Ω

[wh,1]2 dS, K ∈ Th (6.175)

on interior faces Γ ∈ FIh , where wh,1 denotes the first component, i.e., the density ρh corresponding to the state wh. (Here we
take into account that the density is discontinuous both on shock waves and contact discontinuities.)
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This leads us to the definition of the jump indicator in the form

gK(wh) =

∫
∂K∩Ω

[wh,1]2 dS

|K| ∑Γ⊂∂K∩Ω diam(Γ)
, K ∈ Th, (6.176)

where |K| denotes the d-dimensional measure of K and diam(Γ) is the diameter of Γ. We see that we have

gK(wh) =

{
O(h2p) for K ∈ Th, where the solution is smooth,
O(h−2) for K ∈ Th near discontinuities.

(6.177)

Thus, gK → 0 for h → 0 in the case when K ∈ Th is in a subdomain where the solution is regular, and gK → ∞ for h → 0 in
the case when K ∈ Th is in the vicinity of a discontinuity.

There are various modifications of this indicator, as for example,

gK(wh) =

∫
∂K

[wkh,1]2 dS
/

(hK |K|3/4), K ∈ Th, (6.178)

in the 2D case, proposed in [DFS03] and applied in [FK07]. The indicator gK was constructed in such a way that it takes an
anisotropy of the computational mesh into account. It was shown in [DFS03] that the indicator gK(wh) identifies discontinuities
safely on unstructured and anisotropic meshes.

Now we introduce the discrete jump (discontinuity) indicator

GK(wh) = 0, if gK(wh) < 1, GK(wh) = 1, if gK(wh) ≥ 1, K ∈ Th. (6.179)

Numerical experiments show that under the assumption that the mesh space size h < 1, it is possible to indicate the areas
without discontinuities checking the condition GK(wh) < 1. On the other hand, if GK(wh) > 1, the element K is lying in a
neighbourhood of a discontinuity.

However, it appears that the above discrete discontinuity indicators and the artificial viscosity forms (6.181) and (6.182)
introduced in the following section are too strict. Particularly, it may happen in some situations that the value of gK in (6.176)
is close to 1 and then during the computational process the value GK from (6.179) oscillates between 1 and 0. This can be
disabled to achieve a steady-state solution. Therefore, it is suitable to introduce some “smoothing” of the discrete indicator
(6.179). Namely we set

GK(wh) =


0, if gK(wh) < ξmin,

1
2 sin

(
π gK(wh)−(ξmax−ξmin)

2(ξmax−ξmin)

)
+ 1

2 , if gK(wh) ∈ [ξmin; ξmax),

1, if gK(wh) ≥ ξmax,

(6.180)

where 0 ≤ ξmin < ξmax. In practical applications, it is suitable to set ξmin = 0.5 and ξmax = 1.5.

6.5.2 Artificial viscosity shock capturing

On the basis of the discrete discontinuity indicator we introduce local artificial viscosity forms, which are included in the numerical
schemes for solving inviscid compressible flow. For example, we define the artificial viscosity form βββh : Shp×Shp×Shp → R by

βββh(w̄h,wh,ϕϕϕh) = ν1

∑
K∈Th

hKGK(w̄h)

∫
K

∇wh · ∇ϕϕϕh dx (6.181)

with ν1 = O(1). Since this artificial viscosity form is rather local, we propose to augment it by the form γγγh : Shp×Shp×Shp → R
defined as

γγγh(w̄h,wh,ϕϕϕh) = ν2

∑
Γ∈FIh

1

2

(
G
K

(L)
Γ

(w̄h) +G
K

(R)
Γ

(w̄h)
) ∫

Γ

[wh] · [ϕϕϕh] dS, (6.182)

where ν2 = O(1) and K
(L)
Γ ,K

(R)
Γ ∈ Th are the elements sharing the inner face Γ ∈ FIh . This form allows strengthening the

influence of neighbouring elements and improves the behaviour of the method in the case, when strongly unstructured and/or
anisotropic meshes are used. These artificial viscosity forms were introduced in [FK07], where the indicator (6.179) was used.

Because of the reasons mentioned already above, using the discontinuity indicator (6.180), we also introduce more sophisti-
cated artificial viscosity forms βββh, γγγh : Shp × Shp × Shp → R, defined as

βββh(w̄h,wh,ϕϕϕh) = ν1

∑
K∈Th

GK(w̄h)hα1

K

∫
K

∇wh · ∇ϕϕϕh dx, (6.183)
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and

γγγh(w̄h,wh,ϕϕϕh) = ν2

∑
Γ∈FIh

1

2

(
G
K

(L)
Γ

(w̄h) +G
K

(R)
Γ

(w̄h)
)
hα2

Γ

∫
Γ

[wh] · [ϕϕϕh] dS, (6.184)

with the parameters α1, α2, ν1, ν2 = O(1).
The described approach was partly motivated by the theoretical paper [JJS95]. However, the artificial viscosity was applied

there in the whole domain, which can lead to a nonphysical entropy production. In our case, it is important that the discrete
indicators GK vanish in regions where the solution is regular and the artificial viscosity acts only locally in the vicinity of
discontinuities. Therefore, the scheme does not produce any nonphysical entropy in regions where the exact solution is regular.

The artificial viscosity forms βββh and γγγh are added to the left-hand side of the numerical schemes presented in previous
sections. For example, the backward Euler - discontinuous Galerkin method with shock capturing now reads as

1

τk

(
wk
h −wk−1

h ,ϕϕϕh
)

+ bh(wk
h,ϕϕϕh) + βββh(wk

h,w
k
h,ϕϕϕh) + γγγh(wk

h,w
k
h,ϕϕϕh) = 0

∀ϕϕϕh ∈ Shp, k = 1, . . . , r. (6.185)

Equalities (6.185) represent a system on nonlinear algebraic equations. In the case when the artificial viscosity forms βββh and γγγh
are defined with the aid of the jump indicator (6.180), the discrete problem can be solved by the Newton-like method, presented
in Section 6.4.3. Namely, in (6.97), we replace bh(wk

h,ϕϕϕi) by

bh(wk
h,ϕϕϕi) + βββh(wk

h,w
k
h,ϕϕϕi) + γγγh(wk

h,w
k
h,ϕϕϕi),

and, in (6.124), we replace bLh (w̄h,ϕϕϕj ,ϕϕϕi) by

bLh (w̄h,ϕϕϕj ,ϕϕϕi) + βββh(w̄h,ϕϕϕj ,ϕϕϕi) + γγγh(w̄h,ϕϕϕj ,ϕϕϕi).

Also in other schemes we proceed in a similar way. The discrete problem with higher-order time discretization and shock
capturing reads as

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.186a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ bh

(
wk
h,ϕϕϕh

)
+ βββh(wk

h,w
k
h,ϕϕϕh) + γγγh(wk

h,w
k
h,ϕϕϕh) = 0

∀ϕϕϕh ∈ Shp, k = n, . . . , r, (6.186b)

where w0
h, . . . ,w

n−1
h are defined by (6.134c) and (6.134d).

Similarly we formulate the higher-order semi-implicit scheme with shock capturing:

wk
h ∈ Shp, k = 0, 1, . . . , r, (6.187a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ b̂h

(
n∑
l=1

βn,lw
k−l
h ,wk

h,ϕϕϕh

)
+ βββh(

n∑
l=1

βn,lw
k−l
h ,wk

h,ϕϕϕh)

+ γγγh(

n∑
l=1

βn,lw
k−l
h ,wk

h,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp, k = n, . . . , r, (6.187b)

where w0
h, . . . ,w

n−1
h are defined by (6.134c) and (6.134d). Problem (6.187) represents again a sequence of systems of linear

algebraic equations. In this case the artificial viscosity can be defined by any jump indicator introduced in Section 6.5.1.

6.5.3 Numerical examples

In this section we present the solution of some test problems showing the performance of the shock capturing technique introduced
above.

We consider transonic inviscid flow past the profile NACA 0012 given by the parametrization[
x,±0.12

0.6
(0.2969

√
x− 0.126x− 0.3516x2 + 0.2843x3 − 0.1015x4)

]
, x ∈ [0, 1],

see Figure 6.5. We consider the far-field Mach number M∞ = 0.8 (see (6.7)) and the angle of attack α = 1.25◦. (Let us note
that tanα = v2/v1, where (v1, v2) is the far-field velocity vector.) This flow regime leads to two shock waves (discontinuities in
the solution). The shock wave on the upper side of the profile is stronger than the shock wave on the lower side.
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Figure 6.5: Geometry of the NACA 0012 profile.

We seek the steady-state solution of the Euler equations (6.8) with the aid of the time stabilization technique described in
Section 6.4.9, using the backward Euler – discontinuous Galerkin method (BE-DGM) (6.95). The nonlinear algebraic systems
are solved by the Newton-like iterative process (6.127) – (6.128).

We employ two unstructured triangular grids with piecewise polynomial approximation of the boundary described in Section
6.6. The first grid is formed by 2120 triangles and is not adapted. The second one with 2420 elements was adaptively refined
along the shock waves by ANGENER code [Dol00] developed in papers [Dol98], [DF04b] and [Dol01]. See Figure 6.6. The
problem was solved by the DGM using the Pp polynomial approximations with p = 1, 2, 3.

Figure 6.7 shows the Mach number isolines and the distribution of the Mach number along the profile in dependence on
the horizontal component obtained with the aid of the P1 and P2 approximation on the non-adapted mesh without the shock
capturing technique. We observe overshoots and undershoots in the approximate solution near the shock waves. Let us note
that the P3 computation failed.

Figure 6.8 shows the results obtained with the aid of the P1, P2 and P3 approximations on the non-adapted mesh with the
shock capturing technique. We can see that the nonphysical overshoots and undershoots are mostly suppressed. Finally, Figure
6.9 shows the results for P1, P2 and P3 approximations on the adapted mesh with the shock capturing technique. We see that
a very good resolution of the shock waves was obtained.

Further numerical experiment can be found in Section 6.7.4, where an example of the supersonic flow past the NACA 0012
profile is presented.

6.6 Approximation of a nonpolygonal boundary

In practical applications, the computational domain Ω is usually nonpolygonal, and thus its boundary has to be approximated in
some way. In [BR00], Bassi and Rebay showed that a piecewise linear approximation of ∂Ω can lead to a nonphysical production
of entropy and expansion waves at boundary corner points, leading to incorrect numerical solutions. In order to obtain an
accurate and physically admissible solution, it is necessary to use a higher-order approximation of the boundary. We proceed
in such a way that a reference triangle is transformed by a polynomial mapping onto the approximation of a curved triangle
adjacent to the boundary ∂Ω.

6.6.1 Curved elements

Here we describe only the two dimensional (d = 2) situation, the case d = 3 has to be generalized in a suitable way. Let K be
a triangle with vertices P lK , l = 1, 2, 3, numbered in a such way that P 1

K and P 2
K lie on a curved part of ∂Ω and P 3

K lies in the
interior of Ω. By Γ we denote the edge P 1

K P
2
K . Moreover, we assume that P 1

K and P 2
K are oriented in such a way that Ω is on

the left-hand side of the oriented edge from P 1
K to P 2

K , see Figure 6.10. We consider elements having at most one curved edge.
The generalization to the case with elements having more curved edges is straightforward.

Let q ≥ 2 be an integer denoting the polynomial degree of the boundary approximation. We define q − 1 nodes PC,jK , j =

1, . . . , q− 1, lying on ∂Ω between P 1
K and P 2

K in such a way that nodes PC,jK , j = 1, . . . , q− 1, divide the curved segment of ∂Ω

between P 1
K and P 2

K into q parts having (approximately) the same length. We assume that PC,jK , j = 1, . . . , q − 1, are ordered
with an increasing index on the path along ∂Ω from P 1

K to P 2
K . See Figure 6.10 showing a possible situation for q = 2 and

q = 3.
Let

K̂ = {(x̂1, x̂2); x̂i ≥ 0, i = 1, 2, x̂1 + x̂2 ≤ 1} (6.188)

be the reference triangle. In K̂, we define the Lagrangian nodes of degree q by

P̂
i
q ; jq = [i/q; j/q], 0 ≤ i ≤ q, 0 ≤ j ≤ q, 0 ≤ i+ j ≤ q, (6.189)

i.e., the vertices of K̂ are the points P̂ 0;0, P̂ 0;1 and P̂ 1;0.
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Figure 6.6: Transonic inviscid flow around the NACA 0012 profile (M∞ = 0.8, α = 1.25◦): the non-adapted (left) and the
adapted (right) computational meshes.

DGM: p=1, without shock capturing
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Figure 6.7: Transonic inviscid flow around the NACA 0012 profile (M∞ = 0.8, α = 1.25◦): DGM with P1 approximation (top)
and P2 approximation (bottom), Mach number isolines (left) and the distribution of the Mach number along the profile (right)
on a non-adapted mesh without the shock capturing technique.
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DGM: p=1, with shock capturing

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
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Figure 6.8: Transonic inviscid flow around the NACA 0012 profile (M∞ = 0.8, α = 1.25◦): DGM with P1 approximation
(top), P2 approximation (center) and P3 approximation (bottom), Mach number isolines (left) and the distribution of the Mach
number along the profile (right) on a non-adapted mesh with the shock capturing technique.
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DGM: p=1, with shock capturing
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Figure 6.9: Transonic inviscid flow around the NACA 0012 profile (M∞ = 0.8, α = 1.25◦): DGM with P1 approximation (top),
P2 approximation (center) and P3 approximation (bottom) and with boundary approximation, Mach number isolines (left) and
the distribution of the Mach number along the profile (right) on an adapted mesh with the shock capturing technique.
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Figure 6.10: Triangle K with vertices P 1
k and P 2

K lying on a nonpolygonal part of ∂Ω; adding one (left) and two (right) nodes
on ∂Ω.
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Figure 6.11: Mapping FK : K̂ → K̃: quadratic (top) and cubic (bottom).

Let K be the triangle with vertices P lK , l = 1, 2, 3, and let PC,jK ∈ ∂Ω, j = 1, . . . , q − 1, be the points lying on ∂Ω between
P 1
K and P 2

K as described above. We define the Lagrangian nodes of degree q of K by

PK
i
q ; jq =

i

q
P 1
K +

j

q
P 2
K +

1− i− j
q

P 3
K , 0 ≤ i ≤ q, 0 ≤ j ≤ q, 0 ≤ i+ j ≤ q. (6.190)

Obviously, P 0;0
K = P 1

K , P 1;0
K = P 2

K and P 0;1
K = P 3

K .

Then, there exists a unique polynomial mapping FK : K̂ → R2 of degree ≤ q such that

FK(P̂ 0;0) = P 1
K , FK(P̂ 1;0) = P 2

K , FK(P̂ 0;1) = P 3
K are vertices,

FK(P̂
i
q ;0) = PC,iK , i = 1, . . . , q − 1, are nodes on the curved edge, (6.191)

FK(P̂
i
q ; jq ) = P

i
q ; jq
K , 0 ≤ i ≤ q, 1 ≤ j ≤ q − 1, 0 ≤ i+ j ≤ q, are other nodes.

