Write a simple code for the solution of problem: find $u:\Omega\to\mathbb{R}$ such that

$$-\Delta u(x) = g(x), \quad x \in \Omega, \tag{0.1}$$

$$u(x) = u_D(x), \quad x \in \partial \Omega_D,$$
 (0.2)

$$\nabla u(x) \cdot \boldsymbol{n} = g_N(x), \quad x \in \partial \Omega_N,$$
 (0.3)

where Ω is a domain in \mathbb{R}^2 with a boundary $\partial\Omega$ consisting of two disjoint parts $\partial\Omega_D$ and $\partial\Omega_N$, $g \in L^2(\partial\Omega_D)$, $g_N \in L^2(\partial\Omega)$ and u_D is a trace of some $u^* \in H^1(\Omega)$.

- use P_1 -conforming FE
- the arising linear system solve by a simple iterative method, e.g., Jacobi or Gauss-Seidl
- the stiffness matrix can be treated as dense

Use the code: http://msekce.karlin.mff.cuni.cz/~dolejsi/Vyuka/NS_source/FEM/FEM-code.tgz link

- mesh.f90 reading the mesh from the file triang
- matrix.f90 create the stiffness matrix, solution of $\mathbb{A}x = b$
- sol.f90 setting of RHS and BC (input of data)
- femP1.f90 main code
- type of boundary set in subroutine Read_mesh, file mesh.f90
- array ip(:, 1) type of mesh vertices: > 0 interior, = 0 Neumann, < 0 Dirichlet,
- array ip(:, 2) index of vertex after removing Dirichlet nodes

Example of file triang for the unit square

		_			_	-
5	4	4	4			npoin nelem nbelm nbc
0	. 0	0.0	0	0	0.0	0.0 0 0 periodicity
0	. 0	0.0				xp(1) yp(1)
1	. 0	0.0				xp(2) yp(2)
0	. 5	0.5				
1	. 0	1.0				
0.0		1.0				xp(5) yp(5)
1	2	3				lnd(1,1) lnd(1,2) lnd(1,3)
2	4	3				
4	5	3				
5	1	3				lnd(4,1) $lnd(4,2)$ $lnd(4,3)$
1	2	1				lbn(1,1) lbn(1,2) lbn(1,3)
2	4	2				
4	5	3				
5	1	4				lbn(4,1) lbn(4,2) lbn(4,3)

the mesh of $\Omega = (0,1) \times (0,1)$

node of triangulation

index of vertex

2) index of triangle

<u>3</u> index of boundary segmen

Basic tasks

- 1. study the code line by line, is something is unclear ask the teacher
- 2. find what problem is solved by default
- 3. find how is solved the arising algebraic system
- 4. replace this subroutine by another one
- 5. modify the code such that the following boundary conditions are treated
 - (a) homogeneous Dirichlet on the whole boundary
 - (b) non-homogeneous Dirichlet on the whole boundary
 - (c) combination of the Dirichlet and Neumann BC
 - (d) Neumann BC on the whole boundary (troubles are expected)

More advanced tasks

- 1. write a subroutine computing the error in the L^2 -norm and H^1 -seminorm (provided that the exact solution is known)
- 2. using computation on a sequence of meshes set the experimental order of convergence

2D quadrature on triangle (weights and the barycentric coordinates n = 6: order = 4)

```
w_1 = 2.2338158967801100E-01
w_2 = 2.2338158967801100E-01
w_3 = 2.2338158967801100E-01
w_4 = 1.0995174365532200E-01
w_5 = 1.0995174365532200E-01
w_6 = 1.0995174365532200E-01
x_1(1:3) = (1.0810301816807000E-01,
                                      4.4594849091596500E-01,
                                                                4.4594849091596500E-01)
x_2(1:3) = (4.4594849091596500E-01,
                                      4.4594849091596500E-01,
                                                                1.0810301816807000E-01)
x_3(1:3) = (4.4594849091596500E-01,
                                                                4.4594849091596500E-01)
                                      1.0810301816807000E-01,
x_4(1:3) = (8.1684757298045896E-01,
                                      9.1576213509771007E-02,
                                                                9.1576213509770035E-02)
x_5(1:3) = (9.1576213509771007E-02,
                                      9.1576213509771007E-02,
                                                                8.1684757298045796E-01)
x_6(1:3) = (9.1576213509771007E-02,
                                      8.1684757298045896E-01,
                                                                9.1576213509770035E-02)
```