Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague
Faculty of Mathematics and Physics

Quiz \# 2

Question \#1

Let us consider the following initial value problem given by the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{m}$ such that

- $y^{\prime}(x)=f(x, y(x))$,
- $y(a)=\eta$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.

We say that this problem is stable if
(A) $\frac{\partial f(x, y)}{\partial x}<0$,
(B) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ are negative,
(C) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ have negative real part,
(D) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{i}}\right\}_{i, j=1}^{N}$ have positive real part,

Question \#1

Let us consider the following initial value problem given by the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{m}$ such that

- $y^{\prime}(x)=f(x, y(x))$,
- $y(a)=\eta$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.

We say that this problem is stable if
(A) $\frac{\partial f(x, y)}{\partial x}<0$,
(B) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ are negative,
(C) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ have negative real part,
(D) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ have positive real part,

Question \#1

Let us consider the following initial value problem given by the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{m}$ such that

- $y^{\prime}(x)=f(x, y(x))$,
- $y(a)=\eta$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.

We say that this problem is stable if
(A) $\frac{\partial f(x, y)}{\partial x}<0$,
(B) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ are negative,
(C) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ have negative real part,
(D) all eigenvalues of $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{N}$ have positive real part,

Question \#2

Let us consider the ODE: find $y:(0,1) \rightarrow \mathbb{R}$ such that

- $y^{\prime}(x)=-2 y+3 x$,
- $y(0)=1$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.
this problem is
(A) unstable,
(B) stable
(C) neutrally stable

Question \#2

Let us consider the ODE: find $y:(0,1) \rightarrow \mathbb{R}$ such that

- $y^{\prime}(x)=-2 y+3 x$,
- $y(0)=1$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.
this problem is
(A) unstable,
(B) stable
(C) neutrally stable

Question \#2

Let us consider the ODE: find $y:(0,1) \rightarrow \mathbb{R}$ such that

- $y^{\prime}(x)=-2 y+3 x$,
- $y(0)=1$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.
this problem is
(A) unstable,
(B) stable
(C) neutrally stable

Question \#2

Let us consider the ODE: find $y:(0,1) \rightarrow \mathbb{R}$ such that

- $y^{\prime}(x)=-2 y+3 x$,
- $y(0)=1$,
where $f:[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $\eta \in \mathbb{R}^{m}$ are given.
this problem is
(A) unstable,
(B) stable
(C) neutrally stable

Jacobian $=\frac{\partial}{\partial y} f(x, y)=\frac{\partial}{\partial y}[-2 y+3 x]=-2<0 \quad \Rightarrow$ stable

Question \#3

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

- $y^{\prime}(x)=f(x, y(x))$.

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-1000+20 i$ and $\lambda_{3}=-1000-20 i$.

Which sentences are correct?

(A) This problem is stiff since all eigenvalues have negative real parts with very different magnitudes.
(B) This problem is not stiff since the system is stable.
(C) This problem is stiff since at least one eigenvalue has the imaginary part.

Question \#3

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

- $y^{\prime}(x)=f(x, y(x))$.

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-1000+20 i$ and $\lambda_{3}=-1000-20 i$.

Which sentences are correct?

> (A) This problem is stiff since all eigenvalues have negative real parts with very different magnitudes.
> (3) This problem is not stiff since the system is stable.
> (C) This problem is stiff since at least one eigenvalue has the imaginary part.

Question \#3

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

- $y^{\prime}(x)=f(x, y(x))$.

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-1000+20 i$ and $\lambda_{3}=-1000-20 i$.

Which sentences are correct?

(A) This problem is stiff since all eigenvalues have negative real parts with very different magnitudes.
(B) This problem is not stiff since the system is stable.
(C) This problem is stiff since at least one eigenvalue has the imaginary part.

Question \#3

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

- $y^{\prime}(x)=f(x, y(x))$.

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-1000+20 i$ and $\lambda_{3}=-1000-20 i$.

Which sentences are correct?

(A) This problem is stiff since all eigenvalues have negative real parts with very different magnitudes.
(B) This problem is not stiff since the system is stable.
(C) This problem is stiff since at least one eigenvalue has the imaginary part.