The existence and uniqueness of the mapping FK follows from the fact that a polynomial mapping of degree q from R2 to R2

has (q + 1)(q + 2) degrees of freedom equal to the number of conditions in (6.191). Then we obtain a linear algebraic system,
which is regular, since the Lagrangian nodes on K̂ are mutually different and at most q nodes belong to any straight line.

Then the triangle K will be replaced by the curved triangle

K̃ = FK(K̂). (6.192)

The set K̃ is a plane figure having two straight sides and one curved side Γ̃, which is an image of the reference edge P̂ 0;0 P̂ 1;0,
see Figure 6.11.

Using the described procedure, we get a partition T̃h associated with the triangulation Th. The partition T̃h, called the
curved triangulation, consists of triangles K ∈ Th and curved elements K̃, associated with triangles K ∈ Th with one edge
approximating a curved part of ∂Ω.

Remark 6.25. Let us note that the considerations presented in this section make sense also for q = 1. In this case, any node
PC,iK that is not inserted on ∂Ω, mapping FK given by (6.191) is linear and K̃ = FK(K̂) = K is the triangle with straight edges.

Remark 6.26. The concept of the curved element can be extended also to 3D by defining a polynomial mapping FK from a
reference tetrahedron K̂3D into R3 for each tetrahedron K with one face approximating a curved part of ∂Ω. Then K is replaced
by FK(K̂3D).

6.6.2 DGM over curved elements

Let T̃h be a curved triangulation consisting of (non-curved) simplexes K as well as possible curved elements K̃. By virtue of
Remark 6.25, a non-curved element can be considered as a special curved simplex obtained by a linear (q = 1) mapping FK .
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Therefore, we shall not distinguish between curved and non-curved elements in the following and we shall use the symbol K
also for curved elements. Moreover, instead of T̃h, we shall write Th.

Since Th may contain curved elements, we have to modify the definition (6.44) of the space Shp. For an integer p ≥ 0, over
the triangulation Th we define the finite-dimensional function space

Shp = (Shp)
m, Shp = {v; v ∈ L2(Ω), v|K ◦ FK ∈ Pp(K̂) ∀K ∈ Th}, (6.193)

where Pp(K̂) denotes the space of all polynomials of degree ≤ p on the reference element K̂ and the symbol ◦ denotes the
composition of mappings. Hence, instead of (6.44) and (6.45), we employ definition (6.193).

Remark 6.27. The definition (6.193) of the space Shp implies that for a curved element K, the function wh|K is not a
polynomial of degree ≤ p. Moreover, if all K ∈ Th are non-curved (i.e., FK are linear for all K ∈ Th), then the spaces defined
by (6.193) are identical with the spaces defined by (6.44) and (6.45).

Now let us describe how to evaluate the volume and boundary integrals over elements K and their sides Γ. We denote by

JFK (x̂) =
DFK
D x̂

(x̂), x̂ ∈ K̂, (6.194)

the Jacobian matrix of the mapping FK . Since FK is a polynomial mapping of degree q, JFK is a polynomial mapping of degree
q− 1 in the variable x̂ = (x̂1, x̂2). The components of the vector-valued test functions ϕϕϕh ∈ Shp from (6.193) are defined on the
curved elements K (adjacent to the boundary ∂Ω) with the aid of the mapping FK . Hence, for each ϕϕϕh ∈ Shp and each K ∈ Th
there exists a function ϕ̂ϕϕK ∈ (Pp(K̂))m such that

ϕ̂ϕϕK(x̂) = ϕϕϕh(FK(x̂)), x̂ ∈ K̂. (6.195)

In the following, we shall describe how to evaluate the volume and face integrals appearing in the definition of the forms
bh and bLh given by (6.93) and (6.123), respectively. Evaluating the integrals is based on the transformation to the reference
element (or reference edge) with the aid of the substitution theorem.

Volume integrals

The volume integral of a product of two (or more) functions is simply expressed as∫
K

wh(x, t) ·ϕϕϕh(x) dx =

∫
K̂

ŵK(x̂, t) · ϕ̂ϕϕK(x̂)|det JFK (x̂)|dx̂, K ∈ Th, t ∈ (0, T ), (6.196)

where ŵK(x̂, t) = wh|K(FK(x̂, t)) and ϕ̂ϕϕK is given by (6.195).
Moreover, the evaluation of the volume integral of a product of a function and the gradient of a function requires a trans-

formation of the gradient with respect to the variable x to the gradient with respect to x̂. Hence, we obtain∫
K

d∑
s=1

fs(wh(x, t)) · ∂ϕϕϕh(x)

∂xs
dx (6.197)

=

∫
K̂

d∑
s=1

fs(ŵK(x̂, t)) ·
d∑
j=1

∂ϕ̂ϕϕK(x̂)

∂x̂j

∂F−1
K,j(FK(x̂))

∂xs
|det JFK (x̂)|dx̂, K ∈ Th, t ∈ (0, T ),

where F−1
K,j denotes the j-th component of the inverse mapping F−1

K . In order to compute the inverse mapping F−1
K , we use the

following relation written in the matrix form:

DF−1
K

Dx
(FK(x̂)) =

(
DFK
Dx̂

(x̂)

)−1

(6.198)

following from the identity x = FK(F−1
K (x)). The computation of the inverse matrix in (6.198) is simpler than the evaluation

of F−1
K .

Face integrals

Finally, we describe the evaluation of face integrals along a curved edge in R2. The three-dimensional case can be generalized
in a natural way. Let Γ ∈ Fh be a (possibly curved) edge of K ∈ Th. Our aim is to evaluate the integrals∫

Γ

f(x) dS,

∫
Γ

f(x) · n(x) ϕϕϕ(x) dS, (6.199)
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where n is the normal vector to Γ and f : Γ→ R, f : Γ→ R2 are given functions. Such type of integral appears in (6.93) in terms
containing the numerical flux. Let us recall the definition of the face integral. If ψ = (ψ1, ψ2) : [0, 1]→ Γ is a parameterization
of the edge Γ, then ∫

Γ

f(x) dS =

∫ 1

0

f(ψ(ξ))

√
(ψ′1(ξ))

2
+ (ψ′2(ξ))

2
dξ, (6.200)

where ψ′i(ξ), i = 1, 2, denotes the derivative of ψi(ξ) with respect to ξ.

Integrals (6.199) are evaluated with the aid of a transformation to the reference element. Let Γ̂ be an edge of the reference
element K̂ such that K = FK(K̂) and Γ = FK(Γ̂). We call Γ̂ the reference edge. Let

xΓ̂(ξ) = (xΓ̂,1(ξ), xΓ̂,2(ξ)) : [0, 1]→ Γ̂ (6.201)

be a parametrization of the reference edge Γ̂ preserving the counterclockwise orientation of the element boundary. Namely, the
reference triangle given by (6.159) (with d = 2) has three reference edges parametrized by

xΓ̂1
(ξ) = (ξ, 0), ξ ∈ [0, 1], (6.202)

xΓ̂2
(ξ) = (1− ξ, ξ), ξ ∈ [0, 1],

xΓ̂3
(ξ) = (0, 1− ξ), ξ ∈ [0, 1].

Moreover, we use the notation ẋΓ̂(ξ) = d
dξxΓ̂(ξ) ∈ R2 and have

ẋΓ̂1
= (1, 0), ξ ∈ [0, 1], (6.203)

ẋΓ̂2
= (−1, 1), ξ ∈ [0, 1],

ẋΓ̂3
= (0,−1), ξ ∈ [0, 1].

Therefore, the edge Γ is parameterized by

x = FK(xΓ̂(ξ)) =
(
FK,1(xΓ̂(ξ)), FK,2(xΓ̂(ξ))

)
(6.204)

=
(
FK,1(x̂Γ̂,1(ξ), x̂Γ̂,2(ξ)), FK,2(x̂Γ̂,1(ξ), x̂Γ̂,2(ξ))

)
, ξ ∈ [0, 1].

The first integral in (6.199) is transformed by

∫
Γ

f(x) dS =

∫ 1

0

f(FK(xΓ̂(ξ)))

(
2∑
i=1

(
d

dξ
FK,i(xΓ̂(ξ))

)2
)1/2

dξ (6.205)

=

∫ 1

0

f(FK(xΓ̂(ξ)))

 2∑
i,j=1

(
∂FK,i(xΓ̂(ξ))

∂x̂j
˙̂xΓ̂,j(ξ)

)2
1/2

dξ

=

∫ 1

0

f(FK(xΓ̂(ξ)))
∣∣JFK (xΓ̂(ξ))ẋΓ̂

∣∣ dξ,

where JFK is the Jacobian matrix of the mapping FK multiplied by the vector ẋΓ̂ given by (6.203) and | · | is the Euclidean
norm of the vector. Let us note that if FK is a linear mapping, then e is a straight edge and

∣∣JFK (xΓ̂(ξ))ẋΓ̂(ξ)
∣∣ is equal to its

length.
Now, we focus on the second integral from (6.199). Let tΓ be the tangential vector to Γ defined by

tΓ(x(ξ)) =(tΓ,1(x(ξ)), tΓ,2(x(ξ))) (6.206)

=
d

dξ
FK(xΓ̂(ξ)) =

(
JFK,1(xΓ̂(ξ))ẋΓ̂(ξ), JFK,2(xΓ̂(ξ))ẋΓ̂(ξ)

)
.

(If Γ is a straight line, then tΓ is constant on Γ, it has the orientation of Γ and |tΓ| = |Γ|.) Now, by the rotation we obtain the
normal vector nΓ pointing outside of K, namely

nΓ(x(ξ)) = (nΓ,1(x(ξ)), nΓ,2(x(ξ))), (6.207)

nΓ,1(x(ξ)) = tΓ,2(x(ξ)), nΓ,2(x(ξ)) = −tΓ,1(x(ξ)).
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Figure 6.12: Subsonic inviscid flow around the NACA 0012 profile (M∞ = 0.5, α = 2◦): computational mesh, detail around the
whole profile (left) and around the leading edge (right).

Here it is important that the counter-clockwise orientation of the elements is considered. Therefore, from (6.206) and (6.207),
we have

nΓ(x(ξ)) =
(
JFK,2(xΓ̂(ξ))ẋΓ̂(ξ),−JFK,1(xΓ̂(ξ))ẋΓ̂(ξ)

)
. (6.208)

Let us note that because nΓ(x(ξ)) is not normalized, it is necessary to divide it by |nΓ(x(ξ))| = |JFK (xΓ̂(ξ))ẋΓ̂(ξ)|. Finally,
similarly as in (6.205), we obtain∫

Γ

f(x) · n(x) ϕϕϕ(x) dS (6.209)

=

∫ 1

0

f(FK(xΓ̂(ξ))) · nΓ(x(ξ))

|nΓ(x(ξ))|
∣∣JFK (xΓ̂(ξ))ẋΓ̂(ξ)

∣∣ ϕϕϕ(FK(xΓ̂(ξ))) dtξ

=

∫ 1

0

f(FK(xΓ̂(ξ))) · nΓ(x(ξ)) ϕ̂ϕϕ(xΓ̂(ξ)) dξ,

where nΓ(x(ξ)) is given by (6.208) and ϕ̂ϕϕ was obtained by transformation of the function ϕϕϕ: ϕ̂ϕϕ(x̂) = ϕϕϕ(FK(x̂)). Let us note that
if FK is a linear mapping, then Γ is a straight edge and |nΓ(x(ξ))| is equal to its length.

Implementation aspects of curved elements

The integrals over the reference triangle K̂ and over the reference edge Γ̂ in (6.196), (6.197), (6.205) and (6.209) are evaluated
with the aid of suitable numerical quadratures. For the volume integrals we can employ the Dunavant quadrature rules [Dun85],
which give the optimal order of accuracy of the numerical integration. For face integrals the well-known Gauss quadrature rules,
having the maximal degree of approximation for the given number of integration nodes, can be used. For other possibilities, we
refer to [ŠSD03].

Finally, let us mention the data structure in the implementation. Let p̂ be an integer denoting the maximal implemented
degree of the polynomial approximation in the DGM. We put N̂ = (p̂+1)(p̂+2)/2 denoting the corresponding maximal number
of degrees of freedom for one element and one component of w for d = 2. Hence, in order to evaluate integrals appearing in
(6.93) and (6.123) with the aid of the techniques presented above and with the aid of numerical quadratures, it is enough to
evaluate (and store) the following quantities:

• for each K ∈ Th, the determinant det JFK of the Jacobi matrix and the transposed matrix to the inversion of the Jacobi
matrix JFK evaluated at the used edge and volume quadrature nodes,

• the reference basis functions ϕ̂ϕϕi(x̂), i = 1, . . . , N̂ , with their partial derivatives ∂ϕ̂ϕϕi(x̂)/∂x̂j , j = 1, 2, i = 1, . . . N̂ , on K̂
evaluated at the used edge and volume quadrature nodes.

6.6.3 Numerical examples

In this section we present the results of numerical experiments demonstrating the influence of higher-order approximation of the
nonpolygonal boundary. We consider an inviscid flow around the NACA 0012 profile with the far-field Mach number M∞ = 0.5
(see (6.7)) and the angle of attack α = 2◦. We seek the steady-state solution of the Euler equations (6.8) with the aid of the time
stabilization described in Section 6.4.9, using the BE-DGM (6.95) combined with the Newton-like iterations (6.127) - (6.128).
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DGM: p=1, q=1
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Figure 6.13: Subsonic inviscid flow around the NACA 0012 profile (M∞ = 0.5, α = 2◦): DGM with polynomial approximation
with p = 1, boundary approximation with q = 1 (top), q = 2 (center) and q = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).

The computation was performed on a coarse unstructured triangular grid having 507 elements, refined around the leading
edge of the profile by the ANGENER code [Dol00] (see Figure 6.12). The polynomial approximations Pp, p = 1, 3, 5, in the
DGM and the polynomial approximations Pq, q = 1, 2, 3, of the boundary described in Section 6.6 were used. Figures 6.13 – 6.15
show results of these computations, namely Mach number isolines and the Mach number distribution along the profile.

We observe that the P1 approximation of the boundary produces nonphysical oscillations in the solution. This unpleasant
behaviour disappears for P2 or P3 approximation of the boundary. There is almost no difference between P2 and P3. Finally, it
is possible to see that the high-order DG approximation (P5) gives very smooth isolines even on a coarse grid.

