Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague
Faculty of Mathematics and Physics

Quiz \# 3

Question \#1

Let us consider the initial value problem

- $y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta$.

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.

What is the global error G_{k} at step k ?
$G_{k}=$?
What is the local error L_{k} at step k ?
$L_{k}=$?

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.

What is the global error G_{k} at step k ?

What is the local error L_{k} at step k ?

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.

> What is the global error G_{k} at step k ?
> $G_{k}=$?

What is the local error L_{k} at step k ?

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.

What is the global error G_{k} at step k ?

$G_{k}=y_{k}-y\left(x_{k}\right), k=0,1, \ldots$

What is the local error L_{k} at step k ?

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.
What is the global error G_{k} at step k ?
$G_{k}=y_{k}-y\left(x_{k}\right), k=0,1, \ldots$
What is the local error L_{k} at step k ?
$L_{k}=$?

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.
What is the global error G_{k} at step k ?
$G_{k}=y_{k}-y\left(x_{k}\right), k=0,1, \ldots$
What is the local error L_{k} at step k ?
$L_{k}=y_{k}-u_{k-1}\left(x_{k}\right)$, where $u_{k-1}^{\prime}=f\left(x, u_{k-1}\right)$ and $u_{k-1}\left(x_{k-1}\right)=y_{k-1}$,

Question \#1

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta \text {. }
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e. $y_{k} \approx y\left(x_{k}\right)$.
What is the global error G_{k} at step k ?
$G_{k}=y_{k}-y\left(x_{k}\right), k=0,1, \ldots$
What is the local error L_{k} at step k ?
$L_{k}=y_{k}-u_{k-1}\left(x_{k}\right)$, where $u_{k-1}^{\prime}=f\left(x, u_{k-1}\right)$ and $u_{k-1}\left(x_{k-1}\right)=y_{k-1}$, or error arrising in the one time step.

Question \#2

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e.
$y_{k} \approx y\left(x_{k}\right)$.

What is the relation between the global and local errors G_{k} and L_{k}, respectively?

(D) none of the above ones

Question \#2

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e.
$y_{k} \approx y\left(x_{k}\right)$.

What is the relation between the global and local errors G_{k} and L_{k}, respectively?
(A) $G_{k}=\sum_{\ell=0}^{k} L_{\ell}$
(B) $G_{k} \leq \sum_{\ell=0}^{k} L_{\ell}$
(C) $G_{k} \geq \sum_{\ell=0}^{k} L_{\ell}$
(D) none of the above ones

Question \#2

Let us consider the initial value problem

$$
y^{\prime}(x)=f(x, y(x)), \quad y(a)=\eta
$$

Let $y_{k}, k=0,1, \ldots$ be the approximation of y at x_{k}, i.e.
$y_{k} \approx y\left(x_{k}\right)$.

What is the relation between the global and local errors G_{k} and L_{k}, respectively?
(A) $G_{k}=\sum_{\ell=0}^{k} L_{\ell}$
(B) $G_{k} \leq \sum_{\ell=0}^{k} L_{\ell}$
(C) $G_{k} \geq \sum_{\ell=0}^{k} L_{\ell}$
(D) none of the above ones

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

> The Euler method is stable if
> (A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
> (B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
> (C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}
> (D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:

$$
\begin{equation*}
G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \tag{A}
\end{equation*}
$$

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:

$$
G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \quad \text { method is stable if } \rho(\mathrm{A})<1 .
$$

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:
$G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \quad$ method is stable if $\rho(\mathbb{A})<1$.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:
$G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \quad$ method is stable if $\rho(\mathbb{A})<1$.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:
$G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \quad$ method is stable if $\rho(\mathbb{A})<1$.

Question \#3

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$,
- $y_{0}=\eta$.

Let $\mathbb{J}_{f} \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if
(A) all eigenvalues of \mathbb{J}_{f} have negative real parts.
(B) the spectral radius of the matrix $\left(\mathbb{I}+h_{k} \mathbb{J}_{f}\right)$ is <1.
(C) h_{k} is smaller than the minimal eigenvalue of \mathbb{J}_{f}.
(D) all eigenvalues of \mathbb{J}_{f} have negative real parts and h_{k} is sufficiently small.
analysis of the Euler method gives:
$G_{k+1}=\underbrace{\left(\mathbb{I}+h_{k} \mathbb{J}_{k}\right)}_{=: \mathbb{A}} G_{k}+L_{k}, \quad$ method is stable if $\rho(\mathbb{A})<1$.

Question \#4

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

$$
\text { - } y^{\prime}(x)=f(x, y(x))
$$

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are $\lambda_{1}=-1, \lambda_{2}=-2000+2 i$ and $\lambda_{3}=-2000-2 i$.

Find the maximal size of h_{k}, which guarantees the stability of the Euler method $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$? (answer is a real positive number)

Question \#4

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that - $y^{\prime}(x)=f(x, y(x))$.

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are $\lambda_{1}=-1, \lambda_{2}=-2000+2 i$ and $\lambda_{3}=-2000-2 i$.

Find the maximal size of h_{k}, which guarantees the stability of the Euler method $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$? (answer is a real positive number)

Question \#4

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

$$
y^{\prime}(x)=f(x, y(x))
$$

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-2000+2 i$ and $\lambda_{3}=-2000-2 i$.

Find the maximal size of h_{k}, which guarantees the stability of the Euler method $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$?
(answer is a real positive number)
Stability condition:
$\left|1+h_{k} \lambda\right|<1 \Leftrightarrow h_{k} \leq-2 / \lambda$

Question \#4

Let us consider the following the ODE: find $y:(a, b) \rightarrow \mathbb{R}^{3}$ such that

$$
y^{\prime}(x)=f(x, y(x))
$$

Let the eigenvalues of the Jacobian $\left\{\frac{\partial f_{i}}{\partial y_{j}}\right\}_{i, j=1}^{3}$ are
$\lambda_{1}=-1, \lambda_{2}=-2000+2 i$ and $\lambda_{3}=-2000-2 i$.

Find the maximal size of h_{k}, which guarantees the stability of the Euler method $y_{k+1}=y_{k}+h_{k} f\left(x_{k}, y_{k}\right)$?
(answer is a real positive number)
Stability condition:
$\left|1+h_{k} \lambda\right|<1 \Leftrightarrow h_{k} \leq-2 / \lambda \quad \Rightarrow h_{k} \leq-2 / \lambda \approx 0.001$

