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Abstract. We deal with the numerical solution of the Navier-Stokes equations describ-
ing a motion of viscous compressible fluids. In order to obtain a sufficiently stable
higher order scheme with respect to the time and space coordinates, we develop a
combination of the discontinuous Galerkin finite element (DGFE) method for the space
discretization and the backward difference formulae (BDF) for the time discretization.
Since the resulting discrete problem leads to a system of nonlinear algebraic equa-
tions at each time step, we employ suitable linearizations of inviscid as well as viscous
fluxes which give a linear algebraic problem at each time step. Finally, the resulting
BDF-DGFE scheme is applied to steady as well as unsteady flows and achieved results
are compared with reference data.

AMS subject classifications: 76M10, 76N15, 35Q35, 65L06

Key words: compressible Navier-Stokes equations, discontinuous Galerkin finite element met-
hod, backward difference formulae, linearization.

1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme for
the simulation of unsteady compressible flows. In last years the discontinuous Galerkin
method (DGM) was employed in many papers for the discretization of compressible fluid
flow problems, see, e.g., [5], [6], [8], [10], [20], [32], [37], [38], [39], [40], [43], [44], [45],
[56], [57] and the references cited therein. DGM is based on a piecewise polynomial but
discontinuous approximation which provides robust and high-order accurate approx-
imations, particularly in transport dominated regimes. Moreover, there is considerable
flexibility in the choice of the mesh design; indeed, DGM can easily handle non-matching
and non-uniform grids, even anisotropic, polynomial approximation degrees. This al-
lows a simple treatment with hp-adaptation techniques. Additionally, orthogonal bases
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can easily be constructed which lead to diagonal mass matrices; this is particularly advan-
tageous for unsteady problems. Finally, in combination with block-type preconditioners,
DGMs can easily be parallelized. For a survey about DGM, see [13] or [15].

There are several variants of the DGM for the solution of problems containing diffu-
sion terms, see, e. g., [3]. It is possible to use a primal formulation or a mixed method. The
method can be stabilized with the aid of a symmetric or non-symmetric treatment of dif-
fusion terms, often combined with interior and boundary penalties. The mixed methods
consider the gradient of the solution as an independent variable hence the second order
derivative in the Navier-Stokes equations are eliminated and consequently, we obtain a
problem with a higher number of unknowns, see, e.g., [6]. Nevertheless, an efficient im-
plementation of mixed methods locally eliminates the auxiliary variables. A comparison
of accuracy and robustness of the DGM based on the primal formulation from [10] and
the mixed DGM from [6] was presented in [9].

Among methods using primal formulation, two approaches, symmetric interior penalty
Galerkin (SIPG) and non-symmetric interior penalty Galerkin (NIPG) introduced in [2] and
[50] are very popular, respectively. Moreover, we consider the so-called incomplete inte-
rior penalty Galerkin (IIPG) method which was studied in [17], [53], [54]. Although IIPG
has not the favourable properties as NIPG and SIPG techniques (see Remark 4.3 of this
paper), its application to the Navier-Stokes equations is more simple since some stabi-
lization terms are missing. We analysed these techniques in [25], [27] (NIPG), [24], [26]
(SIPG) and [22] (IIPG) for a scalar non-stationary convection-diffusion equation.

For unsteady problems, it is possible to use a discontinuous approximation also for
the time discretization (e.g., [46], [56], [57]), but the most usual approach is an applica-
tion of the method of lines. In this case, the Runge-Kutta methods are very popular for
their simplicity and a high order of accuracy, see [6], [7], [8], [10], [14], [20], [38]. Their
drawback is a strong restriction to the size of the time step. To avoid this disadvantage
it is suitable to use an implicit time discretization, e.g., [39], [40]. However, a full im-
plicit scheme leads to a necessity to solve a nonlinear system of algebraic equations at
each time step which is rather expensive. Therefore, we proposed in [31] a semi-implicit
method for the simulation of inviscid compressible flow. This technique is based on a
suitable linearization of the Euler fluxes. The linear terms are treated implicitly whereas
the nonlinear ones explicitly which leads to a linear algebraic problem at each time step.

In this paper, we extend the approach of semi-implicit scheme to the viscous case.
Hence, this article is a natural combination of the explicit scheme for viscous flow from
[20] with the semi-implicit scheme for inviscid flow from [31]. Moreover, we apply the
backward difference formula (BDF) to the time discretization which gives a higher order
approximation with respect to the time. This method was analysed in [29] for the case of
a scalar non-stationary convection-diffusion equation.

The content of the rest of the paper is the following. In Section 2 we introduce the
system of the compressible Navier-Stokes equations with appropriate initial and bound-
ary conditions and mention some properties of inviscid and viscous fluxes. In Section 3
we discretize the computational domain and define spaces of discontinuous functions. In
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Section 4 we recall the space discretization of a model scalar equation by the discontinu-
ous Galerkin finite element method which was presented in former papers [22], [24], [25],
[26], [27]. The novelty of this paper is contained in Section 5. We extend the discretization
of the model problem to the system of Navier-Stokes equations, carry out the time dis-
cetization by a higher order semi-implicit scheme and mention several implementation
remarks. Finally, three numerical examples, demonstrating the stability and accuracy of
the method, are presented in Section 6. The concluding remarks are given in Section 7.

2 Problem formulation

2.1 Compressible flow problem

Let Ω ⊂ IRd, d = 2,3 be a bounded domain and T > 0. We set QT = Ω×(0,T) and by
∂Ω denote the boundary of Ω which consists of several disjoint parts. We distinguish
inlet ∂Ωi, outlet ∂Ωo and impermeable walls ∂Ωw, i.e. ∂Ω= ∂Ωi∪∂Ωo∪∂Ωw. The system
of Navier-Stokes equations describing a motion of viscous compressible fluids can be
written in the dimensionless form

∂w

∂t
+∇·~f (w)=∇·~R(w,∇w) in QT, (2.1)

where
w=(w1,. . .,wd+2)

T =(ρ,ρv1,. . .,ρvd, e)T (2.2)

is the so-called state vector,

~f (w)=( f 1(w),. . ., f d(w)) (2.3)

with f s(w)=( f
(1)
s (w),. . ., f

(d+2)
s (w))T

=(ρvs,ρvsv1+δs1p, . . . ,ρvsvd+δd p, (e+p)vs)
T, s=1,.. . ,d

are the so-called inviscid (Euler) fluxes and

~R(w)=(R1(w),. . .,Rd(w)) (2.4)

with Rs(w,∇w)=(R
(1)
s (w,∇w),. . .,R

(d+2)
s (w,∇w))T

=

(

0,τs1, . . .,τsd,
d

∑
k=1

τskvk+
γ

Re Pr

∂θ

∂xs

)T

, s=1,.. . ,d

are the so-called viscous fluxes. Symbols ∇ and ∇· mean the gradient and divergence
operators, i.e.,

∇w≡
(

∂w

∂x1
,. . .,

∂w

∂xd

)

∈ IRd+2×···× IRd+2 (2.5)

and

∇·~f (w)≡
d

∑
s=1

∂ f s(w)

∂xs
∈ IRd+2, (2.6)
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respectively.
We consider the Newtonian type of fluid, i. e., the viscous part of the stress tensor has

the form

τsk =
1

Re

[(
∂vs

∂xk
+

∂vk

∂xs

)

− 2

3

d

∑
i=1

∂vi

∂xi
δsk

]

, s,k=1,.. . ,d. (2.7)

We use the following notation: ρ – density, p – pressure, e – total energy, v = (v1,. . .,vd)
– velocity, θ – temperature, γ – Poisson adiabatic constant, Re – Reynolds number, Pr –
Prandtl number.