6.7 Numerical verification of the BDF-DGM

In this section we shall present computational results demonstrating the robustness and accuracy of the BDF-DGM for solving
the Euler equations.
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Figure 6.14: Subsonic inviscid flow around the NACA 0012 profile (M∞ = 0.5, α = 2◦): DGM with polynomial approximation
with p = 3, boundary approximation with q = 1 (top), q = 2 (center) and q = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).
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DGM: p=5, q=1
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Figure 6.15: Subsonic inviscid flow around the NACA 0012 profile (M∞ = 0.5, α = 2◦): DGM with polynomial approximation
with p = 5, boundary approximation with q = 1 (top), q = 2 (center) and q = 3 (bottom), Mach number isolines (left) and the
Mach number distribution around the profile (right).
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6.7.1 Inviscid low Mach number flow

It is well-known that the numerical solution of low Mach number compressible flow is rather difficult. This is caused by the stiff
behaviour of numerical schemes and acoustic phenomena appearing in low Mach number flows at incompressible limit. In this
case, standard finite volume and finite element methods fail. This led to the development of special finite volume techniques
allowing for the simulation of compressible flow at incompressible limit, which are based on modifications of the Euler or
Navier–Stokes equations. We can mention works by Klein, Munz, Meister, Wesseling and their collaborators (see e.g. [Kle95],
[RMGK97], [MS02, Chapter 5], or [Wes01, Chapter 14]). However, these techniques could not be applied to the solution of high
speed flow. Therefore, further attempts were concentrated on extending these methods to solving flows at all speeds. A success
in this direction was achieved by several authors. Let us mention, for example, the works by Wesseling et al. (e.g., [vdHVW03]),
Parker and Munz ([PM05]), Meister ([Mei03]) and Darwish et al. ([DMS03]). The main ingredients of these techniques are
finite volume schemes applied on staggered grids, combined with multigrid, the use of the pressure-correction, multiple pressure
variables and flux preconditioning.

In 2007, in paper [FK07], it was discovered that the DG method described above allows the solution of compressible flow
with practically all Mach numbers, without any modification of the governing equations, written in the conservative form with
conservative variables. The robustness with respect to the magnitude of the Mach number of this method is based on the
following ingredients:

• the application of the discontinuous Galerkin method for space discretization,

• special treatment of boundary conditions,

• (semi-)implicit time discretization,

• limiting of the order of accuracy in the vicinity of discontinuities based on the locally applied artificial viscosity,

• the use of curved elements near curved parts of the boundary.

In this section we present results of numerical examples showing that the described DG method allows for the low Mach
number flow, nearly at incompressible limit. First, we solve stationary inviscid low Mach number flow around the NACA 0012
profile similarly as in [BBHN09]. The angle of attack is equal to zero and the far-field Mach number M∞ is equal to 10−1, 10−2,
10−3 and 10−4. The computation was carried out on a grid having 3587 elements (see Figure 6.16, bottom) with the aid of the
3-steps BDF-DGM with Pp, p = 1, 2, 3, 4, polynomial approximation in space. The computations are stop when the relative
residuum steady-state criterion (6.171) is achieved for TOL = 10−5.

Table 6.6 shows the relative maximum pressure and density variations (pmax − pmin)/pmax and (ρmax − ρmin)/ρmax, respec-
tively, the drag coefficient cD and the lift coefficient cL, see (6.172). Let us note that

pmax = max
x∈Ω

ph(x), pmin = min
x∈Ω

ph(x), ρmax = max
x∈Ω

ρh(x), ρmin = min
x∈Ω

ρh(x),

where ph(x) and ρh(x) are the numerical approximations of the pressure and the density, respectively, evaluated from wh.
Both the pressure and density maximum variations are of order M2

∞, which is in agreement with theoretical results in the
analysis of compressible flow at incompressible limit. One can also see that the drag and lift coefficients attain small values,
which correspond to the fact that in inviscid flow around a symmetric airfoil with zero angle of attack these quantities vanish.
Figure 6.16 shows the pressure isolines obtained with the aid of P1 and P4 approximations.

6.7.2 Low Mach number flow at incompressible limit

It is well-known that compressible flow with a very low Mach number is very close to incompressible flow. This fact allows us to
test the quality of numerical schemes for solving compressible low Mach number flow using a comparison with exact solutions
of the corresponding incompressible flow, which are available in some cases. Here we present two examples of stationary com-
pressible flow compared with incompressible flow. The steady-state solution was obtained with the aid of the time stabilization
using the backward Euler linearized semi-implicit scheme (6.130). The computational grids were constructed with the aid of
the anisotropic mesh adaptation technique by the ANGENER code [Dol00]. In both examples quadratic elements (p = 2) were
applied.

Irrotational flow around a Joukowski profile

We consider flow around a negatively oriented Joukowski profile given by parameters ∆ = 0.07, a = 0.5, h = 0.05 (under the
notation from [Fei93], Section 2.2.68) with zero angle of attack. The far-field quantities are constant, which implies that the
flow is irrotational and homoentropic. Using the complex function method from [Fei93], we can obtain the exact solution of
incompressible inviscid irrotational flow satisfying the Kutta–Joukowski trailing condition, provided the velocity circulation
around the profile, related to the magnitude of the far-field velocity, γref = 0.7158. We assume that the far-field Mach number of
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M∞ = 10−1

M∞ = 10−2

M∞ = 10−3

M∞ = 10−4

mesh

Figure 6.16: Low Mach number flow around the NACA 0012 profile for far-field Mach number M∞ = 10−1, 10−2, 10−3 and
10−4, with the aid of P1 (left) and P4 (right) polynomial approximation: pressure isolines and the used mesh with its detail
(bottom).
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M∞ p pmax−pmin

pmax

ρmax−ρmin

ρmax
cD cL

10−1 1 9.89E-03 7.08E-03 2.57E-04 1.46E-03
10−1 2 9.87E-03 7.09E-03 6.63E-05 1.20E-03
10−1 3 9.87E-03 7.06E-03 4.26E-05 7.97E-04
10−1 4 9.87E-03 7.06E-03 1.90E-05 6.83E-04
10−2 1 9.92E-05 7.10E-05 3.80E-04 1.80E-03
10−2 2 9.91E-05 7.11E-05 9.63E-05 1.22E-03
10−2 3 9.90E-05 7.65E-05 4.68E-05 1.11E-03
10−2 4 9.91E-05 7.13E-05 -5.73E-05 3.01E-04
10−3 1 9.92E-07 7.11E-07 3.95E-04 1.57E-03
10−3 2 9.93E-07 7.56E-07 3.74E-05 4.75E-04
10−3 3 9.90E-07 7.08E-07 5.70E-05 8.96E-04
10−3 4 9.90E-07 7.08E-07 3.69E-05 6.64E-04
10−4 1 9.88E-09 4.84E-08 -1.69E-05 5.42E-04
10−4 2 9.91E-09 8.29E-08 1.17E-04 1.10E-03
10−4 3 9.90E-09 2.51E-08 -9.56E-06 5.02E-04
10−4 4 9.93E-09 3.32E-08 -2.80E-04 3.17E-04

Table 6.6: Low Mach number flow around the NACA 0012 profile for far-field Mach number M∞ = 10−1, 10−2, 10−3 and 10−4,
with the aid of Pp, p = 1, . . . , 4, polynomial approximation: ratios (pmax − pmin)/pmax, (ρmax − ρmin)/ρmax, drag coefficient cD
and lift coefficient cL.

compressible flow M∞ = 10−4. The computational domain is of the form of a square with side of the length equal to 10 chords
of the profile from which the profile is removed. The mesh (in the whole computational domain) was formed by 5418 triangular
elements and refined towards the profile. Figure 6.17 (top) shows a detail near the profile of the velocity isolines for the exact
solution of incompressible flow and for the approximate solution of compressible flow. Further, in Figure 6.17 (bottom), the
distribution of the velocity related to the far-field velocity and the pressure coefficient distribution around the profile is plotted
in the direction from the leading edge to the trailing edge. The pressure coefficient was defined as 107 · (p − p∞), where p∞
denotes the far-field pressure.

The maximum density variation is 1.04 · 10−8. The computed velocity circulation related to the magnitude of the far-
field velocity is γrefcomp = 0.7205, which gives the relative error 0.66% with respect to the theoretical value γref obtained for
incompressible flow.

In order to establish the quality of the computed pressure of the low Mach compressible flow in a quantitative way, we
introduce the function

B =
p

ρ
+

1

2
|v|2, (6.210)

which is constant for incompressible, inviscid, irrotational flow, as follows from the Bernoulli equation. In the considered
compressible case, the relative variation of the function B, i.e., (Bmax −Bmin)/Bmax = 3.84 · 10−6, where Bmax = maxx∈ΩB(x)
and Bmin = minx∈ΩB(x). This means that the Bernoulli equation is satisfied with a small error in the case of the compressible
low Mach number flow computed by the developed method.

Rotational flow past a circular half-cylinder

In the second example we present the comparison of the exact solution of incompressible inviscid rotational flow past a circular
half-cylinder, with center at the origin and diameter equal to one, and with an approximate solution of compressible flow. The
far-field Mach number is 10−4 and the far-field velocity has the components v1 = x2, v2 = 0. The analytical exact solution
was obtained in [Fra61]. This flow is interesting for its corner vortices. The computational domain was chosen in the form
of a rectangle with length 10 and width 5, from which the half-cylinder was cut off. The mesh was formed by 3541 elements.
We present here computational results in the vicinity of the half-cylinder. Figure 6.18 shows streamlines of incompressible and
compressible flow. Figure 6.18 (bottom) shows the velocity distribution along the half-cylinder in dependence on the variable
ϑ− π/2, where ϑ ∈ [0, π] is the angle from cylindrical coordinates. The maximum density variation is 3.44 · 10−9.

Accuracy of the method

An interesting question is the order of accuracy of the semi-implicit DG method. We tested numerically the accuracy of the
piecewise quadratic DG approximations of the stationary inviscid flow past a circular cylinder with the far-field velocity parallel
to the axis x1 and the Mach number M∞ = 10−4. The problem was solved in a computational domain in the form of a square
with sides of length equal to 20 diameters of the cylinder. Table 6.7 presents the behaviour of the error in the magnitude
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Figure 6.17: Flow around a Joukowski airfoil, velocity isolines for the exact solution of incompressible flow (top left) and
approximate solution of compressible low Mach number flow (top right), velocity (left bottom) and pressure coefficient (right
bottom) distribution along the profile: exact solution of incompressible flow (dots) and the approximate solution of compressible
flow (full line).
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Figure 6.18: Flow past a half-cylinder, streamlines of rotational incompressible (top left) and compressible (top right) flows and
the velocity distribution (bottom) on the half-cylinder incompressible flow ( dots) and compressible flow (full line).
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#Th ‖error‖L∞(Ω) EOC
1251 5.05E-01 –
1941 4.23E-01 0.406
5031 2.77E-02 2.86
8719 6.68E-03 2.59

Table 6.7: Error in the L∞(Ω)-norm and corresponding experimental order of convergence for approximating incompressible
flow by low Mach number compressible flow with respect to h→ 0.

of the velocity related to the far-field velocity and experimental order of convergence (EOC) for approximating of the exact
incompressible solution by compressible low Mach number flow on successively refined meshes measured in the L∞(Ω)-norm.

We see that the experimental order of convergence is close to 2.5, which is comparable to theoretical error estimate (in the
L∞(0, T ;L2(Ω))-norm) obtained in Section 2.6.

6.7.3 Isentropic vortex propagation

We consider the propagation of an isentropic vortex in a compressible inviscid flow, analyzed numerically in [Shu98]. This
example is suitable for demonstrating the order of accuracy of the BDF-DGM, because the regular exact solution is known, and
thus we can simply evaluate the computational error.

The computational domain is taken as [0, 10]× [0, 10] and extended periodically in both directions. The mean flow is ρ̄ = 1,
v̄ = (1, 1) (diagonal flow) and p̄ = 1. To this mean flow we add an isentropic vortex, i.e., perturbation in v and the temperature
θ = p/ρ, but no perturbation in the entropy η = p/ργ :

δv =
ε

2π
exp[(1− r2)/2](−x̄2, x̄1), δθ = − (γ − 1)ε2

8γπ2
exp[1− r2], δη = 0, (6.211)

where (−x̄2, x̄1) = (x1− 5, x2− 5), r2 = x2
1 +x2

2, and the vortex strength ε = 5. The perturbations δρ and δp are obtained from
the above relations according to

η̄ = p̄/ρ̄γ , θ̄ = p̄/ρ̄,

δρ =

(
θ̄ + δθ

η̄

)1/(γ−1)

− ρ̄, δp = (ρ̄+ δρ)(θ̄ + δθ)− p̄.

It is possible to see that the exact solution of the Euler equations with the initial conditions

ρ(x, 0) = ρ̄+ δρ, v(x, 0) = v̄ + δv, p(x, 0) = p̄ + δp, (6.212)

and periodic boundary conditions is just the passive convection of the vortex with the mean velocity. Therefore, we are able
to evaluate the computational error ‖w −whτ‖ over the space-time domain QT := Ω × (0, T ), where w is the exact solution
and whτ is the approximate solution obtained by the time interpolation of the approximate solution computed by the n-step
BDF-DGM with the discretization parameters h and τ . This means that the function whτ is defined by

whτ (x, tk) = wk
h(x), x ∈ Ω, k = 0, . . . , r, (6.213)

whτ (x, t)|Ω×Ik = L n(wk+1
h ,wk

h, . . . ,w
k−n+1
k )|Ω×Ik ,

where Ik = (tk−1, tk) and L n is the Lagrange interpolation of degree n in the space R× Shp constructed over the pairs

(tk−n+1,w
k−n+1
h ), (tk−n+2,w

k−n+2
h ), . . . , (tk,w

k
h), (tk+1,w

k+1
h ).

In our computations we evaluate the following errors:

• ‖eh(T )‖(L2(Ω))m – error over Ω at the final time T ,

• |eh(T )|(H1(Ω))m – error over Ω at the final time T ,

• ‖ehτ‖(L2(QT ))m – error over the space-time cylinder Ω× (0, T ),

• ‖ehτ‖(L2(0,T ;H1(Ω)))m – error over the space-time cylinder Ω× (0, T ).
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h τ k = n ‖eh(T )‖L2(Ω) |eh(T )|H1(Ω) ‖ehτ‖L2(QT ) ‖ehτ‖L2(0,T ;H1(Ω))

5.87E-01 1.00E-02 1 8.54E-01 1.69E+00 1.71E+00 4.01E+00
2.84E-01 5.00E-03 1 3.30E-01 7.56E-01 6.27E-01 1.81E+00

EOC ( 1.31) ( 1.11) ( 1.38) ( 1.09)
1.41E-01 2.50E-03 1 1.50E-01 3.51E-01 2.82E-01 8.66E-01

EOC ( 1.13) ( 1.10) ( 1.15) ( 1.06)
5.87E-01 1.00E-02 2 3.93E-02 2.40E-01 9.64E-02 7.10E-01
2.84E-01 5.00E-03 2 3.84E-03 5.05E-02 1.02E-02 1.61E-01

EOC ( 3.20) ( 2.14) ( 3.09) ( 2.04)
1.41E-01 2.50E-03 2 6.69E-04 1.26E-02 1.55E-03 3.96E-02

EOC ( 2.51) ( 1.99) ( 2.70) ( 2.01)
5.87E-01 1.00E-02 3 3.97E-03 3.75E-02 1.19E-02 1.30E-01
2.84E-01 5.00E-03 3 4.89E-04 5.04E-03 1.47E-03 1.56E-02

EOC ( 2.88) ( 2.76) ( 2.88) ( 2.91)
1.41E-01 2.50E-03 3 1.14E-04 7.38E-04 3.45E-04 2.87E-03

EOC ( 2.09) ( 2.76) ( 2.08) ( 2.43)

Table 6.8: Isentropic vortex propagation: computational errors and the corresponding EOC.
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Figure 6.19: Isentropic vortex propagation: the isolines of the Mach number computed with the aid of P1 approximation on the
coarsest mesh (left) and P3 approximation of the finest one (right).

