Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Quiz # 2

V. Dolejší

Numerical solution of IVP (ODE)

Quiz # 2 1 / 4

Question #1

Let us consider the following **initial value problem** given by the ODE: find $y: (a, b) \to \mathbb{R}^m$ such that

- y'(x) = f(x, y(x)),
- $y(a) = \eta$,

where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$ and $\eta \in \mathbb{R}^m$ are given.

We say that this problem is stable if

(A)
$$\frac{\partial f(x,y)}{\partial x} < 0$$
,

- (B) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ are negative,
- (C) all eigenvalues of $\{\frac{\partial f_i}{\partial v_i}\}_{i,j=1}^N$ have negative real part,
- (D) all eigenvalues of $\{\frac{\partial f_i}{\partial v_i}\}_{i,j=1}^N$ have positive real part,

Question #1

Let us consider the following **initial value problem** given by the ODE: find $y : (a, b) \to \mathbb{R}^m$ such that

•
$$y'(x) = f(x, y(x)),$$

•
$$y(a) = \eta$$
,

where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$ and $\eta \in \mathbb{R}^m$ are given.

We say that this problem is stable if

(A)
$$\frac{\partial f(x,y)}{\partial x} < 0$$
,

- (B) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ are negative,
- (C) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ have negative real part,
- (D) all eigenvalues of $\{\frac{\partial f_i}{\partial v_i}\}_{i,j=1}^N$ have positive real part,

Question #1

Let us consider the following **initial value problem** given by the ODE: find $y : (a, b) \to \mathbb{R}^m$ such that

•
$$y'(x) = f(x, y(x)),$$

where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$ and $\eta \in \mathbb{R}^m$ are given.

We say that this problem is stable if

(A)
$$\frac{\partial f(x,y)}{\partial x} < 0$$
,

- (B) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ are negative,
- (C) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ have negative real part,
- (D) all eigenvalues of $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^N$ have positive real part,

Let us consider the ODE: find $y: (0,1) \to \mathbb{R}$ such that

•
$$y'(x) = -2y + 3x$$
,

• y(0) = 1,

where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$ and $\eta \in \mathbb{R}^m$ are given.

this problem is

(A) unstable,

(B) stable

(C) neutrally stable

- E > - E >

Let us consider the ODE: find $y:(0,1) \to \mathbb{R}$ such that

this problem is

- (A) unstable,
- (B) stable
- (C) neutrally stable

∃ ▶ ∢ ∃

Let us consider the ODE: find $y:(0,1) \to \mathbb{R}$ such that

this problem is

(A) unstable,

(B) stable

(C) neutrally stable

Let us consider the ODE: find $y:(0,1) \to \mathbb{R}$ such that

•
$$y'(x) = -2y + 3x$$
,
• $y(0) = 1$,
where $f : [a, b] \times \mathbb{R}^m \to \mathbb{R}^m$ and $\eta \in \mathbb{R}^m$ are given

this problem is

(A) unstable,

(B) stable

(C) neutrally stable

 $\mathsf{Jacobian} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial}{\partial y} [-2y + 3x] = -2 < 0 \qquad \Rightarrow \mathsf{stable}$

< E ► < E ►

• y'(x) = f(x, y(x)).

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_i}\}_{i,j=1}^3$ are $\lambda_1 = -1, \ \lambda_2 = -1000 + 20i$ and $\lambda_3 = -1000 - 20i$.

- (A) This problem *is stiff* since all eigenvalues have negative real parts with very different magnitudes.
- (B) This problem *is not stiff* since the system is stable.
- (C) This problem *is stiff* since at least one eigenvalue has the imaginary part.

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \ \lambda_2 = -1000 + 20i$ and $\lambda_3 = -1000 - 20i$.

- (A) This problem *is stiff* since all eigenvalues have negative real parts with very different magnitudes.
- (B) This problem *is not stiff* since the system is stable.
- (C) This problem *is stiff* since at least one eigenvalue has the imaginary part.

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \ \lambda_2 = -1000 + 20i$ and $\lambda_3 = -1000 - 20i$.

- (A) This problem *is stiff* since all eigenvalues have negative real parts with very different magnitudes.
- (B) This problem *is not stiff* since the system is stable.
- (C) This problem *is stiff* since at least one eigenvalue has the imaginary part.

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \ \lambda_2 = -1000 + 20i$ and $\lambda_3 = -1000 - 20i$.

- (A) This problem *is stiff* since all eigenvalues have negative real parts with very different magnitudes.
- (B) This problem *is not stiff* since the system is stable.
- (C) This problem *is stiff* since at least one eigenvalue has the imaginary part.