In order to close the system, we consider the state equation for perfect gas and the
definition of the total energy

p=(γ−1)(e−ρ|v|2/2), e= cVρθ+ρ|v|2/2, (2.8)

where cV is the specific heat at constant volume which we assume to be equal to one in the
dimensionless case. The system (2.1) – (2.8) is of hyperbolic-parabolic type. It is equipped
with the initial condition

w(x,0)=w0(x), x∈Ω, (2.9)

and the following set of boundary conditions on appropriate parts of boundary:

a) ρ=ρD , v=vD,
d

∑
k=1

(
d

∑
l=1

τlknl

)

vk+
γ

Re Pr

∂θ

∂n
=0 on ∂Ωi, (2.10)

b)
d

∑
k=1

τsknk =0, s=1,.. . ,d,
∂θ

∂n
=0 on ∂Ωo,

c) v=0,
∂θ

∂n
=0 on ∂Ωw,

where ρD and vD are given function and n = (n1,. . .,nd) is a unit outer normal to ∂Ω.
Another possibility is to replace the adiabatic boundary condition (2.10), c) by

c′) v=0, θ = θD on ∂Ωw. (2.11)

In the case of vanishing viscosity (i.e., Re→∞), we obtain the reduced problem of the
Euler equations. Thus the boundary conditions (2.10) should be replaced by the appro-
priate “inviscid conditions” which are chosen in such a way that the system of the Euler
equations is linearly well-posed. Namely, for subsonic inlet we prescribe the density and
components of velocity, for the subsonic outlet we prescribe the pressure and on solid
walls the impermeability condition is used. For more details see, e.g., [35, Section 3.3.6].

The problem to solve the compressible Navier-Stokes equations (2.1) – (2.4) with con-
stitutive relations (2.7) – (2.8), equipped with the initial and boundary conditions (2.9) –
(2.11) will be denoted by (CFP) (compressible flow problem).

Finally, we present some properties of the inviscid and viscous fluxes~f (·) and ~R(·,·)
given by (2.3) and (2.4), respectively. These properties are fundamental for introducing
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the linearization of the nonlinear fluxes, which is the base of semi-implicit time discretiza-
tion schemes.

The inviscid fluxes f s, s=1,.. . ,d satisfy (see [35, Lemma 3.1])

f s(w)= As(w)w, s=1,.. . ,d, (2.12)

where

As(w)≡ D f s(w)

Dw
, s=1,.. . ,d, (2.13)

are the Jacobi matrices of the mappings f s. Then, we define a matrix

P(w,n)≡
d

∑
s=1

As(w)ns, (2.14)

where n = (n1,. . .,nd)∈ IRd, n2
1+···+n2

d = 1, which plays a role in the definition of a nu-
merical flux and the choice of boundary conditions.

Furthermore, the viscous terms Rs(w,∇w) can be expressed in the form

Rs(w,∇w)=
d

∑
k=1

Ks,k(w)
∂w

∂xk
, s=1,.. . ,d, (2.15)

where Ks,k(·) are (d+2)×(d+2) matrices dependent on w, see Appendix, expressions
(7.1) – (7.6).

Moreover, in virtue of [20], we introduce another formal variant of the viscous terms.
Let w=(w1,. . .,wd+2)∈ IRd+2 and ϕ=(ϕ1,. . .,ϕd+2)∈ IRd+2 then putting ∇w:=∇ϕ in (2.15)
we have

Rs(w,∇ϕ)=
d

∑
k=1

Ks,k(w)
∂ϕ

∂xk
∈ IRd+2, s=1,.. . ,d. (2.16)

The sum of the matrix-vector products (2.16) contains several terms

P
wj

w1

∂ϕ1

∂xk
, j=2,.. . ,d+2, k=1,.. . ,d, (2.17)

where P symbolically denotes the rest of terms (P depends on w). We replace these terms
by

P
ϕj

w1

∂w1

∂xk
, j=2,.. . ,d+2, k=1,.. . ,d (2.18)

and then we obtain new functions

ds(w,∇w,ϕ,∇ϕ) : IRd+2× IRd(d+2)× IRd+2× IRd(d+2)→ IRd+2, s=1,.. . ,d. (2.19)

From the above construction it follows that ds(·,·,·,·) are consistent with Rs(·,·) by

ds(w,∇w,w,∇w)= Rs(w,∇w) ∀w, s=1,.. . ,d, (2.20)
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functions ds(w,∇w,ϕ,∇ϕ), s = 1,.. .,d are linear with respect to ϕ and they are indepen-
dent of ∇ϕ1.

The functions ds, s=1,.. . ,d can be written as a sum of matrix-vector products by

ds(w,∇w,ϕ,∇ϕ)≡Ds,0(w,∇w)ϕ+
d

∑
k=1

Ds,k(w)
∂ϕ

∂xk
, s=1,.. . ,d, (2.21)

where Ds,k, k=0,1,.. . ,d, s=1,.. . ,d are (d+2)×(d+2) matrices, see Appendix, expressions
(7.7) – (7.10).

3 Discretization

3.1 Triangulations

Let Th (h>0) be a partition of the domain Ω into a finite number of closed d-dimensional
mutually disjoint (convex or non-convex) polyhedra K i.e., Ω =

⋃

K∈Th
K. We call Th =

{K}K∈Th
a triangulation of Ω and do not require the conforming properties from the finite

element method, see [12], [55]. In 2D problems, we choose usually K ∈ Th as triangles
or quadrilaterals. In 3D, K∈Th can be, e. g., tetrahedra, pyramids or hexahedra, but we
can construct even more general elements K, as dual finite volumes from [34]. By ∂K we
denote the boundary of element K∈Th and set hK = diam(K), h = maxK∈Th

hK. By ρK we
denote the radius of the largest d-dimensional ball inscribed into K and by |K| we denote
the d-dimensional Lebesgue measure of K.

By Fh we denote the smallest possible set of all open (d−1)-dimensional faces (open
edges when d=2 or open faces when d=3) of all elements K∈Th, see Figure 1. Further,
we denote by F I

h the set of all Γ∈Fh that are contained in Ω (inner faces). Moreover, we
denote by Fw

h , F i
h and F o

h the set of all Γ∈Fh such that Γ⊂ ∂Ωw, Γ⊂ ∂Ωi and Γ⊂ ∂Ωo,
respectively. Furthermore, we denote by FD

h the set of all Γ∈Fh where the Dirichlet type
of boundary conditions is prescribed at least for one component of w (i.e., FD

h ≡Fw
h ∪F i

h)
and by FN

h the set of all Γ ∈ Fh where the Neumann type of boundary conditions is
prescribed for all components of w (i.e., FN

h ≡F o
h ). Obviously, Fh =F I

h∪FD
h ∪FN

h . For a
shorter notation we put F io

h ≡F i
h∪F o

h , F ID
h ≡F I

h∪FD
h and FDN

h ≡FD
h ∪FN

h =Fw
h ∪F i

h∪F o
h .

Finally, for each Γ∈Fh we define a unit normal vector nΓ. We assume that nΓ, Γ∈FDN
h

has the same orientation as the outer normal of ∂Ω. For nΓ, Γ ∈ F I
h the orientation is

arbitrary but fixed for each edge, see Figure 1.