We perform the computation on unstructured quasi-uniform triangular grids having 580, 2484 and 10008 elements, which
corresponds to the average element size h = 0.587, h = 0.284 and h = 0.141, respectively. For each grid, we employ the k-step
BDF-DGM with Pk polynomial approximation, k = 1, 2, 3. We use a fixed time step τ = 0.01 on the coarsest mesh, τ = 0.005
on the middle one and τ = 0.0025 on the finest one. It means that the ratio h/τ is almost fixed for all computations. The final
time was set T = 10.

Table 6.8 shows the computational errors in the norms mentioned above for each case and also the corresponding experimental
orders of convergence (EOC). We observe that EOC measured in the H1-seminorm is roughly O(hk) for k = 1, 2, 3, cf. Remarks
6.13 and 6.18. On the other hand, EOC measured in the L2-norms are higher for k = 2 than for k = 3. However, the size of the
error is smaller for k = 3 than for k = 2.

Moreover, Figure 6.19 shows the isolines of the Mach number for P1 polynomial approximation on the coarsest mesh and for
P3 polynomial approximation on the finest mesh.

6.7.4 Supersonic flow

In order to demonstrate the applicability of the described DG schemes to the solution of supersonic flow with high Mach numbers,
we present an inviscid supersonic flow around the NACA 0012 profile with the far-field Mach number M∞ = 2 and the angle
of attack α = 2◦. This flow produces a strong oblique shock wave in front the leading edge of the profile. The computation
was performed on the anisotropically refined grid by the ANGENER code [Dol00] shown in Figure 6.20. We observe a strong
refinement along shock waves. Some elements in front of the oblique shock wave are very obtuse, however the DGM was able
to overcome this annoyance. Figure 6.21 shows the Mach number obtained with the aid of the P3 approximation. Due to the
applied shock capturing technique presented in Section 6.5 (with the same setting of all parameters α1, α2, ν1 and ν2), a good
resolution of the shock waves is obtained.
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Figure 6.20: Supersonic flow around the NACA 0012 profile (M∞ = 2, α = 2◦): the grid used, details around the profile (left)
and the leading edge (right).
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Figure 6.21: Supersonic flow around the NACA 0012 profile (M∞ = 2, α = 2◦): Mach number isolines, around of the profile
(left) and at the leading edge (right).
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Chapter 7

Viscous compressible flow

This chapter is devoted to the numerical simulation of viscous compressible flow. The methods treated here represent the gener-
alization of techniques for solving inviscid flow problems contained in Chapter 6. Viscous compressible flow is described by the
continuity equation, the Navier–Stokes equations of motion and the energy equation, to which we add closing thermodynamical
relations.

In the following, we introduce the DG space semidiscretization of the compressible Navier–Stokes equations with the aid of
the interior penalty Galerkin (IPG) techniques. Since the convective terms were treated in detail in Chapter 6, we focus on
discretization of viscous diffusion terms. We extend heuristically the approach developed in Chapter 1. Semidiscretization leads
to a system of ordinary differential equations (ODEs), which is solved by the approach presented in Chapter 6 for the Euler
equations. We demonstrate the accuracy, robustness and efficiency of the DG method in the solution of several flow problems.

7.1 Formulation of the viscous compressible flow problem

7.1.1 Governing equations

We shall consider unsteady compressible viscous flow in a domain Ω ⊂ Rd (d = 2 or 3) and time interval (0, T ) (0 < T < ∞).
In what follows, we present the governing equations. Their derivation can be found, e.g., in [FFS03, Section 1.2].

We use the standard notation: ρ - density, p - pressure (symbol p denotes the degree of polynomial approximation), E - total
energy, vs - components of the velocity vector v = (v1, . . . , vd)

T in the directions xs, s = 1, . . . , d, θ - absolute temperature,
cv > 0 - specific heat at constant volume, cp > 0 - specific heat at constant pressure, γ = cp/cv > 1 - Poisson adiabatic constant,
R = cp − cv > 0 - gas constant, τV

ij , i, j = 1, . . . , d - components of the viscous part of the stress tensor, q = (q1, . . . , qd) - heat
flux. We will be concerned with the flow of a perfect gas, for which the equation of state (6.1) reads as

p = Rρθ, (7.1)

and assume that cp, cv are constants. Since the gas is light, we neglect the outer volume force and heat sources.
The system of governing equations formed by the continuity equation, the Navier–Stokes equations of motion and the energy

equation (see [FFS03, Section 3.1]) considered in the space-time cylinder QT = Ω× (0, T ) can be written in the form

∂ρ

∂t
+

d∑
s=1

∂(ρvs)

∂xs
=0, (7.2)

∂(ρvi)

∂t
+

d∑
s=1

∂(ρvivs + δisp)

∂xs
=

d∑
s=1

∂τV
is

∂xs
, i = 1, . . . , d, (7.3)

∂E

∂t
+

d∑
s=1

∂((E + p)vs)

∂xs
=

d∑
s,j=1

∂(τV
sjvj)

∂xs
−

d∑
s=1

∂qs
∂xs

, (7.4)

p = (γ − 1)(E − ρ|v|2/2). (7.5)

As we see, system (7.2)–(7.4) consists of m = d + 2 partial differential equations. This whole system is usually simply called
compressible Navier–Stokes equations. The total energy is defined by the relation

E = ρ(cvθ + |v|2/2). (7.6)

The heat flux q = (q1, . . . , qd) satisfies the Fourier law

q = −k∇θ, (7.7)
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where k > 0 is the heat conductivity assumed here to be constant. This relation allows us to express the absolute temperature
θ in terms of the quantities E, ρ and |v|2. Furthermore, we consider the Newtonian type of fluid, i.e., the viscous part of the
stress tensor has the form

τV
sk = µ

(
∂vs
∂xk

+
∂vk
∂xs

)
+ λ∇ · v δsk, s, k = 1, . . . , d, (7.8)

where δsk is the Kronecker symbol and µ > 0 and λ are the viscosity coefficients. We assume that λ = − 2
3µ. It is valid, for

example, for a monoatomic gas, but very often it is also used for more complicated gases.
Moreover, we recall the definition of the speed of sound a and the Mach number M by

a =
√
γp/ρ, M = |v|/a. (7.9)

It appears suitable to write and solve numerically the Navier–Stokes equations describing viscous compressible flow in a
dimensionless form. We introduce the following positive reference (scalar) quantities: a reference length L∗, a reference velocity
U∗, a reference density ρ∗. All other reference quantities can be derived from these basic ones: we choose L∗/U∗ for t, ρ∗U∗2

for both p and E, U∗3/L∗ for heat sources q, U∗2/cv for θ. Then we can define the dimensionless quantities denoted here by
primes:

x′i = xi/L
∗, v′i = vi/U

∗, v′ = v/U∗, ρ′ = ρ/ρ∗, (7.10)

p′ = p/(ρ∗U∗2), E′ = E/(ρ∗U∗2), θ′ =
cvθ

U∗2
, t′ = t U∗/L∗.

Moreover, we introduce the Reynolds number Re and the Prandtl number Pr defined as

Re = ρ∗U∗L∗/µ, Pr = cp µ/k. (7.11)

In the sequel we denote the dimensionless quantities by the same symbols as the original dimensional quantities. This means
that v will denote the dimensionless velocity, p will denote the dimensionless pressure, etc. Then system (7.2)–(7.4) can be
written in the dimensionless form (cf. [FFS03])

∂w

∂t
+

d∑
s=1

∂fs(w)

∂xs
=

d∑
s=1

∂Rs(w,∇w)

∂xs
in QT , (7.12)

where

w = (w1, . . . , wd+2)
T

= (ρ, ρv1, . . . , ρvd, E)
T

(7.13)

is the state vector,

fs(w) =


fs,1(w)
fs,2(w)

...
fs,m−1(w)
fs,m(w)

 =


ρvs

ρv1vs + δ1,sp
...

ρvdvs + δd,sp
(E + p)vs

 , s = 1, . . . , d, (7.14)

are the inviscid (Euler) fluxes introduced already in (6.10). The expressions

Rs(w,∇w) =


Rs,1(w,∇w)
Rs,2(w,∇w)

...
Rs,m−1(w,∇w)
Rs,m(w,∇w)

 =


0
τV
s1
...
τV
sd∑d

k=1 τ
V
skvk + γ

Re Pr
∂θ
∂xs

 , s = 1, . . . , d, (7.15)

represent the viscous and heat conduction terms, and

τV
sk =

1

Re

(
∂vs
∂xk

+
∂vk
∂xs
− 2

3
∇ · v δsk

)
, s, k = 1, . . . , d, (7.16)

are the dimensionless components of the viscous part of the stress tensor. The dimensionless pressure and temperature are
defined by

p = (γ − 1)(E − ρ|v|2/2), θ = E/ρ− |v|2/2. (7.17)
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Of course, the set QT is obtained by the transformation of the original space-time cylinder using the relations for t′ and x′i.
The domain of definition of the vector-valued functions fs and Rs, s = 1, . . . , d, is the open set D ⊂ Rm of vectors

w = (w1, . . . , wm)T such that the corresponding density and pressure are positive:

D =
{
w ∈ Rm;w1 = ρ > 0, wm −

m−1∑
i=2

w2
i /(2w1) = p/(γ − 1) > 0

}
. (7.18)

Obviously, fs,Rs ∈ (C1(D))m, s = 1, . . . , d.
Similarly as in (6.13) – (6.17), the differentiation of the second term on the left-hand side of (7.12) and using the chain rule

give

d∑
s=1

∂fs(w)

∂xs
=

d∑
s=1

As(w)
∂w

∂xs
, (7.19)

where As(w) is the m×m Jacobi matrix of the mapping fs defined for w ∈ D:

As(w) =
Dfs(w)

Dw
=

(
∂fs,i(w)

∂wj

)m
i,j=1

, s = 1, . . . , d. (7.20)

Moreover, let

B1 = {n ∈ Rd; |n| = 1} (7.21)

denote the unit sphere in Rd. Then, for w ∈ D and n = (n1, . . . , nd)
T ∈ B1 we denote

P (w,n) =

d∑
s=1

fs(w)ns, (7.22)

which is the physical flux of the quantity w in the direction n. Obviously, the Jacobi matrix DP (w,n)/Dw can be expressed
in the form

DP (w,n)

Dw
= P(w,n) =

d∑
s=1

As(w)ns. (7.23)

The explicit form of the matrices As, s = 1, . . . , d, and P is given in Exercises 6.2 – 6.5.
Furthermore, the viscous terms Rs(w,∇w) can be expressed in the form

Rs(w,∇w) =

d∑
k=1

Ks,k(w)
∂w

∂xk
, s = 1, . . . , d, (7.24)

where Ks,k(·) are m×m matrices (m = d+ 2) dependent on w. These matrices Ks,k := (K
(α,β)
s,k )d+2

α,β=1, s, k = 1, . . . , d, have for
d = 3 the following form:

K1,1(w) =


0 0 0 0 0

− 4
3

w2

Rew2
1

4
3

1
Rew1

0 0 0

− w3

Rew2
1

0 1
Rew1

0 0

− w4

Rew2
1

0 0 1
Rew1

0

K
(5,1)
1,1

1
Re ( 4

3 −
γ
Pr )w2

w2
1

1
Re (1− γ

Pr )w3

w2
1

1
Re (1− γ

Pr )w4

w2
1

γ
Re Pr

1
w1

 , (7.25)

with K
(5,1)
1,1 = − 1

Re

(
4
3w

2
2 + w2

3 + w2
4

)
/w3

1 + γ
Re Pr

(
−w5/w

2
1 + (w2

2 + w2
3 + w2

4)/w3
1

)
,

K2,2(w) =


0 0 0 0 0

− w2

Rew2
1

1
Rew1

0 0 0

− 4
3

w3

Rew2
1

0 4
3

1
Rew1

0 0

− w4

Rew2
1

0 0 1
Rew1

0

K
(5,1)
2,2

1
Re (1− γ

Pr )w2

w2
1

1
Re ( 4

3 −
γ
Pr )w3

w2
1

1
Re (1− γ

Pr )w4

w2
1

γ
Re Pr

1
w1

 , (7.26)
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with K
(5,1)
2,2 = − 1

Re

(
w2

2 + 4
3w

2
3 + w2

4

)
/w3

1 + γ
Re Pr

(
−w5/w

2
1 + (w2

2 + w2
3 + w2

4)/w3
1

)
,

K3,3(w) =


0 0 0 0 0

− w2

Rew2
1

1
Rew1

0 0 0

− w3

Rew2
1

0 1
Rew1

0 0

− 4
3

w4

Rew2
1

0 0 4
3

1
Rew1

0

K
(5,1)
3,3

1
Re (1− γ

Pr )w2

w2
1

1
Re (1− γ

Pr )w3

w2
1

1
Re ( 4

3 −
γ
Pr )w4

w2
1

γ
Re Pr

1
w1

 , (7.27)

with K
(5,1)
3,3 = − 1

Re

(
w2

2 + w2
3 + 4

3w
2
4

)
/w3

1 + γ
Re Pr

(
−w5/w

2
1 + (w2

2 + w2
3 + w2

4)/w3
1

)
,

K1,2(w) =


0 0 0 0 0

2
3

w3

Rew2
1

0 − 2
3

1
Rew1

0 0

− w2

Rew2
1

1
Rew1

0 0 0

0 0 0 0 0
− 1

3
w2 w3

Rew3
1

w3

Rew2
1
− 2

3
w2

Rew2
1

0 0

 , (7.28)

K1,3(w) =


0 0 0 0 0

2
3

w4

Rew2
1

0 0 − 2
3

1
Rew1

0

0 0 0 0 0
− w2

Rew2
1

1
Rew1

0 0 0

− 1
3
w2 w4

Rew3
1

w4

Rew2
1

0 − 2
3

w2

Rew2
1

0

 , (7.29)

K2,1(w) =


0 0 0 0 0

− w3

Rew2
1

0 1
Rew1

0 0
2
3

w2

Rew2
1
− 2

3
1

Rew1
0 0 0

0 0 0 0 0
− 1

3
w2 w3

Rew3
1
− 2

3
w3

Rew2
1

w2

Rew2
1

0 0

 , (7.30)

K2,3(w) =


0 0 0 0 0
0 0 0 0 0

2
3

w4

Rew2
1

0 0 − 2
3

1
Rew1

0

− w3

Rew2
1

0 1
Rew1

0 0

− 1
3
w3 w4

Rew3
1

0 w4

Rew2
1
− 2

3
w2

Rew2
1

0

 , (7.31)

K3,1(w) =


0 0 0 0 0

− w4

Rew2
1

0 0 1
Rew1

0

0 0 0 0 0
2
3

w2

Rew2
1
− 2

3
1

Rew1
0 0 0

− 1
3
w2 w4

Rew3
1
− 2

3
w4

Rew2
1

0 w2

Rew2
1

0

 , (7.32)

K3,2(w) =


0 0 0 0 0
0 0 0 0 0

− w4

Rew2
1

0 0 1
Rew1

0
2
3

w3

Rew2
1

0 − 2
3

1
Rew1

0 0

− 1
3
w3 w4

Rew3
1

0 − 2
3

w4

Rew2
1

w3

Rew2
1

0

 . (7.33)

Exercise 7.1. Verify the form of Ks,k, s, k = 1, 2, 3, given by (7.25)–(7.33).

