Numerical solution of IVP (ODE)

Vít Dolejší

Charles University Prague Faculty of Mathematics and Physics

Quiz # 3

Numerical solution of IVP (ODE)

• $y'(x) = f(x, y(x)), \quad y(a) = \eta.$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error G_k at step k? $G_k =$?

What is the local error L_k at step k? $L_k =$?

イロト イヨト イヨト イヨト

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error
$$G_k$$
 at step k ?
 $G_k =$?

What is the local error L_k at step k? $L_k = ?$

イロト イポト イヨト イヨト 二日

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error
$$G_k$$
 at step k ?
 $G_k =$?

What is the local error
$$L_k$$
 at step k ?
 $L_k =$?

イロト イ部ト イヨト イヨト

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error G_k at step k? $G_k = y_k - y(x_k), \ k = 0, 1, ...$

What is the local error L_k at step k? $L_k =$?

< □ > < □ > < □ > < □ > < □ > < □ >

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error G_k at step k? $G_k = y_k - y(x_k), \ k = 0, 1, ...$

What is the local error L_k at step k? $L_k =$?

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error G_k at step k? $G_k = y_k - y(x_k), \ k = 0, 1, ...$

What is the local error L_k at step k?

$$L_k = y_k - u_{k-1}(x_k)$$
, where $u'_{k-1} = f(x, u_{k-1})$ and $u_{k-1}(x_{k-1}) = y_{k-1}$,

A B A A B A

•
$$y'(x) = f(x, y(x)), \quad y(a) = \eta.$$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the global error G_k at step k? $G_k = y_k - y(x_k), \ k = 0, 1, ...$

What is the local error L_k at step k?

 $L_k = y_k - u_{k-1}(x_k)$, where $u'_{k-1} = f(x, u_{k-1})$ and $u_{k-1}(x_{k-1}) = y_{k-1}$, or error arrising in the one time step.

• $y'(x) = f(x, y(x)), \quad y(a) = \eta.$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the relation between the global and local errors G_k and L_k , respectively?

(A) $G_k = \sum_{\ell=0}^k L_\ell$ (B) $G_k \leq \sum_{\ell=0}^k L_\ell$ (C) $G_k \geq \sum_{\ell=0}^k L_\ell$ (D) none of the above ones

• $y'(x) = f(x, y(x)), \qquad y(a) = \eta.$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the relation between the global and local errors G_k and L_k , respectively?

(A) $G_k = \sum_{\ell=0}^k L_\ell$ (B) $G_k \le \sum_{\ell=0}^k L_\ell$ (C) $G_k \ge \sum_{\ell=0}^k L_\ell$ (D) none of the above ones

• $y'(x) = f(x, y(x)), \qquad y(a) = \eta.$

Let y_k , k = 0, 1, ... be the approximation of y at x_k , i.e. $y_k \approx y(x_k)$.

What is the relation between the global and local errors G_k and L_k , respectively?

(A) $G_k = \sum_{\ell=0}^k L_\ell$ (B) $G_k \le \sum_{\ell=0}^k L_\ell$ (C) $G_k \ge \sum_{\ell=0}^k L_\ell$ (D) none of the above ones

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w..r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .
- (D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .
- (D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .
- (D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .
- (D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

analysis of the Euler method gives:

 $G_{k+1} = \underbrace{\left(\mathbb{I} + h_k \mathbb{J}_k\right)}_{k} G_k + L_k$, method is stable if $\rho(\mathbb{A}) < 1$.

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .
- (D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

analysis of the Euler method gives:

 $G_{k+1} = \underbrace{(\mathbb{I} + h_k \mathbb{J}_k)}_{=:\mathbb{A}} G_k + L_k, \quad \text{method is stable if } \rho(\mathbb{A}) < 1.$

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .

(D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

$$G_{k+1} = \underbrace{(\mathbb{I} + h_k \mathbb{J}_k)}_{=:\mathbb{A}} G_k + L_k, \quad \text{method is stable if } \rho(\mathbb{A}) < 1.$$

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .

(D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

$$G_{k+1} = \underbrace{(\mathbb{I} + h_k \mathbb{J}_k)}_{=:\mathbb{A}} G_k + L_k$$
, method is stable if $\rho(\mathbb{A}) < 1$.

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .

(D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

$$G_{k+1} = \underbrace{\left(\mathbb{I} + h_k \mathbb{J}_k\right)}_{=:\mathbb{A}} G_k + L_k, \quad \text{method is stable if } \rho(\mathbb{A}) < 1.$$

Let us consider the Euler method for the solution of ODEs:

- $y_{k+1} = y_k + h_k f(x_k, y_k)$,
- $y_0 = \eta$.

Let $\mathbb{J}_f \in \mathbb{R}^{m \times m}$ be the Jacobian matrix of f w.r.t. y.

The Euler method is stable if

- (A) all eigenvalues of \mathbb{J}_f have negative real parts.
- (B) the spectral radius of the matrix $(\mathbb{I} + h_k \mathbb{J}_f)$ is < 1.
- (C) h_k is smaller than the minimal eigenvalue of \mathbb{J}_f .

(D) all eigenvalues of \mathbb{J}_f have negative real parts and h_k is sufficiently small.

$$G_{k+1} = \underbrace{(\mathbb{I} + \frac{\mathbf{h}_k}{\mathbb{J}_k})}_{=:\mathbb{A}} G_k + L_k, \quad \text{method is stable if } \rho(\mathbb{A}) < 1.$$

Let us consider the following the ODE: find $y: (a, b) \rightarrow \mathbb{R}^3$ such that

• y'(x) = f(x, y(x)).

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \lambda_2 = -2000 + 2i$ and $\lambda_3 = -2000 - 2i$.

Find the maximal size of h_k , which guarantees the stability of the Euler method $y_{k+1} = y_k + h_k f(x_k, y_k)$? (answer is a real positive number) Let us consider the following the ODE: find $y:(a,b) \to \mathbb{R}^3$ such that

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \lambda_2 = -2000 + 2i$ and $\lambda_3 = -2000 - 2i$.

Find the maximal size of h_k , which guarantees the stability of the Euler method $y_{k+1} = y_k + h_k f(x_k, y_k)$? (answer is a real positive number) Let us consider the following the ODE: find $y:(a,b) \to \mathbb{R}^3$ such that

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \lambda_2 = -2000 + 2i$ and $\lambda_3 = -2000 - 2i$.

Find the maximal size of h_k , which guarantees the stability of the Euler method $y_{k+1} = y_k + h_k f(x_k, y_k)$? (answer is a real positive number)

Stability condition:

 $|1+h_k\lambda|<1 \iff h_k\leq -2/\lambda$

Let us consider the following the ODE: find $y:(a,b) \to \mathbb{R}^3$ such that

•
$$y'(x) = f(x, y(x)).$$

Let the eigenvalues of the Jacobian $\{\frac{\partial f_i}{\partial y_j}\}_{i,j=1}^3$ are $\lambda_1 = -1, \lambda_2 = -2000 + 2i$ and $\lambda_3 = -2000 - 2i$.

Find the maximal size of h_k , which guarantees the stability of the Euler method $y_{k+1} = y_k + h_k f(x_k, y_k)$? (answer is a real positive number)

Stability condition:

 $|1 + h_k \lambda| < 1 \iff h_k \leq -2/\lambda \implies h_k \leq -2/\lambda \approx 0.001$