Remark 3.1. DGM is capable to treat concave elements as it is shown in Figure 1. There
is a question if the use of such elements does not decrease the order of accuracy of
the method. Numerical analysis carried out in [27] for a scalar nonlinear convection-
diffusion equation gives the same error estimate for convex as well as non-convex ele-
ments. Moreover, numerical experiments carried out in [25] for the same scalar equation
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K1 K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Figure 1: Example of elements Kl , l =1,. . .,5 and faces Γl , l =1,. . .,6 with the corresponding nΓl

give the second order of convergence in the L2-norm for the piecewise linear approxi-
mation. However, the use of concave elements for the Navier-Stokes equations was not
tested yet.

3.2 Discontinuous finite element spaces

To each K∈Th, we assign a positive integer sK (local Sobolev index) and a positive integer
pK (local polynomial degree) . Then we define the vectors

s≡{sK,K∈Th}, p≡{pK ,K∈Th}. (3.1)

Over the triangulation Th we define the so-called broken Sobolev space corresponding
to the vector s

Hs(Ω,Th)≡{v;v|K ∈HsK(K) ∀K∈Th}. (3.2)

If sK =q ∀K∈Th, q∈ IN then we use the notation Hq(Ω,Th)= Hs(Ω,Th). Obviously,

H s̄(Ω,Th)⊂Hs(Ω,Th)⊂Hs(Ω,Th), (3.3)

where s̄=max{sK , sK ∈ s} and s=min{sK, sK ∈ s}.

Furthermore, we define the space of discontinuous piecewise polynomial functions
associated with the vector p by

Shp≡{v; v∈L2(Ω), v|K ∈PpK
(K) ∀K∈Th}, (3.4)
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Kp

Kn

Γ

~nΓ

Figure 2: Inner edge Γ, elements Kp and Kn and the orientation of nΓ

where PpK
(K) denotes the space of all polynomials on K of degree ≤ pK, K∈Th. We seek

the approximate solution in the space of vector-valued functions

Shp≡Shp×···×Shp
︸ ︷︷ ︸

d+2 times

. (3.5)

For each Γ∈F I
h there exist two elements Kp,Kn ∈Th such that Γ⊂Kp∩Kn. We use a

convention that Kn lies in the direction of nΓ and Kp in the opposite direction of nΓ, see
Figure 2. Then for v∈H1(Ω,Th), we introduce the notation:

v|(p)
Γ ≡ the trace of v|Kp on Γ, (3.6)

v|(n)
Γ ≡ the trace of v|Kn on Γ,

〈v〉Γ ≡ 1

2

(

v|(p)
Γ +v|(n)

Γ

)

,

[v]Γ ≡ v|(p)
Γ −v|(n)

Γ .

The value [v]Γ depends on the orientation of nΓ of course but the value [v]ΓnΓ does not.
Further, we put

d(Γ)≡min(hKp ,hKn), Γ∈F I
h . (3.7)

For Γ∈FDN
h there exists element Kp∈Th such that Γ⊂Kp∩∂Ω. Then for v∈H1(Ω,Th),

we introduce the notation:

v|(p)
Γ ≡ the trace of v|Kp on Γ, (3.8)

〈v〉Γ ≡ [v]Γ ≡v|(p)
Γ .

By v|(n)
Γ , Γ∈FD

h ∪FN
h we formally denote the trace of v on Γ from the exterior of Ω given

either by a boundary condition or by an extrapolation from the interior of Ω. Addition-
ally, we associate with the face Γ∈FDN

h the unit normal vector n=nΓ which points from
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Kp to the exterior of Ω. In virtue of (3.7), we put

d(Γ)≡hKp , Γ∈FDN
h . (3.9)

In case that [·]Γ and 〈·〉Γ are arguments of
∫

Γ
. . .dS, Γ∈Fh we omit the subscript Γ and

write simply [·] and 〈·〉, respectively.

4 Model scalar equation

We start with the DGFE solution of the following model non-stationary scalar convection-
diffusion equation. We seek u : QT =Ω×(0,T)→ IR such that

a)
∂u

∂t
+∇·~f (u)= ε∆u in QT,

b) u
∣
∣
∂ΩD×(0,T)

=uD, (4.1)

c)
∂u

∂n

∣
∣
∂ΩN×(0,T)

= gN ,

d) u(x,0)=u0(x), x∈Ω,

where ε > 0 plays a role of viscosity, uD : ∂ΩD×(0,T) → IR, gN : ∂ΩN×(0,T) → IR and

u0 : Ω → IR are given functions, n = (n1,. . .,nd) is a unit outer normal to ∂Ω, and ~f =
( f1,. . ., fd) : IR→ IRd are prescribed continuous functions representing convection fluxes.

The interior penalty approach for the DGFE discretization of (4.1) can be found in
many papers, e.g., [3], [4], [20], [27], [42], [49], [51] and the references therein. Hence, we
do not derive it again and present only the final expressions.

We multiply (4.1) by a function v∈ H2(Ω,Th), integrate over K∈Th, use the Green’s
theorem, sum over K∈Th and add the penalty terms vanishing for a continuous solution
u. Then the discontinuous Galerkin finite element (DGFE) formulation of (4.1) reads

(
∂u

∂t
,v

)

+ah(u,v)+ b̃h(u,v)+ Jσ
h (u,v)= ℓh(v), (4.2)

where

ah(u,v) = ε ∑
K∈Th

∫

K
∇u·∇vdx−ε ∑

Γ∈F ID
h

∫

Γ
(〈∇u·n〉[v]+η〈∇v·n〉[u])dS, (4.3)

Jσ
h (u,v) = ∑

Γ∈F ID
h

∫

Γ
σ[u][v]dS, (4.4)

ℓh(v)(t) = ∑
Γ∈FN

h

∫

Γ
gN(t)vdS−εη ∑

Γ∈FD
h

∫

Γ
∇v·nuD(t)dS+ ∑

Γ∈FD
h

∫

Γ
σuD(t)vdS, (4.5)

b̃h(u,v) = − ∑
K∈Th

∫

K

~f (u)·∇vdx+ ∑
K∈Th

∫

∂K

~f (u)·n∂K vdS, (4.6)
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where n∂K is the unit outer normal to K∈Th on ∂K, η∈ IR is a parameter (see Remark 4.3)
and the penalty parameter σ in (4.4) and (4.5) is defined by

σ|Γ = ε
CW

d(Γ)
, Γ∈F ID

h , (4.7)

where d(Γ) is given either by (3.7) or (3.9) and CW >0 is a suitable constant.

Remark 4.1. The first two terms in (4.3),

ε ∑
K∈Th

∫

K
∇u·∇vdx and −ε ∑

Γ∈F ID
h

∫

Γ
〈∇u·n〉[v]dS, (4.8)

arise from the multiplication of the diffusive term −ε∆u by v ∈ H2(Ω,Th), the use of
Green’s theorem and the sum over K∈Th. Moreover, in the definition of the diffusion form
ah(·,·) given by (4.3), we add integrals

−εη ∑
Γ∈F ID

h

∫

Γ
〈∇v·n〉[u]dS, (4.9)

which follow from a formal exchange of u and v in the second term of (4.8). This term
ensures the stability properties of the DGFE method, see the cited references above.