Exercise 7.2. Derive the form of Ks,k, s, k = 1, 2, for d = 2.
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7.1.2 Initial and boundary conditions

In order to formulate the problem of viscous compressible flow, the system of the Navier–Stokes equations (7.12) has to be
equipped with initial and boundary conditions. Let Ω ⊂ Rd, d = 2, 3, be a bounded computational domain with a piecewise
smooth boundary ∂Ω. We prescribe the initial condition

w(x, 0) = w0(x), x ∈ Ω, (7.34)

where w0 : Ω→ D is a given vector-valued function.
Concerning the boundary conditions, we distinguish (as in Section 6) the following disjoint parts of the boundary ∂Ω: inlet

∂Ωi, outlet ∂Ωo and impermeable walls ∂ΩW , i.e., ∂Ω = ∂Ωi ∪ ∂Ωo ∪ ∂ΩW . We prescribe the following boundary conditions on
individual parts of the boundary:

ρ = ρD, v = vD,

d∑
k=1

(
d∑
l=1

τV
lknl

)
vk +

γ

Re Pr

∂θ

∂n
= 0 on ∂Ωi, (7.35)

d∑
k=1

τV
sknk = 0, s = 1, . . . , d,

∂θ

∂n
= 0 on ∂Ωo, (7.36)

v = 0,
∂θ

∂n
= 0 on ∂ΩW , (7.37)

where ρD and vD are given functions and n = (n1, . . . , nd) is the outer unit normal to ∂Ω. Another possibility is to replace the
adiabatic boundary condition (7.37) by

v = 0, θ = θD on ∂ΩW , (7.38)

with a given function θD defined on ∂ΩW . Moreover, in the sequel we shall also apply boundary conditions in the discretization
of the convective terms, similarly as in Section 6.3.

Finally, we introduce two relations, which we employ in the DG discretization. If w is the state vector satisfying the outlet
boundary condition (7.36), then, using (7.15) and (7.24), on ∂Ωo we have

d∑
s=1

Rs(w,∇w)ns

∣∣∣∣∣
∂Ωo

=



0∑d
s=1 τ

V
s1ns

...∑d
s=1 τ

V
sdns∑d

k,s=1 τ
V
sknkvs + γ

Re Pr

∑d
s=1

∂θ
∂xs

ns


= 0. (7.39)

Therefore, condition (7.36) represents the so-called “do-nothing” boundary condition.
Moreover, if w is the state vector satisfying the no-slip wall boundary condition (7.37), then using (7.15) we have

d∑
s,k=1

Ks,k(w)
∂w

∂xk
ns

∣∣∣∣∣
∂ΩW

=


0∑d

s=1 τ
V
1sns

...∑d
s=1 τ

V
dsns

0

 =:

d∑
s,k=1

KWs,k(w)
∂w

∂xk
ns

∣∣∣∣∣
∂ΩW

, (7.40)

where τV
ks are the components of the viscous part of the stress tensor and KWs,k, s, k = 1, . . . , d, are the matrices that have the

last row equal to zero and the other rows are identical with the rows of Ks,k, s, k = 1, . . . , d, i.e.,

KWs,k = (KW,(i,j)s,k )mi,j=1, where (7.41)

KW,(i,j)s,k =

{
K(i,j)
s,k for i = 1, . . . ,m− 1, j = 1, . . . ,m,

0 for i = m, j = 1, . . . ,m,
s, k = 1, . . . , d,

where Ks,k are given by (7.24).

7.2 DG space semidiscretization

In the following, we describe the discretization of the Navier–Stokes equations (7.12) by the DGM. Similarly as in Chapter 6,
we derive the DG space semidiscretization leading to a system of ordinary differential equations.
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7.2.1 Notation

We use the same notation as in Section 6.2.1. It means that we assume that the domain Ω is polygonal (if d = 2) or polyhedral
(if d = 3), Th is a triangulation of Ω and Fh denotes the set of all faces of elements from Th. Further, FIh , F ih, Foh and FWh
denote the set of all interior, inlet, outlet and wall faces, respectively. Moreover, we put FBh = FWh ∪F ih∪Foh. Each face Γ ∈ Fh
is associated with a unit normal nΓ, which is the outer unit normal to ∂Ω on Γ ∈ FhB .

Further, over Th we define the broken Sobolev space of vector-valued functions

H2(Ω, Th) = (H2(Ω, Th))m, (7.42)

where

H2(Ω, Th) = {v : Ω→ R; v|K ∈ H2(K) ∀K ∈ Th} (7.43)

is the broken Sobolev space of scalar functions introduced by (1.29) (cf. (6.39)–(6.40)). The symbols [u]Γ and 〈u〉Γ denote the
jump and the mean value of u ∈H2(Ω, Th) on Γ ∈ FIh and [u]Γ = 〈u〉Γ = u|Γ for Γ ∈ FBh . The approximate solution is sought
in the space of piecewise polynomial functions

Shp = (Shp)
m, (7.44)

where

Shp =
{
v ∈ L2(Ω); v|K ∈ Pp(K) ∀K ∈ Th

}
. (7.45)

Finally, let us note that the inviscid Euler fluxes fs, s = 1, . . . , d, are discretized (including the boundary conditions) with
the same approach as presented in Section 6.2.2. Therefore, we will pay attention here mainly to the discretization of the viscous
terms.

7.2.2 DG space semidiscretization of viscous terms

In order to derive the discrete problem, we assume that there exists an exact solution w ∈ C1([0, T ];H2(Ω, Th)) of the Navier–
Stokes equations (7.12). We multiply (7.12) by a test function ϕϕϕ ∈H2(Ω, Th), integrate over an element K ∈ Th, apply Green’s
theorem and sum over all K ∈ Th. Then we can formally write∑

K∈Th

∫
K

∂w

∂t
·ϕϕϕdx+ Inv + Vis = 0, (7.46)

where

Inv =
∑
K∈Th

∫
∂K

d∑
s=1

fs(w)ns ·ϕϕϕdS −
∑
K∈Th

∫
K

d∑
s=1

fs(w) · ∂ϕϕϕ
∂xs

dx (7.47)

Vis =−
∑
K∈Th

∫
∂K

d∑
s=1

Rs(w,∇w)ns ·ϕϕϕdS +
∑
K∈Th

∫
K

d∑
s=1

Rs(w,∇w) · ∂ϕϕϕ
∂xs

dx (7.48)

represent the inviscid and viscous terms and (n1, . . . , nd) is the outer unit normal to ∂K.
The inviscid terms Inv are discretized by the technique presented in Chapter 6, namely, by (6.53). Hence,

Inv ≈ bh(w,ϕϕϕ), (7.49)

where bh is the convection form, given by (6.93). Let us mention that now the inviscid mirror boundary condition (6.68) is
replaced by the viscous mirror boundary condition with the viscous mirror operator

M (w) = (ρ,−ρv, E)
T

, (7.50)

replacing (6.67).
Here, we focus on the discretization of the viscous terms Vis. Similarly as in (1.36), we rearrange the first term in (7.48)

according to the type of faces Γ, i.e.,

∑
K∈Th

∫
∂K

d∑
s=1

Rs(w,∇w)ns ·ϕϕϕdS (7.51)

=
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈Rs(w,∇w)〉 ns · [ϕϕϕ] dS +
∑

Γ∈FBh

∫
Γ

d∑
s=1

Rs(w,∇w)ns ·ϕϕϕdS.
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Let us deal with treating of the boundary conditions on the outlet, where only the ”Neumann” boundary conditions are
prescribed. With the aid of (7.39), we immediately get the relation

∑
Γ∈Foh

∫
Γ

d∑
s=1

Rs(w,∇w)ns ·ϕϕϕdS = 0. (7.52)

Concerning the boundary conditions on the inlet and fixed walls, the situation is more complicated, because both the Dirichlet
and Neumann boundary conditions are prescribed there. However, using (7.48), (7.51), (7.52) and (7.24), we obtain

Vis =
∑
K∈Th

∫
K

d∑
s=1

Rs(w,∇w) · ∂ϕϕϕ
∂xs

dx (7.53)

−
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

Ks,k(w)
∂w

∂xk

〉
ns · [ϕϕϕ] dS

−
∑

Γ∈Fih

∫
Γ

d∑
s=1

d∑
k=1

Ks,k(w)
∂w

∂xk
ns ·ϕϕϕdS

−
∑

Γ∈FWh

∫
Γ

d∑
s=1

d∑
k=1

Ks,k(w)
∂w

∂xk
ns ·ϕϕϕdS.

In the last term of (7.53), we shall use relation (7.40) following from the wall boundary condition (7.37). Hence, we obtain

Vis =
∑
K∈Th

∫
K

d∑
s=1

Rs(w,∇w) · ∂ϕϕϕ
∂xs

dx (7.54)

−
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

Ks,k(w)
∂w

∂xk

〉
ns · [ϕϕϕ] dS

−
∑

Γ∈Fih

∫
Γ

d∑
s=1

d∑
k=1

Ks,k(w)
∂w

∂xk
ns ·ϕϕϕdS

−
∑

Γ∈FWh

∫
Γ

d∑
s=1

d∑
k=1

KWs,k(w)
∂w

∂xk
ns ·ϕϕϕdS.

Similarly as in Section 1.4, relation (1.44), we have to add to the relation (7.54) a stabilization term, which vanishes for
a smooth solution satisfying the Dirichlet boundary conditions. Analogous to scalar problems, by the formal exchange of
arguments w and ϕϕϕ in the second term of (7.54), for the interior faces we obtain the expression

−Θ
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

Ks,k(w)
∂ϕϕϕ

∂xk

〉
ns · [w] dS (7.55)

with Θ = −1 or 1 depending on the type of stabilization, i.e., NIPG or SIPG variants. If we do not consider this stabilization,
i.e., if Θ = 0, we get the simple IIPG variant. However, numerical experiments indicate that this choice of stabilization is
not suitable. It is caused by the fact that for ϕϕϕ = (ϕ1, 0, . . . , 0)

T

, ϕ1 ∈ H2(Ω, Th), ϕ1 6= const, we obtain a nonzero term
(7.55), whereas all terms in (7.54) are equal to zero, because the first rows of Rs, Ks,k, s, k = 1, . . . , d, vanish, see (7.15) and
(7.25) – (7.33). This means that we would get nonzero additional terms on the right-hand side of the continuity equation, which
is zero in the continuous problem. Therefore, in [BO99], [HH06a], [HH06b], the stabilization term

−Θ
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

K
T

s,k(w)
∂ϕϕϕ

∂xk

〉
ns[w] dS (7.56)

was proposed. This avoids the drawback mentioned above. Here, KT

s,k denotes the matrix transposed to Ks,k, s, k = 1, . . . , d.

Obviously, expression (7.56) vanishes for w(t) ∈ (H2(Ω))m, t ∈ (0, T ).
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Moreover, similarly as in Section 1.4, we consider an extra stabilization term for the boundary faces, where at least one
Dirichlet boundary condition is prescribed. Particularly, for the inlet part of the boundary, we add

−Θ
∑

Γ∈Fih

∫
Γ

d∑
s,k=1

K
T

s,k(w)
∂ϕϕϕ

∂xk
ns(w −wB) dS, (7.57)

where wB is a boundary state. It is defined on the basis of the prescribed density ρ and the velocity v in condition (7.35) and
the extrapolation of the absolute temperature. This yields the boundary state

wB |Γ := (ρD, ρDvD,1, . . . , ρDvD,d, ρDθ
(L)
Γ +

1

2
ρD|vD|2)

T

, Γ ∈ F ih, (7.58)

where θ
(L)
Γ is the trace of the temperature on Γ ∈ F ih from the interior of Ω, and ρD and vD = (vD,1, . . . , vD,d) are the prescribed

density and velocity from (7.35), respectively.
In the case of the flow past an airfoil, when usually the far-field state vector wBC is prescribed, it is possible to define wB

to agree with the inviscid boundary conditions introduced in Section 6.3.2. In this case, we put

wB |Γ := B(w
(L)
Γ ,wBC), Γ ∈ F ih, (7.59)

where the inlet/outlet boundary operator B represents Bphys, BLRP and BRP given by (6.88), (6.85) and (6.92), respectively,

and w
(L)
Γ is the trace of the state vector on Γ ∈ F ih from the interior of Ω.

The last term in (7.54) is stabilized by the expression

−Θ
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

(KWs,k(w))
T ∂ϕϕϕ

∂xk
ns(w −wB) dS, (7.60)

where (KWs,k(w))
T

is the transposed matrix to KWs,k(w), s, k = 1, . . . ,m, and wB is the prescribed boundary state vector. In the
case of the adiabatic boundary condition (7.37), we define the boundary state as

wB |Γ := (ρ
(L)
Γ , 0, . . . , 0, ρ

(L)
Γ θ

(L)
Γ )

T

, Γ ∈ FWh , (7.61)

where ρ
(L)
Γ and θ

(L)
Γ are the traces of the density and temperature on Γ ∈ FWh from the interior of Ω, respectively. In the case

of the boundary condition (7.38), we put

wB |Γ := (ρ
(L)
Γ , 0, . . . , 0, ρ

(L)
Γ θD)

T

, Γ ∈ FWh , (7.62)

where ρ
(L)
Γ is the trace of the density on Γ ∈ FWh and θD is the prescribed temperature on the solid wall ∂ΩW .

As we see, the boundary state wB depends partly on the unknown solution w and partly on the prescribed Dirichlet boundary
conditions. Hence, we can write

wB = BC(w,uD), (7.63)

where uD represents the Dirichlet boundary data and BC represents the definitions of boundary states (7.58), (7.59), (7.61)
and (7.62).
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Analogous to the DG discretization of the model problem in Section 1.4, for w, ϕϕϕ ∈H2(Ω, Th) we define the viscous form

ah(wh,ϕϕϕh) =
∑
K∈Th

∫
K

d∑
s,k=1

(
Ks,k(wh)

∂wh

∂xk

)
· ∂ϕϕϕh
∂xs

dx (7.64)

−
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

Ks,k(wh)
∂wh

∂xk

〉
ns · [ϕϕϕh] dS

−
∑

Γ∈Fih

∫
Γ

d∑
s,k=1

Ks,k(wh)
∂wh

∂xk
ns ·ϕϕϕh dS

−
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

KWs,k(wh)
∂wh

∂xk
ns ·ϕϕϕh dS

−Θ

∑
Γ∈FIh

∫
Γ

d∑
s,k=1

〈
KT
s,k(wh)

∂ϕϕϕh
∂xk

〉
ns · [wh] dS

+
∑

Γ∈Fih

∫
Γ

d∑
s,k=1

KT
s,k(wh)

∂ϕϕϕh
∂xk

ns · (wh −wB) dS

+
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

(
KWs,k(wh)

)T ∂ϕϕϕh
∂xk

ns · (wh −wB) dS

 .