Remark 4.2. The form Jσ
h (·,·) given by (4.4) represents the interior and boundary penalty

terms. It guarantees (in some weaker sense) the interelement continuity of discontinu-
ous approximation. If u∈H2(Ω) is the solution of (4.2) satisfying the Dirichlet boundary
condition (4.1), b) then [u]Γ =0, Γ∈F I

h since u is continuous across interior faces. Conse-
quently, it is easy to observe that the integrals (4.9) are compensated by the second term
in the form ℓh(·) (representing the treatment of boundary conditions) since

−εη ∑
Γ∈F ID

h

∫

Γ
〈∇v·n〉[u]dS = −ε ∑

Γ∈F I
h

∫

Γ
η〈∇v·n〉[u]dS

︸ ︷︷ ︸

=0

−ε ∑
Γ∈FD

h

∫

Γ
η〈∇v·n〉[u]dS

= −εη ∑
Γ∈FD

h

∫

Γ
∇v·nuD(t)dS. (4.10)

Moreover, the interior and boundary penalty terms are compensated by the third term of
ℓh(·) since

∑
Γ∈F ID

h

∫

Γ
σ[u][v]dS= ∑

Γ∈F I
h

∫

Γ
σ[u][v]dS

︸ ︷︷ ︸

=0

+ ∑
Γ∈FD

h

∫

Γ
σ[u][v]dS= ∑

Γ∈FD
h

∫

Γ
σuD(t)v. (4.11)

The identities (4.10) and (4.11) imply the consistency of the DGFE formulation (4.2) with
the weak formulation of (4.1).
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Remark 4.3. The value of η appearing in (4.3) and (4.5) can be chosen arbitrarily but the
most usual are the values −1,0 and 1. Then we obtain three variants of the DGFE scheme:

• η = 1 – symmetric interior penalty Galerkin (SIPG) [2] which leads to a symmetric
form ah(·,·)+ Jσ

h (·,·). Consequently, it is possible to derive optimal a priori error
estimates in the L2-norm using the Aubin-Nitsch theorem provided that CW in (4.7)
is sufficiently large.

• η = −1 – non-symmetric interior penalty Galerkin (NIPG) [49], [50] which does not
give optimal order of convergence in the L2-norm but on the other hand, leads to a
coercive form ah(·,·)+ Jσ

h (·,·) for any CW >0 in (4.7). This is a favourable property,
namely for an extension of the DGFE method to (CFP) where a numerical analysis
is almost impossible and it is not clear how large CW in (4.7) should be chosen.

• η =0 – incomplete interior penalty Galerkin (IIPG) [17], [53], [54] which does not give
optimal order of convergence in the L2-norm and CW > 0 in (4.7) should be cho-
sen sufficiently large in order to guarantee the coercivity of form ah(·,·)+ Jσ

h (·,·).
However, IIPG formulation is more simple for implementation since integrals of
type (4.9) appearing in (4.3) and (4.5) are missing. Moreover, this technique is more
suitable for problems with nonlinear diffusion, see [22].

Remark 4.4. The integrand of the face integral (4.6) is approximated by the so-called
numerical flux well-known from the finite volume method (see, e.g., [35, Section 3.2] or
[60]) by

~f (u)·n∂K v
∣
∣
∣
∂K

≈ H
(

u|(in)
Γ ,u|(out)

Γ ,n∂K

)

v
∣
∣
∣
∂K

, (4.12)

where u|(in)
Γ , u|(out)

Γ are the traces of u on ∂K from the interior and the exterior of element
K∈Th, respectively. We assume standard properties of the numerical flux, namely con-
sistency, conservativity and the Lipschitz continuity, see, e.g., [35]. Then we define the
discrete convective form

bh(u,v)=− ∑
K∈Th

∫

K

~f (u)·∇vdx+ ∑
Γ∈Fh

∫

Γ
H
(

u|(p)
Γ ,u|(n)

Γ ,nΓ

)

[v]Γ dS, (4.13)

where u|(p)
Γ and u|(n)

Γ are given by (3.6). The form bh(u,v) is consistent with b̃h(·,·) by

bh(u,v)= b̃h(u,v) ∀u∈H2(Ω), ∀v∈H1(Ω,Th). (4.14)

Now we can introduce the semi-discrete problem of the model scalar equation (4.1):

Definition 4.1. Let u0
h∈Shp be the L2(Ω)-projection of the initial condition u0 into Shp, i.e.

a function defined by

(u0
h−u0,vh)=0 ∀vh ∈Shp. (4.15)
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We say that uh is a DGFE solution of (4.1), if

a) uh∈C1(0,T;Shp),

b)

(
∂uh(t)

∂t
,vh

)

+bh(uh(t),vh)+ah(uh(t),vh)+ Jσ
h (uh(t),vh)= ℓh(vh)(t)

∀vh ∈Shp, ∀t∈ (0,T),

c) uh(0)=u0
h,

(4.16)

where C1(0,T;Shp) is the space of continuously differentiable mappings of the interval
(0,T) into Shp.

The numerical scheme (4.16) represents a system of ordinary differential equations
(ODEs) which should be solved by a suitable solver. We analysed this scheme in several
papers ( [22], [24], [25], [26], [27]) where a priori error estimates and numerical verification
of theoretical results are presented. In the following section, we apply the DGFE scheme
of type (4.16) to (CFP) introduced in Section 2.

5 System of the Navier-Stokes equations

Within this section, we extend the discontinuous Galerkin finite element method to the
system of the compressible Navier-Stokes equations. First, we carried out the DGFE
formulation of system (2.1) similarly as in (4.2) and consequently, we define the space
discretization of (2.1). Furthermore, we deal with the time discretization of the resulting
system of ODEs. Finally, we mention some implementation aspects.

5.1 DGFE formulation

The crucial item of the DGFE formulation of (CFP) is the treatment of the viscous terms.
Let w ∈ H2(Ω)d+2, then multiplying the viscous term ∇·~R(w,∇w) from (2.1) by ϕ∈
H2(Ω,Th)

d+2, integrating over K∈Th, summing over all K∈Th and using (2.10), b) and
(2.15), we obtain

− ∑
K∈Th

∫

K

d

∑
s=1

Rs(w,∇w)· ∂ϕ

∂xs
dx+ ∑

Γ∈F ID
h

∫

Γ

d

∑
s=1

〈Rs(w,∇w)〉ns ·[ϕ]dS (5.1)

= − ∑
K∈Th

∫

K

d

∑
s=1

Rs(w,∇w)· ∂ϕ

∂xs
dx+ ∑

Γ∈F ID
h

∫

Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w)
∂w

∂xk

〉

ns ·[ϕ]dS.

In virtue of Remark 4.1 we add to this expression a stabilization term which we obtain by
the formal exchange of arguments w and ϕ in the last term of (5.1), i.e.,

η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w)
∂ϕ

∂xk

〉

ns ·[w]dS, (5.2)
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where η=−1,1 depending on the type of stabilization, i.e., NIPG or SIPG variants. How-
ever, numerical experiments indicate that this choice of stabilization is not suitable. It
is caused by that fact that for ϕ= (ϕ1,0,. . . ,0)T, ϕ1 ∈ H2(Ω,Th), ϕ1 6= const, we obtain a
non-vanishing term (5.2) whereas both terms in (5.1) are equal to zero since the first rows
of Rs, Ks,k,s,k = 1,.. . ,d vanish, see (2.4) and (7.1) – (7.6). Therefore, in [10], [39], [40], the
stabilization term

η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈
d

∑
k=1

KT
s,k(w)

∂ϕ

∂xk

〉

ns ·[w]dS. (5.3)

was employed which avoids the drawback mentioned above. Here, KT denotes the ma-
trix transposed to K.

Moreover, in [20], we developed a different approach when the stabilization terms are
treated as

η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈ds(w,∇w,ϕ,∇ϕ)〉ns ·[w]dS (5.4)

= η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈

Ds,0(w,∇w)ϕ+
d

∑
k=1

Ds,k(w)
∂ϕ

∂xk

〉

ns ·[w]dS,

where ds(·,·,·,·), s = 1,.. . ,d is given by (2.21) and Ds,k, k = 0,1,.. . ,d, s = 1,.. . ,d by (7.7) –
(7.10). The forms ds(·,·,·,·), s = 1,.. .,d are linear with respect to their third and fourth
arguments and integrals (5.4) vanish for ϕ = (ϕ1,0,. . .,0)T ∈ IRd+2, ϕ1 ∈ H2(Ω,Th) since
ds, s = 1,.. . ,d are independent of ∇ϕ1 (see the construction of ds, s = 1,.. .,d by (2.16) –
(2.19)).

In order to simplify the notation we put

Qs(w,∇w,ϕ,∇ϕ)≡
{

∑
d
k=1 KT

s,k(w)
∂ϕ
∂xk

for stabilization (5.3)

ds(w,∇w,ϕ,∇ϕ) for stabilization (5.4)
, s=1,.. . ,d. (5.5)

Therefore, in virtue of the DGFE formulation carried out for the model problem in
Section 4, we define for w,ϕ∈H2(Ω,Th)

d+2 the forms

(w,ϕ)= ∑
K∈Th

∫

K
w·ϕdx (5.6)
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(L2-scalar product),

ãh(w,ϕ) = ∑
K∈Th

∫

K

~R(w,∇w)·∇ϕdx (5.7)

− ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w)
∂w

∂xk

〉

ns ·[ϕ]dS

−η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈Qs(w,∇w,ϕ,∇ϕ)〉ns ·[w]dS

+η ∑
Γ∈FD

h

∫

Γ

d

∑
s=1

Qs(w,∇w,ϕ,∇ϕ)ns ·wB dS

(diffusion form),

b̃h(w,ϕ)= ∑
K∈Th

{
∫

∂K

d

∑
s=1

f s(w)ns ·ϕdS−
∫

K

d

∑
s=1

f (w)· ∂ϕ

∂xs
dx

}

(5.8)

(convective form),

Jσ
h(w,ϕ)= ∑

Γ∈F ID
h

∫

Γ
σ[w]·[ϕ]dS− ∑

Γ∈FD
h

∫

Γ
σwB ·ϕdS (5.9)

(interior and boundary penalty terms), where the penalty parameter σ is chosen by

σ|Γ =
CW

d(Γ)Re
, Γ∈F ID

h , (5.10)

where d(Γ) is given either by (3.7) or (3.9) and CW > 0 is a suitable constant.The state
vector wB prescribed on ∂Ωi∪∂Ωw is given by the boundary conditions, in particular, for
the case (2.10) a)–c) we have

wB = (ρ|∂Ωw
,0,. . .,0,ρ|∂Ωw

θ|∂Ωw
) on ∂Ωw, (5.11)

wB = (ρD,ρD(vD)1,. . .,ρD(vD)d,ρ|∂Ωi
θ|∂Ωi

+
1

2
ρD|vD|2) on ∂Ωi,

and for the case (2.10) a)–b), (2.11) c’)

wB = (ρ|∂Ωw
,0,. . .,0,ρ|∂Ωw

θD) on ∂Ωw, (5.12)

wB = (ρD,ρD(vD)1,. . .,ρD(vD)d,ρ|∂Ωi
θ|∂Ωi

+
1

2
ρD|vD|2) on ∂Ωi,

where ρD,vD and θD are given functions from the boundary conditions (2.10)–(2.11) and
ρ|Γ and θ|Γ are the values of density and temperature extrapolated from interior of Ω on
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the appropriate boundary part, respectively. More detailed determination of (5.7) – (5.12)
is given in [20].

Let w(t) denotes the function on Ω such that w(t)(x)=w(x,t), x∈Ω. Then with the
aid of (5.6) – (5.9) the DGFE formulation for the Navier-Stokes equations reads

d

dt
(w(t),ϕ)+ ãh(w(t),ϕ)+b̃h(w(t),ϕ)+ Jσ

h(w(t),ϕ)=0, (5.13)

w(t),ϕ∈H2(Ω,Th)
d+2, t∈ (0,T).

5.2 Space discretization

Within this section we deal with the space discretization of (5.13). In order to evaluate
the boundary integrals in (5.8) we use the (“finite volume”) approximation

d

∑
s=1

f s(w)(n∂K)s ·ϕ
∣
∣
∣
∣
∣
∂K

≈ H
(

w|(in)
Γ ,w|(out)

Γ ,n∂K

)

·ϕ
∣
∣
∣
∂K

, (5.14)

where w|(in)
Γ , w|(out)

Γ are the traces of w on ∂K from the interior and the exterior of element
K∈Th, respectively and H(·,·,·) is a numerical flux, for details, see, e.g. [33] or [35]. Then
with the aid of (5.8) and (5.14) we define the form

b̄h(w,ϕ)≡ ∑
Γ∈Fh

∫

Γ
H
(

w|(p)
Γ ,w|(n)

Γ ,nΓ

)

·[ϕ]Γ dS− ∑
K∈Th

∫

K

d

∑
s=1

f (w)· ∂ϕ

∂xs
dx. (5.15)

In order to employ the concept of semi-implicit schemes we need that the numerical
flux H has a form suitable for a linearization. Hence, in our applications we employ the
Vijayasundaram numerical flux, see [59], [33], Section 7.3 or [35], Section 3.3.4. The matrix
P(w,n) defined by (2.14) is diagonalizable, i.e., there exist matrices Λ and T such that

P(w,n)=TΛT−1, Λ=diag (λ1,. . .,λd+2), (5.16)

where λ1,. . .,λd+2 are the eigenvalues of P. We define the “positive” and “negative” part
of P by

P±(w,n)=TΛ
±T−1, Λ

±=diag (λ±
1 ,. . .,λ±

4 ). (5.17)

Then the Vijayasundaram numerical flux reads

H(w1,w2,n)≡P+

(
w1+w2

2
,n

)

w1+P−
(

w1+w2

2
,n

)

w2. (5.18)

Similarly as the Vijayasundaram numerical flux (5.18) we can apply, e.g., the Roe’s type
schemes [52] having also a form suitable for a linearization.

It is necessary to specify the meaning of w|(n)
Γ for Γ ∈ FDN

h . We use the approach
known from the inviscid flow simulation, see, e.g., [35], [60]. For Γ∈F io

h we prescribe
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mn components of w on Γ and extrapolate mp = d+2−mn components of w from K to
Γ (Γ⊂ ∂K) where mn is the number of negative eigenvalues of matrix P(w,n) given by
(2.14). Thus, we define

w|(n)
Γ = LRP(w|(p)

Γ ,wD,nΓ), (5.19)

where LRP(·,·,·) represents a solution of the local Riemann problem considered on edge
Γ ∈ F io

h and wD is a given state vector (e.g. from far-field boundary conditions). For
details, see [30].