We consider Θ = −1, 0, 1 and get the NIPG, IIPG and SIPG variant of the viscous form, respectively.
Similarly as in Section 1.4, relations (1.41) – (1.42), in the scheme we include interior and boundary penalty terms, vanishing

for the smooth solution satisfying the boundary conditions. Here we define the form

Jσh (wh,ϕϕϕh) :=
∑

Γ∈FIh

∫
Γ

σ[wh] · [ϕϕϕh] dS +
∑

Γ∈Fih

∫
Γ

σ(wh −wB) ·ϕϕϕh dS

+
∑

Γ∈FWh

∫
Γ

σ(wh −wB) · V (ϕϕϕh) dS, (7.65)

where, in view of (7.63), wB = BC(wh,uh) is the boundary state vector (given either by (7.58) or (7.59) for Γ ∈ F ih and either
by (7.61) or (7.62) for Γ ∈ FWh ). The operator V : Rd+2 → Rd+2 is defined as

V (ϕϕϕ) := (0, ϕ2, . . . , ϕd+1, 0)
T

for ϕϕϕ = (ϕ1, ϕ2, . . . , ϕd+1, ϕd+2)
T

. (7.66)

The role of V is to penalize only the components of w, for which the Dirichlet boundary conditions are prescribed on fixed
walls. Let us mention that we penalize all components of w on the inlet. It would also be possible to define a similar operator
V for Γ ∈ F ih. However, numerical experiments show that it is not necessary.

The penalty weight σ is chosen as

σ|Γ =
CW

diam(Γ) Re
, Γ ∈ Fh, (7.67)

where Re is the Reynolds number of the flow, and CW > 0 is a suitable constant which guarantees the stability of the method.
Its choice depends on the variant of the DG method used (NIPG, IIPG or SIPG), see Section 7.4.1, where the choice of CW is
investigated with the aid of numerical experiments. The expression diam(Γ) can be replaced by the value hΓ defined in Section
1.6. (Another possibility was used in [HH06a].)

We conclude that if w is a sufficiently regular exact solution of (7.12) satisfying the boundary conditions (7.35) - (7.37),
then the viscous expression Vis from (7.48) can be rewritten in the form

Vis = ah(w,ϕϕϕ) + Jσh (w,ϕϕϕ) ∀ϕϕϕ ∈H2(Ω, Th). (7.68)

7.2.3 Semidiscrete problem

Now, we complete the DG space semidiscretization of (7.12). By (·, ·) we denote the scalar product in the space (L2(Ω))d+2:

(w,ϕϕϕ) =

∫
Ω

w ·ϕϕϕdx, w, ϕϕϕ ∈ (L2(Ω))d+2. (7.69)
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From (7.46), where we interchange the time derivative and integral in the first term, (7.47) and (7.68) we obtain the identity

d

dt
(w(t),ϕϕϕ) + bh(w(t),ϕϕϕ) + ah(w(t),ϕϕϕ) + Jσh (w(t),ϕϕϕ) = 0 (7.70)

∀ϕϕϕ ∈H2(Ω, Th) ∀ t ∈ (0, T ),

In the discrete problem, because of the solution of high-speed flow containing discontinuities (shock waves and contact
discontinuities, slightly smeared by the viscosity and heat conduction), we shall also consider the artificial viscosity forms βββh
and γγγh introduced in (6.183) and (6.184), respectively. Therefore, we set

ch(w,ϕϕϕ) =bh(w,ϕϕϕ) + ah(w,ϕϕϕ) + Jσh (w,ϕϕϕ) (7.71)

+ βββh(w,w,ϕϕϕ) + γγγh(w,w,ϕϕϕ), w,ϕϕϕ ∈H2(Ω, Th),

with the forms bh, ah, Jσh , βββh and γγγh defined by (6.93), (7.64), (7.65), (6.183) and (6.184), respectively. The expressions in
(7.70) – (7.71) make sense for w,ϕϕϕ ∈ H2(Ω, Th). For each t ∈ [0, T ] the approximation of w(t) will be sought in the finite-
dimensional space Shp ⊂ H2(Ω, Th) defined by (7.44) – (7.45). Using (7.70), we immediately arrive at the definition of an
approximate solution.

Definition 7.3. We say that a function wh is the space semidiscrete solution of the compressible Navier–Stokes equations
(7.12), if the following conditions are satisfied:

wh ∈ C1([0, T ];Shp), (7.72a)

d

dt
(wh(t),ϕϕϕh) + ch(wh(t),ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp ∀ t ∈ (0, T ), (7.72b)

wh(0) = Πhw
0, (7.72c)

where Πhw
0 is an Shp-approximation of w0 from the initial condition (7.34). Usually it is defined as the L2(Ω)-projection on

the space Shp.

7.3 Time discretization

The space semidiscrete problem (7.72) represents a system of Nhp ordinary differential equations (ODEs), where Nhp is equal to
the dimension of the space Shp. This system has to be solved with the aid of a suitable numerical scheme. Often the Runge–Kutta
methods are used. (See e.g., Section ??.) However, they are conditionally stable and the CFL stability condition represents
a strong restriction of the time step. This is the reason that we will be concerned with using implicit or semi-implicit time
discretizations. We follow the approach developed in Section 6.4.1 and introduce the backward Euler and the BDF discretization
of the ODE system (7.72). Then we develop the solution strategy of the corresponding nonlinear algebraic systems with the aid
of the Newton-like method based on the flux matrix. In Chapter ??, the full space-time discontinuous Galerkin method will be
described and applied to the solution of flows in time-dependent domains and fluid-structure interaction problems.

7.3.1 Time discretization schemes

In what follows, we consider a partition 0 = t0 < t1 < t2 . . . < tr = T of the time interval [0, T ] and set τk = tk−tk−1, k = 1, . . . , r.
We use the symbol wk

h for the approximation of wh(tk), k = 1, . . . , r.
Similarly as in Definitions 6.12 and 6.16, we define the following methods for the time discretization of (7.72).

Definition 7.4. We say that the finite sequence of functions wk
h, k = 0, . . . , r, is an approximate solution of problem (7.12)

obtained by the backward Euler – discontinuous Galerkin method (BE-DGM), if the following conditions are satisfied:

wk
h ∈ Shp, k = 0, 1, . . . , r, (7.73a)

1

τk

(
wk
h −wk−1

h ,ϕϕϕh
)

+ ch(wk
h,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Shp, k = 1, . . . , r, (7.73b)

w0
h = Πhw

0, (7.73c)

where Πhw
0 is the Shp-approximation of w0.

Definition 7.5. We say that the finite sequence of functions wk
h, k = 0, . . . , r, is the approximate solution of (7.12) computed

by the n-step backward difference formula – discontinuous Galerkin method (BDF-DGM) if the following conditions are satisfied:
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wk
h ∈ Shp, k = 0, 1, . . . , r, (7.74a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ ch

(
wk
h,ϕϕϕh

)
= 0 ∀ϕϕϕh ∈ Shp, k = n, . . . , r, (7.74b)

w0
h = Πhw

0, (7.74c)

wl
h ∈ Shp, l = 1, . . . , n− 1, are determined by a suitable q-step method

with q < n or by an explicit Runge–Kutta method – cf. Section ??. (7.74d)

The BDF coefficients αn,l, l = 0, . . . , n, depend on time steps τk−l, l = 0, . . . , n. They can be derived from the Lagrange
interpolation of pairs [tk−l,w

k−l
h ], l = 0, . . . , n, see e.g. [HNW00]. Tables 6.2 and 6.3 show their values in the case of constant

and variable time steps for n = 1, 2, 3. One-step BDF-DGM is identical with BE-DGM defined by (7.73).

Remark 7.6. By virtue of Remark 6.13 and Chapters 1–??, we expect that the BE-DGM has formally the order of accuracy
O(hp+τ) in the L∞(0, T ;L2(Ω))-norm as well as in the L2(0, T ;H1(Ω))-seminorm, provided that the exact solution is sufficiently
regular. Concerning the stability of the BDF-DGM, we refer to Remark 6.17.

Schemes (7.73) and (7.74) represent nonlinear algebraic systems for each time level tk, k = 1, . . . , r, which should be solved
by a suitable technique. It will be discussed in the following sections.

7.3.2 Solution strategy

Since the backward Euler method (7.73) is a special case of the BDF discretization (7.74), we deal here only with the latter
case. The nonlinear algebraic system arising from (7.74) for each k = n, . . . , r will be solved by the Newton-like method based
on the approximation of the Jacobi matrix by the flux matrix, which was developed in Sections 6.4.3–6.4.5.

Again, let Nhp denote the dimension of the piecewise polynomial space Shp and let Bhp = {ϕϕϕi(x), i = 1, . . . , Nhp} be a basis
of Shp, see Section 6.4.8. Using the isomorphism (6.96) between wk

h ∈ Shp and ξξξk ∈ RNhp , we define the vector-valued function
Fh : (RNhp)n × RNhp → RNhp by

Fh
({
ξξξk−l

}n
l=1

;ξξξk
)

=

(
1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕi

)
+ ch(wk

h,ϕϕϕi)

)Nhp
i=1

, k = n, . . . , r, (7.75)

where ξξξk−l ∈ RNhp is the algebraic representation of wk−l
h ∈ Shp for l = 1, . . . , n. We do not emphasize that Fh depends

explicitly on τk. Then scheme (7.74) has the following algebraic representation. If ξξξk−l, l = 1, . . . , n, (k = 1, . . . , r) are given
vectors, then we want to find ξξξk ∈ RNhp such that

Fh(
{
ξξξk−l

}n
l=1

;ξξξk) = 0. (7.76)

System (7.76) is strongly nonlinear. In order to solve (7.76) with the aid of the Newton-like method based on the flux matrix,
presented in Section 6.4.3, we have to linearize the form ch similarly as the form bh was linearized in (6.137).

To this end, on the basis of (7.64) we introduce the forms

aLh (w̄h,wh,ϕϕϕh) =
∑
K∈Th

∫
K

d∑
s,k=1

(
Ks,k(w̄h)

∂wh

∂xk

)
· ∂ϕϕϕh
∂xs

dx (7.77)

−
∑

Γ∈FIh

∫
Γ

d∑
s=1

〈
d∑
k=1

Ks,k(w̄h)
∂wh

∂xk

〉
ns · [ϕϕϕh] dS

−
∑

Γ∈Fih

∫
Γ

d∑
s,k=1

Ks,k(w̄h)
∂wh

∂xk
ns ·ϕϕϕh dS

−
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

KWs,k(w̄h)
∂wh

∂xk
ns ·ϕϕϕh dS

−Θ

∑
Γ∈FIh

∫
Γ

d∑
s,k=1

〈
KT
s,k(w̄h)

∂ϕϕϕh
∂xk

〉
ns · [wh] dS
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+
∑

Γ∈Fih

∫
Γ

d∑
s,k=1

KT
s,k(w̄h)

∂ϕϕϕh
∂xk

ns ·wh dS

+
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

(
KWs,k(w̄h)

)T ∂ϕϕϕh
∂xk

ns ·wh dS

 ,

ãh(w̄h,ϕϕϕh) =−Θ

∑
Γ∈Fih

∫
Γ

d∑
s,k=1

KT
s,k(w̄h)

∂ϕϕϕh
∂xk

ns · w̄B dS (7.78)

+
∑

Γ∈FWh

∫
Γ

d∑
s,k=1

(
KWs,k(w̄h)

)T ∂ϕϕϕh
∂xk

ns · w̄B dS

 ,

where w̄B = BC(w̄h,uD) is the boundary state vector given either by (7.58) or (7.59) for Γ ∈ F ih and either by (7.61) or (7.62)
for Γ ∈ FWh . The above forms are consistent with the form ah:

ah(wh,ϕϕϕh) = aLh (wh,wh,ϕϕϕh)− ãh(wh,ϕϕϕh) ∀wh,ϕϕϕh ∈ Shp. (7.79)

The form aLh is linear with respect to the second and third variables.
Furthermore, because of the penalty form Jσh given by (7.65), we introduce the forms

Jσ,Lh (wh,ϕϕϕh) =
∑

Γ∈FIh

∫
Γ

σ[wh] · [ϕϕϕh] dS +
∑

Γ∈Fih

∫
Γ

σwh ·ϕϕϕh dS (7.80)

+
∑

Γ∈FWh

∫
Γ

σwh · V (ϕϕϕh) dS,

J̃σh (w̄h,ϕϕϕh) =
∑

Γ∈Fih

∫
Γ

σw̄B ·ϕϕϕh dS +
∑

Γ∈FWh

∫
Γ

σw̄B · V (ϕϕϕh) dS, (7.81)

where w̄B = BC(w̄h,uD) is the boundary state vector corresponding to the function w̄h. Obviously,

Jσh (wh,ϕϕϕh) = Jσ,Lh (wh,ϕϕϕh)− J̃σh (wh,ϕϕϕh) ∀wh,ϕϕϕh ∈ Shp. (7.82)

Finally, let bh, bLh and b̃h be the forms defined by (6.93), (6.123) and (6.121), respectively. By virtue of (7.71), we define
the forms

cLh (w̄h,wh,ϕϕϕh) =bLh (w̄h,wh,ϕϕϕ) + aLh (w̄h,wh,ϕϕϕh) + Jσ,Lh (wh,ϕϕϕh) (7.83)

+ βββh(w̄h,wh,ϕϕϕh) + γγγh(w̄h,wh,ϕϕϕh), w̄h,wh,ϕϕϕh ∈ Shp,

c̃h(w̄h,ϕϕϕh) =b̃h(w̄h,ϕϕϕh) + ãh(w̄h,ϕϕϕh) + J̃σh (w̄h,ϕϕϕh), w̄h,ϕϕϕh ∈ Shp,

which together with (6.137), (7.79) and (7.82) imply consistency:

ch(wh,ϕϕϕh) = cLh (wh,wh,ϕϕϕh)− c̃h(wh,ϕϕϕh), wh,ϕϕϕh ∈ Shp. (7.84)

Following directly the approach from Section 6.4.5, we transform problem (7.88b) into a system of algebraic equations.
Instead of (6.138) and (6.139), for k = n, . . . , r we define the flux matrix Ch and the vector dh by

Ch
(
ξ̄ξξ
)

=

(
αn,0
τk

(
ϕϕϕj ,ϕϕϕi

)
+ cLh (w̄h,ϕϕϕj ,ϕϕϕi)

)Nhp
i,j=1

(7.85)

and

dh
({
ξξξk−l

}n
l=1

, ξ̄ξξ
)

=

(
1

τk

(
n∑
i=1

αn,iw
k−l
h ,ϕϕϕi

)
+ c̃h(w̄h,ϕϕϕi)

)Nhp
i=1

, (7.86)

respectively. Here ϕϕϕi ∈ Bhp, i = 1, . . . , Nhp, are the basis functions in the space Shp, ξ̄ξξ ∈ RNhp and ξξξk−l ∈ RNhp , l = 1, . . . , n,

are the algebraic representations of w̄h ∈ Shp and wk−l
h ∈ Shp, l = 1, . . . , n, respectively. Then problem (7.74) is equivalent to

the nonlinear systems (compare with (6.126))

Fh(
{
ξξξk−l

}n
l=1

;ξξξk) = Ch(ξξξk)ξξξk − dh(
{
ξξξk−l

}n
l=1

, ξξξk) = 0, k = n, . . . , r. (7.87)
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Let us note that the flux matrix Ch given by (7.85) has the same block structure as the matrix Ch given by (6.124). The
sequence of nonlinear algebraic systems (7.87) can be solved by the damped Newton-like iterative process (6.127) – (6.128)
treated in Section 6.4.4.