For Γ∈Fw
h , the impermeability condition

v·n=0 (5.20)

is prescribed. Then in virtue of (5.14) we put

∫

Γ
H(w(t)|(p)

Γ ,w(t)|(n)
Γ ,nΓ)·ϕdS :=

∫

Γ
FW(w(t),nΓ)·ϕdS, Γ∈FW

h , (5.21)

where

FW(w,n)≡ (0,pn1,. . .,pnd,0)T . (5.22)

The pressure p is expressed in the form

p=(γ−1)

(

wd+2−
w2

2+···+w2
d+1

2w1

)

, (5.23)

following from (2.8) and (2.2) and extrapolated on Γ from K (Γ⊂∂K) and n=(n1,. . .,nd)=
nΓ.

The approximate solution of (CFP) is sought in the space of discontinuous piecewise
polynomial functions Shp defined by (3.5). We introduce the semi-discrete problem.

Definition 5.1. Function wh is a semi-discrete solution of (CFP), if

a) wh∈C1(0,T;Shp), (5.24)

b)

(
∂wh(t)

∂t
,ϕh

)

+ ãh(wh(t),ϕh)+b̄h(wh(t),ϕh)+ Jσ
h(wh(t),ϕh)=0

∀ϕh∈Shp, ∀t∈ (0,T),

c) wh(0)=w0
h,

where w0
h∈Shp denotes an Shp-approximation of the initial condition w0 from (2.9).

Here C1(0,T;Shp) is the space of continuously differentiable mappings of the inter-
val (0,T) into Shp. The problem (5.24), a) – c) exhibits a system of ordinary differential
equations (ODEs) for wh(t) which has to be discretized by a suitable method.
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5.3 Full time-space discretization

The ODEs system (5.24) belongs to the class of stiff problems whose solution by an ex-
plicit scheme is rather inefficient. On the other hand, a full implicit scheme leads to a
necessity to solve a system of nonlinear algebraic equations at each time step which is
rather expensive. Therefore, we follow the approach presented in [31] for the inviscid
flow simulation where a semi-implicit time discretization was developed. Hence, we
introduce a linearization of the nonlinear forms b̄h and ãh in Sections 5.3.1 and 5.3.2, re-
spectively, and then we define the full time-space discretization of (CFP) by the so-called
BDF-DGFE method.

5.3.1 Linearization of inviscid terms

By (5.15), for wh,ϕh∈Shp we have

b̄h(wh,ϕh)=− ∑
K∈Th

∫

K

d

∑
s=1

f s(wh)·
∂ϕh

∂xs
dx

︸ ︷︷ ︸

=:χ̃1(wh ,ϕ
h
)

+ ∑
Γ∈Fh

∫

Γ
H
(

w|(p)
Γ ,w|(n)

Γ ,nΓ

)

[ϕ]Γ dS

︸ ︷︷ ︸

=:χ̃2(wh ,ϕ
h
)

. (5.25)

The individual forms χ̃1(·,·) and χ̃2(·,·) will be linearized separately. For χ̃1, we employ
the property (2.12) of the Euler fluxes and for w̄h, wh, ϕh∈Shp define a form

χ1(w̄h,wh,ϕh)≡ ∑
K∈Th

∫

K

d

∑
s=1

As(w̄h(x))wh(x)· ∂ϕh(x)

∂xs
dx. (5.26)

The linearization of the term χ̃2 can be carried out in a simple way, when H in (5.25)
is chosen, for example, as the Vijayasundaram numerical flux (5.18). Let w̄h, wh, ϕh∈Shp,
we put

χ̃2(w̄h,wh,ϕh)≡ ∑
Γ∈Fh

∫

Γ

[

P+ (〈w̄h〉,n)wh|(p)
Γ +P−(〈w̄h〉,n)wh|(n)

Γ

]

·[ϕh]dS, (5.27)

where 〈w̄h〉 is given by (3.6).
It is necessary to pay a special attention to wh|Γ for Γ∈FDN

h . For Γ∈Fw
h we employ

approximation (5.21). The vector FW defined by (5.22) is a nonlinear function of w and
its linearization is given with the aid of the Taylor expansion by

FW(wh,n)≈ F̃W(w̄h,wh,n) ≡ FW(w̄h,n)+DFW(w̄h,n)(wh−w̄h)

= DFW(w̄h,n)wh, (5.28)

where

DFW(w,n)≡ (γ−1)










0 0 ... 0 0
(v2

1+···+v2
d)n1/2 −v1n1 . . . −vdn1 n1

...
...

. . .
...

...
(v2

1+···+v2
d)nd/2 −v1nd . . . −vdnd nd

0 0 ... 0 0










(5.29)
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is obtained by the differentiation of function FW given by (5.22) with respect to w =
(w1,. . .,wd). Here n=(n1,. . .,nd), vj=wj+1/w1, j=1,.. . ,d. The last equality in (5.28) follows
from (2.12) which implies FW(w̄h,n)= DFW(w̄h,n)w̄h.

Then we put

χ2(w̄h,wh,ϕh) (5.30)

≡ ∑
Γ∈F I

h

∫

Γ

(

P+ (〈w̄h〉,n)wh|(p)
Γ +P− (〈wh〉,n)wh|(n)

Γ

)

·[ϕh]dS

+ ∑
Γ∈F io

h

∫

Γ

(

P+ (〈w̄h〉,n)wh|(p)
Γ +P−(〈w̄h〉,n)w̄h|(n)

Γ

)

·[ϕh]dS

+ ∑
Γ∈Fw

h

∫

Γ
F̃W(w̄h,wh,nij)·ϕ dS,

where, in virtue (5.19),

w̄|(n)
Γ = LRP(w̄|(p)

Γ ,wD,nΓ), Γ∈F io
h . (5.31)

Finally, we define the form

bh(w̄h,wh,ϕh)≡−χ1(w̄h,wh,ϕh)+χ2(w̄h,wh,ϕh), (5.32)

where χ1 and χ2 are given by (5.26) and (5.30), respectively. The form bh is linear with
respect to the second and third variable and consistent with b̄h by

b̄h(wh,ϕh)=bh(wh,wh,ϕh) ∀wh,ϕh∈Shp. (5.33)

5.3.2 Linearization of viscous terms

In virtue of (5.7), for w̄h,wh,ϕh∈Shp we define the form

ah(w̄h,wh,ϕh) = ∑
K∈Th

∫

K

d

∑
s=1

(
d

∑
k=1

Ks,k(w̄h)
∂wh

∂xk

)

· ∂ϕh

∂xs
dx (5.34)

− ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w̄h)
∂wh

∂xk

〉

ns ·[ϕh]dS

−η ∑
Γ∈F ID

h

∫

Γ

d

∑
s=1

〈Qs(w̄h,∇w̄h,ϕh,∇ϕh)〉ns ·[wh]dS

+η ∑
Γ∈FD

h

∫

Γ

d

∑
s=1

Qs(w̄h,∇w̄h,ϕh,∇ϕh)ns ·wB dS,

which is linear with respect to its second and third components. Moreover, it is consistent
with ãh(·,·) by

ãh(wh,ϕh)=ah(wh,wh,ϕh) ∀wh,ϕh∈Shp. (5.35)
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5.3.3 BDF-DGFE semi-implicit scheme

The main idea of the semi-implicit discretization is to treat the linear parts of forms ah

and bh (represented by their second and their arguments) implicitly and their nonlinear
parts (represented by their first arguments) explicitly. In order to obtain a sufficiently
stable and accurate approximation with respect to the time coordinate, we use the back-
ward difference formula (BDF), see, e.g., [36], for the solution the ODE problem (5.24), a)
– c). Moreover, for the nonlinear parts of ah(·,·,·) and bh(·,·,·), we employ a suitable
explicit higher order extrapolation which preserves a given order of accuracy and does
not destroy the linearity of the problem at each time level. This approach is often called
extrapolated BDF method and it was introduced and investigated in [16] and [58] for the
second order scheme. In [29], we analysed the extrapolated BDF-DGFE method applied
to the space discretization (4.16), a)–c) of the model problem (4.1).

Let 0 = t0 < t1 < ···< tr = T be a partition of the interval (0,T) and τk ≡ tk+1−tk, k =
0,1,.. . ,r−1. In order to simplify the notation, we put

ch(w̄h,wh,ϕh)≡ah(w̄h,wh,ϕh)+bh(w̄h,wh,ϕh)+ Jσ
h (wh,ϕh), w̄h,wh,ϕh∈Shp. (5.36)

Definition 5.2. We define the approximate solution of (CFP) the set of functions wk
h, k =

1,.. .,r, satisfying the conditions

a) wk+1
h ∈Shp, (5.37)

b)
1

τk

(
n

∑
l=0

αlw
k+1−l
h ,ϕh

)

+ch

(
n

∑
l=1

βlw
k+1−l
h ,wk+1

h ,ϕh

)

=0

∀ϕh ∈Shp, k=n−1,.. . ,r−1,

c) w0
h is Shp approximation of w0,

d) wl
h∈Shp, l =1,.. .,n−1 are given by a suitable one-step method,

where n≥1 is the degree of the BDF scheme, the coefficients αl , l=0,.. .,n and βl , l=1,.. .,n
depend on time steps τk−l, l =0,.. . ,n. We call this approach the BDF-DGFE method.

The relations for the coefficients αl, l = 0,.. .,n and βl , l = 1,.. .,n can be found in [36,
Section III.5] or [28] for n=1,2,3 and their values for constant time step τk =τ, k=1,.. . ,r
are given in Table 1.

n αl , l =0,. . .,n βl , l =1,. . .,n

1 1, −1 1

2 3
2 , −2, 1

2 2, −1

3 11
6 , −3, 3

2 , − 1
3 3, −3, 1

Table 1: Values of coefficients αl and βl for constant time step

The problem (5.37), a) – d) represents a system of linear algebraic equations for each
k=n−1,.. . ,r−1 which is solved by a suitable linear algebra solver.
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Remark 5.1. There is a natural question how accurate and stable is the proposed BDF-
DGFE method (5.37). This method was analysed for the case of a scalar convection-
diffusion equation with a nonlinear convective term and a linear diffusive term in [29].
Assuming that the exact solution is sufficiently regular, we derived a priori error esti-
mates (for the SIPG version)

‖u−uh‖L∞(0,T;L2(Ω)) ≤ C
(

hp+1+τn
)

, (5.38)

|u−uh|L2(0,T;H1(Ω,Th))
≤ C(hp+τn),

where u is the exact solution, uh the approximate solution obtained by the n-step BDF-
DGFE method (n=1,2,3), p≥1 is the degree of polynomial approximation, h is the mesh
size, τ is the size of time step and C is a constant independent of h and τ. The estimates
(5.38) were obtained without any restriction on the size of the time step, for more details
see [29].

On the other hand, numerical analysis of the BDF-DGFE method (5.37) applied to the
system of the Navier-Stokes equations is rather complicated. However, numerical experi-
ments presented in this paper indicate that this scheme is sufficiently stable and accurate,
see Section 6.1 (Figure 5), where the stability of the BDF-DGFE method is demonstrated
and Sections 6.2 and 6.3 where comparisons of an accuracy of the BDF-DGFE method
with respect to the space and time are presented.

Remark 5.2. It is possible to consider a generalization of the BDF-DGFE method (5.37),
a) - d), which is based on the replacing the condition (5.37), b) by

b1) wk+1,0
h ≡

n

∑
l=1

βlw
k+1−l
h or wk+1,0

h ≡wk
h, (5.39)

b2) wk+1,m
h ∈Shp, m=1,.. .,m̄k+1,

b3)
(

α0wk+1,m
h ,ϕh

)

+τkch

(

wk+1,m−1
h ,wk+1,m

h ,ϕh

)

=−
(

n

∑
l=1

αlw
k+1−l
h ,ϕh

)

∀ϕh∈Shp, m=1,.. .,m̄k+1, k=n−1,.. . ,r−1,

b4) wk+1
h ≡w

k+1,m̄k+1

h ,

where m̄k+1 ≥2 denotes the number of inner loops. The value m̄k+1 is chosen usually in
such a way that

‖w
k+1,m̄k+1

h −w
k+1,m̄k+1−1
h ‖≤ω, (5.40)

where ω>0 is a given tolerance and ‖·‖ is a suitable norm. The resulting “fully-implicit”
numerical scheme (5.39), b1)– b4), (5.37), a), c), d) belongs to the Newton-like methods,
which are based on a suitable approximation of the Jacobi matrix.

The fully-implicit scheme should be more accurate and stable than the semi-implicit
one. On the other hand, fully-implicit scheme is more expensive since it requires solution
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of m̄k+1 linear algebraic problems at the time level k+1. However, for increasing m (1≤
m≤ m̄k+1) the solution of the corresponding linear algebraic problem is faster and faster
since we have better and better initial approximation of the solution.

Nevertheless, we carried out several numerical experiments (not presented in this pa-
per) which indicate that fully-implicit scheme does not exhibits any gain in the accuracy
and the stability in comparison with the semi-implicit one.

Remark 5.3. Another similar approach of the solving of the semi-discrete problem (5.24)
is the solution of the linearised problem by an implicit Runge-Kutta method. Although
the implicit Runge-Kutta methods are sufficiently stable they are not so efficient as the
BDF schemes. It follows from the fact that the m-stage (m ≥ 1) implicit Runge-Kutta
scheme needs to solve m linear algebraic problems at each time step whereas the m-step
BDF requires the solution only of one linear algebraic problem for any m≥1.

5.4 Implementation aspects of BDF-DGFE method

Linear algebraic system solver As we mentioned in the previous section, problems
(5.37), a)–d) represents a system of linear algebraic equations. Let {ψl}dof

l=1 represent a
basis of the space of vector-valued discontinuous piecewise polynomial functions Shp

defined by (3.5), where dof denotes the dimension of Shp. Then a function wk
h ∈Shp can

be written in the form

wk
h(x)=

dof

∑
l=1

ξ l
kψl(x), x∈Ω, k=0,1,.. . ,r, (5.41)

where ξ l
k ∈ IR, l = 1,.. .,dof, k = 0,.. . ,r. Moreover, for wk

h ∈Shp we define the vector of its
basis coefficients by

W k ≡
(

ξk,1, ξk,2,. . .,ξk,dof
)

∈ IRdof, k=0,1,.. . ,r. (5.42)

Then the linear algebraic problem (5.37) can be written in the matrix form

(

α0M+τkCk
)

W k =qk, k=n,. . . ,r, (5.43)

where matrix M is the mass matrix given by

M ={M(i,j)}dof
i,j=1, M(i,j)≡

∫

Ω
ψi ·ψjdx, i, j=1,.. . ,dof, (5.44)

Ck is a the matrix corresponding to form ch(·,·,·) defined by

Ck =Ck(W k−1,W k−2,. . .,W k−n), (5.45)