Concerning the initial guess ξξξ0
k for the iterative process (6.127) – (6.128), we use either the value known from the previous

time level given by (6.129), i.e, ξξξ0
k = ξξξk−1, k = 1, . . . , r, or it is possible to apply a higher-order extrapolation from previous

time levels given by (6.141).

Remark 7.7. Similarly as in Remarks 6.15 and 6.19, if we carry out only one Newton iteration (l = 0) at each time level, put
λ0 = 1 and use the extrapolation (6.141), then the implicit method (7.74) reduces to the BDF-DG higher-order semi-implicit
method of the viscous compressible flow including the shock capturing, which can be formulated in the following way: We seek
the finite sequence of functions {wk

h}rk=0 such that

wk
h ∈ Shp, k = 0, 1, . . . , r, (7.88a)

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ cLh

(
n∑
l=1

βn,lw
k−l
h ,wk

h,ϕϕϕh

)
= c̃h

(
n∑
l=1

βn,lw
k−l
h ,ϕϕϕh

)
∀ϕϕϕh ∈ Shp, k = n, . . . , r, (7.88b)

w0
h = Πhw

0, (7.88c)

wl
h ∈ Shp, l = 1, . . . , n− 1, are determined by a suitable q-step method

with q < n or by an explicit Runge–Kutta method – cf. Section ??. (7.88d)

Here Πhw
0 is the Shp-approximation of w0, αn,l, l = 0, . . . , n, are the BDF coefficients and βn,l, l = 0, . . . , n, are the coefficients

of the extrapolation (6.141). (See Tables 6.2, 6.3 and 6.4, 6.5, for n = 1, 2, 3.)
Setting

w̄k
h =

n∑
l=1

βn,lw
k−l
h , ξ̄ξξk =

n∑
l=1

βn,lξξξk−l, (7.89)

problem (7.88) is equivalent to the linear algebraic systems

Fh(
{
ξξξk−l

}n
l=1

;ξξξk) = Ch(ξ̄ξξk)ξξξk − dh(
{
ξξξk−l

}n
l=1

, ξξξk) = 0, k = n, . . . , r. (7.90)

Finally, because of our considerations in Chapter ??, we introduce the notation

âh(w̄h,wh,ϕϕϕh) = aLh (w̄h,wh,ϕϕϕh)− ãh(w̄h,ϕϕϕh), (7.91)

Ĵσh (w̄h,wh,ϕϕϕh) = Jσ,Lh (w̄h,wh,ϕϕϕh)− J̃σh (w̄h,ϕϕϕh), (7.92)

for the viscous and penalty forms. Then (7.88b), can be replaced by the identity

1

τk

(
n∑
l=0

αn,lw
k−l
h ,ϕϕϕh

)
+ b̂h(w̄k

h,w
k
h,ϕϕϕh) + âh(w̄k

h,w
k
h,ϕϕϕh) + Ĵσh (w̄k

h,w
k
h,ϕϕϕh) (7.93)

+ βββh(w̄k
h,w

k
h,ϕϕϕh) + γγγh(w̄k

h,w
k
h,ϕϕϕh) = 0, ∀ϕϕϕh ∈ Shp, k = n, . . . , r,

where b̂h is given by (6.131) and w̄k
h is defined in (7.89).

7.4 Numerical examples

This section is devoted to applications of the presented BDF-DG schemes to the numerical solution of several test problems
for the compressible Navier–Stokes equations. First, we consider a low Mach number flow past an adiabatic flat plate, where
the analytical solution of incompressible flow is known. This example shows that the developed method is sufficiently accurate
and stable even for compressible flow at an incompressible limit. Further, we present several flow regimes around the NACA
0012 profile, demonstrate the high accuracy of the DG discretization and mention some possible problems in the simulation of
unsteady flows with the aid of implicit time discretization. Finally, we present a simulation of the viscous shock-vortex interaction
by high-order methods. For the steady-state problems, the backward Euler method is used for the time discretization.

7.4.1 Blasius problem

The so-called Blasius problem represents the well-known test case, when a low-speed laminar flow along an adiabatic flat plate
is considered. In this case the exact analytical solution is known for incompressible flow, see [Bla08]. Since the flow speed is
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Figure 7.1: Blasius problem: computational grids – B1 with 662 elements (top) and B2 with 2648 elements (bottom), the whole
computational domain (left) and their details around the leading edge (right).

low, similarly as in Section 6.7.2, we compare the compressible numerical solution with the exact solution of the corresponding
incompressible flow.

We consider the laminar flow past the adiabatic flat plate {(x1, x2); 0 ≤ x1 ≤ 1, x2 = 0} characterized by the freestream
Mach number M = 0.1 and the Reynolds number Re = 104. The computational domain is shown in Figure 7.1, where two used
triangular grids are plotted together with their details around the leading edge. We prescribe the adiabatic boundary conditions
(7.37) on the flat plate, the outflow boundary conditions (7.36) at {(x1, x2); x1 = 1, −1.5 ≤ x2 ≤ 1.5} and the inflow boundary
conditions (7.35) on the rest of the boundary.

We seek the steady-state solution by the time stabilization approach, in which the computational process is carried out for
“t→∞”. As a stopping criterion we use condition (6.171) (adapted to the viscous flow problem) with TOL = 10−6.

In the following, we investigate two items:

• the stability of the method, namely the influence of the value of the constant CW in (7.67) on the convergence of the
numerical scheme to the stationary solution,

• the accuracy of the method, namely the comparison of the numerical solutions with the exact solution of the incompressible
flow.

Exercise 7.8. Modify the stop criterion (6.171) to the viscous flow problem.

Stability of the method

We compare the NIPG, IIPG, SIPG variants of the DGM using piecewise linear, quadratic and cubic space approximations.
Our aim is to find a suitable value of the constant CW in (7.67), which ensures the stability of the method and the convergence
to the steady-state solution. First, we carried out computations for the values CW = 1, 5, 25, 125, 625, 3 125 and consequently,
several additional values of CW were chosen in order to find the limit value of CW . These results obtained on the grid B1 are
shown in Table 7.1, where an indication of the convergence of the appropriate variant of the DGM with a given value CW is
marked, namely,

• “convergence” (C): the stopping condition (6.171) was achieved after less than 200 time steps,

• “quasiconvergence” (qC): the stopping condition (6.171) was achieved after more than 200 time steps,

• “no-convergence” (NC): the stopping condition (6.171) was not achieved after 500 time steps.

The “quasiconvergence” in fact means that the appropriate value CW is just under the limit value ensuring the convergence to
the steady-state solution.

From Table 7.1 we can find that

• NIPG variant converges for any CW ≥ 1 independently of the degree of polynomial approximation,

• IIPG variant requires higher values of CW for P2 and P3 approximations, namely CW = 5 and CW = 10 are sufficient,
respectively. On the other hand, P1 approximation converges for any CW ≥ 1.
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NIPG IIPG SIPG
CW P1 P2 P3 P1 P2 P3 P1 P2 P3

1 C C C C NC NC NC NC NC
5 C C C C C NC NC NC NC

10 - - - - C C - - -
25 C C C C C C NC NC NC

100 - - - - - - NC - -
125 C C C C C C C NC NC
150 - - - - - - C - -
250 - - - - - - - NC -
300 - - - - - - - qC -
400 - - - - - - - C NC
500 - - - - - - - C NC
625 C C C C C C C C qC

1 000 - - - - - - - - C
3 125 C C C C C C C C C

Table 7.1: Blasius problem: the convergence (C), non-convergence (NC) or quasiconvergence (qC) of the NIPG, IIPG and SIPG
variants of the DGM for P1, P2 and P3 approximations for different values of CW (symbol “-” means that the corresponding
case was not tested).

• SIPG variant requires significantly higher values of CW . We observe that CW ≥ 125 for P1, CW ≥ 400 for P1 and
CW ≥ 1 000 for P3. This is in a good agreement with theoretical results from [HRS05] carried out for a scalar quasilinear
elliptic problem, where the dependence CW = cp2 with a constant c > 0 is derived (p denotes the degree of the polynomial
approximation).

Figure 7.2 shows the convergence history to the steady-state solution (i.e., the dependence of the steady-state residuum defined
as in (6.170) on the number of time steps) for some interesting cases from Table 7.1.

Accuracy of the method

In order to analyze the accuracy of the method at incompressible limit, we compare the numerical solution of the Blasius problem
for viscous compressible flow with its incompressible analytical solution. To this end, we introduce the dimensionless velocities
in the streamwise direction and in the direction orthogonal to the stream by

v?1 :=
v1(η)

|v∞|
and v?2 :=

√
Rex

v2(η)

|v∞|
, (7.94)

respectively, where

η :=
√

Rex
x2

x1
, Rex := |v∞|Re x1, (7.95)

Re is the Reynolds number and v∞ is the freestream velocity.
Figures 7.3 – 7.6 show the velocity profiles v?1 and v?2 obtained by P1, P2 and P3 approximations on the meshes B1 and B2

at x1 = 0.1, x1 = 0.3 and x1 = 0.5 in comparison with the exact solution. We present here results obtained by the NIPG
method with CW = 25. (The difference between the results obtained by the NIPG, SIPG and IIPG variants are negligible.) We
observe a very accurate capturing of the v?1-profile and a reasonable capturing of the v?2-profile. An increase of accuracy for an
increasing degree of approximation and a decreasing mesh size is evident.

Moreover, Figure 7.7 shows the comparison of the skin friction coefficient cf computed by P1, P2 and P3 approximations on
the meshes B1 and B2 with the exact solution given by the Blasius formula. The skin friction coefficient is defined by

cf =
2t · (TVn)

ρ∞|v∞|2Lref
, (7.96)

where ρ∞ and v∞ are the freestream density and velocity, respectively, Lref is the reference length, n and t are the unit normal
and tangential vectors to the wall and TV = (τV

ij )2
i,j=1 is the viscous part of the stress tensor. (The components τV

ij are defined
in (7.8)).

We observe good agreement with the Blasius solution. The P2 and P3 approximations give the same value of cf at the
first element on the flat plate. Similar results were obtained in [BR97a, Fig. 2], where the improvement of the quality of
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Figure 7.2: Blasius problem: the convergence of the steady-state residuum (6.170) in the logarithmic scale on the number of
time steps for some computations from Table 7.1, (e.g., ’NIPG-625.P3’ means the NIPG variant of the DGM with CW = 625
and P3 approximation).
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the approximate solution on the first cell of the flat plate obtained by increasing the polynomial degree p = 1, 2, 3 is almost
negligible. It is caused by the singularity in the solution at the leading edge of the flat plate at the point (x1, x2) = (0, 0), which
causes the decrease of the local order of accuracy of the DG method. This phenomenon was numerically verified also for a scalar
nonlinear equation in Chapter 1.

7.4.2 Stationary flow around the NACA 0012 profile

We consider laminar steady-state viscous subsonic flow around the NACA 0012 profile for three different flow regimes charac-
terized by the far-field Mach number M∞, angle of attack α and the Reynolds number Re:

(C1) M∞ = 0.50, α = 2◦, Re = 500,
(C2) M∞ = 0.50, α = 2◦, Re = 2 000,
(C3) M∞ = 0.85, α = 2◦, Re = 2 000.

We carried out computations on four triangular grids N1 –N4. Figure 7.8 shows these grids around the NACA 0012 profile and
their zooms around the trailing and leading edges.

We evaluate the aerodynamic coefficients drag (cD), lift (cL) and moment (cM ). The coefficients cD and cL are defined as
the first and the second components of the vector

1
1
2ρ∞|v∞|2Lref

∫
Γprof

(pI− TV)ndS, (7.97)

where ρ∞ and v∞ are the far-field density and velocity, respectively, Lref is the reference length, Γprof is the profile, p is the
pressure, I is the identity matrix and TV is the viscous part of the stress tensor given by (7.8). Moreover, cM is given by

1
1
2ρ∞|v∞|2L2

ref

∫
Γprof

(x− xref)×
(
(pI− TV)n

)
dS, (7.98)

where xref = ( 1
4 , 0) is the moment reference point. We use the notation x× y = x1y2 − x2y1 for x = (x1, x2), y = (y1, y2) ∈ R2.

For each flow regime C1, C2 and C3, we carried out computations with polynomial approximation Pp, p = 1, 3, 5, on grids
N1 –N4. We apply the stopping criterion (6.174) with tolerance tol = 10−4.

Tables 7.2 and 7.4 show the values of the corresponding drag, lift and moment coefficients for each computation. These
tables show also the number Nh of elements of each mesh and corresponding number of degrees of freedom Nhp. We observe
that the high degree polynomial approximation gives a sufficiently accurate solution even on coarse grids. On the other hand,
P1 polynomial approximation is not sufficiently accurate even for the finest mesh.

Further, Figures 7.9 – 7.14 show Mach number isolines and the distribution of the skin friction coefficient (7.96) obtained for
each flow regime on the meshes N1 and N4.

The presented numerical results of examples C1, C2 and C3 show that the high-order DG method is suitable for the
numerical solution of the compressible viscous flow. With the aid of the P5 polynomial approximation we obtain the aerodynamic
coefficients with sufficient accuracy even on the coarsest grid.

Finally, we demonstrate the stability of the time discretization schemes with respect to the size of the time steps. According
to (6.150), we define the value

CFLk =
τk

minK∈Th
(
|K|−1 maxΓ∈∂K %(P(wk

h|Γ))|Γ|
) , k = 0, 1, . . . , r, (7.99)

which measures how many times the time step is larger in comparison to the time step for an explicit time discretization. Here
%(P(wk

h|Γ)) denotes the spectral radius of the matrix P(wk
h|Γ) defined by (7.23). Figure 7.15 shows the dependence of CFLk on

the parameter k for the flow regime C1, C2 and C3 using P1 polynomial approximation on grid N4. We observe that very large
values CFLk are attained, and hence the BDF-DGFE method is practically unconditionally stable.

7.4.3 Unsteady flow

We consider a transonic flow around the NACA 0012 profile with the far-field Mach number M∞ = 0.85, angle of attack α = 0◦

and the Reynolds number Re = 10 000. In this case the flow is unsteady with a periodic propagation of vortices behind the
profile, see [Mit98].

In the numerical simulation of nonstationary processes, it is necessary to use a sufficiently small time step in order to
guarantee accuracy with respect to time. In our computations the time step was chosen adaptively with the aid of the adaptive
algorithm presented in Section 6.4.6 with the tolerance ω = 10−2 in (6.148).

We applied the 3-step BDF-DGM with the P2 polynomial approximation on the mesh from Figure 7.16. The computation
was carried out for the dimensionless time t ∈ (0, 90). Figure 7.17 shows the dependence of the lift, drag and moment coefficients
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Figure 7.3: Blasius problem: mesh B1, velocity profiles v?1 = v?1(η) for P1, P2 and P3 approximations at x1 = 0.1, x1 = 0.3 and
x1 = 0.5 in comparison with the exact solution.
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Figure 7.4: Blasius problem: mesh B1, velocity profiles v?2 = v?2(η) for P1, P2 and P3 approximations at x1 = 0.1, x1 = 0.3 and
x1 = 0.5 in comparison with the exact solution.
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Figure 7.5: Blasius problem: mesh B2, velocity profiles v?1 = v?1(η) for P1, P2 and P3 approximations at x1 = 0.1, x1 = 0.3 and
x1 = 0.5 in comparison with the exact solution.
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Figure 7.6: Blasius problem: mesh B2, velocity profiles v?2 = v?2(η) for P1, P2 and P3 approximations at x1 = 0.1, x1 = 0.3 and
x1 = 0.5 in comparison with the exact solution.
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Figure 7.8: Computational grids N1 –N4 around the NACA 0012 profile (left) with details around the leading (middle) and
trailing edges (right) used for steady-state examples.
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p Nh Nhp cD cL cM
1 782 9384 1.7416E-01 1.0260E-01 -3.3278E-03
1 1442 17304 1.7632E-01 1.1225E-01 -2.8440E-03
1 2350 28200 1.7767E-01 1.1291E-01 -2.8089E-03
1 3681 44172 1.7775E-01 1.1338E-01 -2.8734E-03
3 782 31280 1.8086E-01 1.1283E-01 -3.1439E-03
3 1442 57680 1.8093E-01 1.1284E-01 -3.1186E-03
3 2350 94000 1.8080E-01 1.1322E-01 -3.0036E-03
3 3681 147240 1.8085E-01 1.1302E-01 -3.0590E-03
5 782 65688 1.8077E-01 1.1269E-01 -3.1054E-03
5 1442 121128 1.8085E-01 1.1299E-01 -3.0896E-03
5 2350 197400 1.8087E-01 1.1310E-01 -3.0601E-03
5 3681 309204 1.8088E-01 1.1304E-01 -3.0719E-03

Table 7.2: NACA 0012 (M∞ = 0.5, α = 0◦, Re = 500): the values of the drag, lift and moment coefficient obtained by the
BDF-DGM for Pp, p = 1, 3, 5, polynomial approximations on grids N1 –N4.

p Nh Nhp cD cL cM
1 782 9384 8.5405E-02 9.0263E-02 -6.7673E-03
1 1442 17304 8.5231E-02 8.2415E-02 -9.7498E-03
1 2350 28200 8.6387E-02 8.0999E-02 -1.0283E-02
1 3681 44172 8.6219E-02 8.2633E-02 -1.0149E-02
3 782 31280 8.7319E-02 8.5077E-02 -1.0116E-02
3 1442 57680 8.8193E-02 8.4048E-02 -1.0124E-02
3 2350 94000 8.8148E-02 8.4091E-02 -1.0079E-02
3 3681 147240 8.8264E-02 8.4082E-02 -1.0094E-02
5 782 65688 8.8124E-02 8.4008E-02 -1.0048E-02
5 1442 121128 8.8281E-02 8.4201E-02 -1.0091E-02
5 2350 197400 8.8283E-02 8.4290E-02 -1.0075E-02
5 3681 309204 8.8284E-02 8.4317E-02 -1.0068E-02

Table 7.3: NACA 0012 (M∞ = 0.5, α = 0◦, Re = 2 000): the values of the drag, lift and moment coefficient obtained by the
BDF-DGM for Pp, p = 1, 3, 5, polynomial approximations on grids N1 –N4.

p Nh Nhp cD cL cM
1 782 9384 1.1610E-01 4.4091E-02 -1.4702E-02
1 1442 17304 1.1444E-01 3.8107E-02 -1.5934E-02
1 2350 28200 1.1605E-01 3.4837E-02 -1.6923E-02
1 3681 44172 1.1566E-01 3.3338E-02 -1.7027E-02
3 782 31280 1.1809E-01 3.1726E-02 -1.7463E-02
3 1442 57680 1.1892E-01 3.1212E-02 -1.7163E-02
3 2350 94000 1.1887E-01 3.0834E-02 -1.7164E-02
3 3681 147240 1.1898E-01 3.0918E-02 -1.7142E-02
5 782 65688 1.1885E-01 3.1034E-02 -1.7048E-02
5 1442 121128 1.1899E-01 3.1056E-02 -1.7128E-02
5 2350 197400 1.1899E-01 3.0971E-02 -1.7154E-02
5 3681 309204 1.1899E-01 3.0981E-02 -1.7148E-02

Table 7.4: NACA 0012 (M∞ = 0.85, α = 0◦, Re = 2 000): the values of the drag, lift and moment coefficient obtained by the
BDF-DGM for Pp, p = 1, 3, 5, polynomial approximations on grids N1 –N4.
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Figure 7.9: NACA 0012 (M∞ = 0.5, α = 2◦, Re = 500): Mach number isolines for P1, P3 and P5 polynomial approximations
on grids N1 and N4.
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Figure 7.10: NACA 0012 (M∞ = 0.5, α = 2◦, Re = 500): distribution of the skin friction coefficient for P1, P3 and P5 polynomial
approximations on grids N1 and N4.
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Figure 7.11: NACA 0012 (M∞ = 0.5, α = 2◦, Re = 2000): Mach number isolines for P1, P3 and P5 polynomial approximations
on grids N1 and N4.
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Figure 7.12: NACA 0012 (M∞ = 0.5, α = 2◦, Re = 2000): distribution of the skin friction coefficient for P1, P3 and P5

polynomial approximations on grids N1 and N4.
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Figure 7.13: NACA 0012 (M∞ = 0.85, α = 2◦, Re = 2000): Mach number isolines for P1, P3 and P5 polynomial approximations
on grids N1 and N4.
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Figure 7.14: NACA 0012 (M∞ = 0.85, α = 2◦, Re = 2000): distribution of the skin friction coefficient for P1, P3 and P5

polynomial approximations on grids N1 and N4.
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Figure 7.15: The dependence of the value CFLk on the parameter k for the flow regimes C1 (left), C2 (center) and C3 (right).
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on time t ∈ (80, 90). We observe periodic oscillations of cL and cM with period ∆t ≈ 0.7. Figure 7.18 shows the Mach number
isolines at time instants ti = 89.3 + i∆t/7, i = 1, 2, . . . 7, demonstrating the periodic propagation of vortices behind the profile.
These results are in a good agreement with results from [Dol08b] and [Mit98].

This example demonstrates that the presented BDF-DGM is able to resolve steady as well as unsteady flow without any
modification of the scheme. It is very important in the case, when it is not a priori known, whether the considered flow is steady
or unsteady.

7.4.4 Steady vs. unsteady flow

The numerical examples presented in the previous sections lead us to the conclusion that the presented BDF-DGM is robust
with respect to the magnitude of the Mach number and is practically unconditionally stable. This means that large time steps
can be used, cf. Figure 7.15. However, there is a danger that the use of too long time steps can lead to qualitatively different
results.

As an example we consider a laminar viscous subsonic flow around the NACA 0012 profile with the far-field Mach number
M∞ = 0.5, angle of attack α = 2◦ and the Reynolds number Re = 5 000. This flow is close to a limit between the steady
and unsteady flow regimes. In [Dol08b] and [DHH11], we presented steady-state solutions for this flow regime computed using
several degrees of polynomial approximation and several grids.

Here we present computations carried out by the 3-step BDF-DGM with P3 and P4 polynomial approximation, applied on
an unstructured mesh shown in Figure 7.19. The time steps were chosen adaptively with the aid of the adaptive algorithm
presented in Section 6.4.6 with two different tolerances ω = 1 and ω = 10−4 in (6.148). This means that in the former case we
do not take care of the accuracy with respect to time. In the latter case, the problem was solved with a high accuracy with
respect to time. Of course, the computation needs much longer CPU time.

Figure 7.20 shows the convergence of the steady-state residuum (cf. the criterion (6.171) adapted to the viscous flow problem)
and the corresponding value CFLk (cf. (7.99)) for both settings ω = 1 and ω = 10−4.

It can be seen that for ω = 1 a steady-state solution is obtained. On the other hand, for ω = 10−4 the resolution in time is
much more accurate and an unsteady solution is obtained. Moreover, Figure 7.21 shows the dependence of the lift coefficient cL
on the dimensionless time for P3 and P4 polynomial approximations with ω = 10−4 in (6.148). The constant value cL-’steady’
was obtained with the same method but with ω = 1. Finally, Figure 7.22 shows Mach number isolines for P3 and P4 polynomial
approximations and for ω = 1 and ω = 10−4.

These experiments indicate that an insufficiently accurate resolution with respect to time can lead to different flow regimes
(steady vs. unsteady). These results are in agreement with [KBD+10], where this example was solved by several research groups.
They achieved mostly the steady state solution using steady-state solvers or implicit time discretizations with large time steps.
Only a sufficiently accurate (explicit) time discretization (carried out at the University of Stuttgart) gave the unsteady flow
regime, see [KBD+10, Chapter 5].

7.4.5 Viscous shock-vortex interaction

This example represents a challenging unsteady viscous flow simulation. Similarly as in [DT04], [Für01] and [TGS00], we
consider the viscous interaction of a plane weak shock wave with a single isentropic vortex. During the interaction, acoustic
waves are produced, and we investigate the ability of the numerical scheme to capture these waves. The computational domain
is Ω = (0, 2) × (0, 2) with the periodic extension in the x2-direction. A stationary plane shock wave is located at x1 = 1. The
prescribed pressure jump through the shock is pR − pL = 0.4, where pL and pR are the pressure values from the left and right
of the shock wave, respectively, corresponding to the inlet (left) Mach number ML = 1.1588. The reference density and velocity
are those of the free uniform flow at infinity. In particular, we define the initial density, x1-component of velocity and pressure
by

ρL = 1, uL = MLγ
1/2, pL = 1, ρR = ρLK1, uR = uLK

−1
1 , pR = p1K2, (7.100)

where

K1 =
γ + 1

2

M2
L

1 + γ−1
2 M2

L

, K2 =
2

γ + 1

(
γM2

L −
γ − 1

2

)
. (7.101)

Here, the subscripts L and R denote the quantities at x < 1 and x > 1, respectively, γ = 1.4 is the Poisson constant. The
Reynolds number is 2000. An isolated isentropic vortex centered at (0.5, 1) is added to the basic flow. The angular velocity in
the vortex is given by

vθ = c1r exp(−c2r2), c1 = uc/rc, c2 = r−2
c /2, (7.102)

r = ((x1 − 0.5)2 − (x2 − 1)2)1/2,

where we set rc = 0.075 and uc = 0.5. Computations are stopped at the dimensionless time T = 0.7.
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Figure 7.16: NACA 0012 , M∞ = 0.85, α = 0◦ and Re = 10 000: triangular grid.
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Figure 7.17: NACA 0012 , M∞ = 0.85, α = 0◦ and Re = 10 000: dependence of the drag coefficient cD, lift coefficient cL and
moment coefficient cM on the dimensionless time t ∈ (80, 90).
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Figure 7.18: NACA 0012, M∞ = 0.85, α = 0◦ and Re = 10 000: Mach number isolines at the time instants ti = 89.3 + i∆t/7,
i = 1, . . . , 7, in one period.

Figure 7.19: NACA 0012, M∞ = 0.5, α = 0◦and Re = 5 000: computational grid, around the profile (left) and a detail at the
leading edge (right).
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Figure 7.22: NACA 0012, M∞ = 0.5, α = 0◦and Re = 5 000 for P3 and P4 polynomial approximations and for ω = 1 and
ω = 10−4: Mach number isolines.
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Figure 7.23: Viscous shock-vortex interaction: the used grid (left) and pressure isolines (right) at t = 0, the total view (top),
its details near the vortex (center) and the shock wave (bottom).

We solved this problem with the aid of the 3-steps BDF-DGM (7.74) with P4 polynomial approximation in space. The
computational grid with 3 072 triangles was a priori refined in the vicinity of the stationary shock wave, see Figure 7.23. This
figure shows also the initial setting of the shock wave and the isentropic vortex with their details.

Figures 7.24 and 7.25 show the results of the simulation of viscous shock-vortex interaction, namely, the isolines of the
pressure and the pressure distribution along x2 = 1 at several time instants. We observe a capturing of the shock-vortex
interaction with the appearance of incident and reflected acoustic waves. These results are in agreement with results presented
in [DT04], [Für01] and [TGS00]. Hence, we can conclude that the DGM is able to capture such complicated physical phenomena
as shock-vortex interaction.
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Figure 7.24: Viscous shock-vortex interaction: pressure isolines at t = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7.
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Figure 7.25: Viscous shock-vortex interaction: the pressure distribution along the line x2 = 1 at t = 0.2, 0.3, 0.4, 0.5, 0.6 and
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[BBO99] I. Babuška, C. E. Baumann, and J. T. Oden. A discontinuous hp finite element method for diffusion problems:
1-d analysis. Computers and Mathematics with Applications, 37:103–122, 1999.

[Bla08] H. Blasius. Grenzschichten in flüssigkeiten mit kleiner reibung. Z. Math. Phys., 56:1–37, 1908.

[BLN79] C. Bardos, A.-Y. Le Roux, and J.-C. Nedelec. First order quasilinear equations with boundary conditions. Com-
mun. Partial. Differ. Equations, 4:1017–1034, 1979.

[BO99] C. E. Baumann and J. T. Oden. A discontinuous hp finite element method for the Euler and Navier-Stokes
equations. Int. J. Numer. Methods Fluids, 31:79–95, 1999.

[BR97a] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of
the compressible Navier–Stokes equations. J. Comput. Phys., 131:267–279, 1997.

[BR97b] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J.
Comput. Phys., 138:251–285, 1997.

[BR00] F. Bassi and S. Rebay. A high order discontinuous Galerkin method for compressible turbulent flow. In B. Cock-
burn, G. E. Karniadakis, and C.-W. Shu, editors, Discontinuous Galerkin Method: Theory, Computations and
Applications, Lecture Notes in Computational Science and Engineering 11, pages 113–123. Springer-Verlag, 2000.

[Bre03] S. C. Brenner. Poincare-Friedrichs inequalities for piecewise H-1 functions. SIAM Journal on Numerical Analysis,
41(1):306–324, 2003.
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[Sob11] V. Sobot́ıková. Error analysis of a DG method employing ideal elements applied to a nonlinear convection-diffusion
problem. J. Numer. Math., 19(2):137–163, 2011.
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