Ck≡{C
(i,j)
k }dof

i,j=1, C
(i,j)
k ≡ ch

(
n

∑
l=1

βlw
k−l
h , ψi, ψj

)

, i, j=1,.. . ,dof,
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and qk ∈ IRdof represents the right-hand-side of (5.37)given by

qk =qk(W k−1,W k−2,. . .,W k−n)={qk,i}dof
i=1, qk,i≡−

(
n

∑
l=1

αlw
k−l
h , ψi

)

, (5.46)

The linear algebraic problem (5.43) should be numerically solved at each time level
tk, k=n,. . . ,r. It is possible to use a direct solver which is more efficient for not too large dof
(usually dof≈104−105). For larger systems, it is suitable to use some iterative solvers. We
employ the restarted GMRES solver with the block diagonal preconditioning. The restart
was carried out after 45 iterations. The iterative process was stopped if the discrete ℓ2-
norm of the residuum was smaller than 10−5. Numerical simulations of steady as well
as unsteady flow problems indicate that this choice is sufficient, i.e., smaller value of the
tolerance does not cause any increase of accuracy and stability of the method.

Choice of shape functions We dealt with this aspect in [21]. We construct orthogo-
nal basis of Shp by the Grant-Schmidt orthogonalization process on each element K∈Th

separately. Although it is a known fact, that this algorithm is ill-conditioned, we do not
observed any problem with the stability of the Grant-Schmidt orthogonalization. It is
caused by the fact that the dimension of the finite element space on each element is small
and moreover if the basis is not (exactly) orthogonal it does not mind.

The orthogonality of the basis of Shp implies that the mass matrix M given by (5.44)
is (up to round off errors) diagonal and then for small time step τk the linear algebraic
problem (5.43) can be solved very fast in few iterations. However, for increasing size
of the time step this advantage is diminishing, see Section 6.1, the comment to Figure 5
(left).

Choice of the time step The time steps τk, k = 0,1,.. . are chosen adaptively. We use
the identical technique as in [28] where the inviscid flow simulation was treated. This
approach is based on a use of two semi-implicit multistep formulae of the same order of
accuracy and from their difference we estimate the local discretization error and propose
a new time step. However, this adaptive method optimises the number of time steps but
no the computational time.

The optimal choice of the time step with respect to the computational time (including
setting of suitable stopping condition for the linear algebra solver) is quite open and it
will be a subject of further research.

Representation of non-polygonal boundaries In order to obtain a physically admis-
sible distribution of physical quantities on non-polygonal boundaries, we employ the
super-parametric finite elements, see [23].
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Choice of the penalty parameter σ The penalty coefficient σ appearing in the definition
of Jσ

h(·,·) is given by relation (5.10) which is a natural generalization of (4.7). In the case of
the model scalar equation, the value CW >0 in (4.7) can be set by from the theory. Whereas,
for the NIPG variant of the DGFE method, it is sufficient to put CW = 1, for the SIPG
and the IIPG variants, the value of CW should be sufficiently large, the limit values were
derived analytically, see, e.g., [22], [24], [27], [41].

However, for the Navier-Stokes equations the situation is more complicated since a rel-
evant mathematical theory is missing. Therefore, the appropriate values of CW have to
be found experimentally. This aspect together with the influence of the size of CW to the
solution is studied in Section 6.

6 Numerical examples

In this section we present three two-dimensional numerical examples. The first one is a
basic benchmark of steady viscous flow around a flat plate. The second and third ones
represent a steady and an unsteady flows around NACA 0012 profile, respectively.

6.1 Blasius problem

We consider the laminar flow on the adiabatic flat plate {(x1,x2); 0≤ x1 ≤1, x2 =0} cha-
racterised by the freestream Mach number M = 0.1 and the Reynolds number Re = 104.
The computation domain is viewed in Figure 3, where two used triangular grids are
plotted together with their details around the leading edge. We prescribe the adiabatic
boundary conditions (2.10), c) at the flat plate, the outflow boundary conditions (2.10), b)
at {(x1,x2); x1 = 1,−1.5≤ x2 ≤ 1.5} and the inflow boundary conditions (2.10), a) on the
rest of the boundary.

We seek the steady state solution by the time stabilization approach where the com-
putational process is carried out for “t → ∞”. As a stopping criterion we employ the
condition

res(k)≡
‖rk‖L2(Ω)

‖r1‖L2(Ω)
≤ ω̄, (6.1)

where ω̄>0 is a prescribed tolerance and rk∈Shp is an approximation of ∂
∂t w(tk), tk∈(0,T)

given by

rk ≡ 1

τk−1

(

wk
h−wk−1

h

)

. (6.2)

In the computations presented within Section 6.1 we put ω̄ =10−6.

6.1.1 Stability of the method

We compared the NIPG, IIPG, SIPG variants of the DGFEM using piecewise linear, quadratic
and cubic space approximation. Our aim is to find a suitable value of the constant CW in
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Figure 3: Blasius problem, computational grids B1 and B2, the coarser one B1 having 662 elements (top) and
the finer one B2 having 2648 elements (bottom), the whole computational domain (left) and their details around
the leading edge (right)

(5.10) which ensures the stability of the scheme, i.e., a convergence to the steady-state so-
lution. Firstly, we carried out computations for the values of CW =1,5, 25, 125, 625, 3125
and consequently, several additional values of CW were chosen in order to find a limit
value of CW. These results obtained on the grid B1 are shown in Table 2, where an indi-
cation of a convergence of the appropriate variant of the DGFEM with a given value CW

is marked, namely,

• “convergence” (C), i.e., the stopping condition (6.1) was achieved after less than 200
time steps,

• “quasi-convergence” (qC), i.e., the stopping condition (6.1) was achieved after more
than 200 time steps,

• “no-convergence” (NC), i.e., the stopping condition (6.1) was not achieved after 500
time steps.

The “quasi-convergence” in fact means that the appropriate value CW is just under the
limit value ensuring a reasonable convergence to the steady-state solution.

From Table 2 we found that

• NIPG variant converges for any CW≥1 independently on the degree of polynomial
approximation,



25

NIPG IIPG SIPG

CW P1 P2 P3 P1 P2 P3 P1 P2 P3

1 C C C C NC NC N N N
5 C C C C C NC N N N

10 - - - - C C - - -
25 C C C C C C N N N

100 - - - - - - N - -
125 C C C C C C C N N
150 - - - - - - C - -
250 - - - - - - - N -
300 - - - - - - - qC -
400 - - - - - - - C N
500 - - - - - - - C N
625 C C C C C C C C qC

1 000 - - - - - - - - C
3 125 C C C C C C C C C

Table 2: Blasius problem, the convergence (C), non-convergence (NC) or quasi-convergence (qC) of the NIPG,
IIPG and SIPG variants of the DGFEM for P1, P2 and P3 approximations for different values of CW (symbol “-”
means that the appropriate combination of the method, the degree of approximation and the value of CW was
not tested)

• IIPG variant requires higher values of CW for P2 and P3 approximations, namely
CW=5 and CW=10 are sufficient, respectively. On the other hand, P1 approximation
converges for any CW ≥1.

• SIPG variant requires significantly higher values of CW. We observe that CW ≥125
for P1, CW ≥ 400 for P1 and CW ≥ 1000 for P3. This is in a good agreement with
the theoretical results from [41] carried out for a scalar quasilinear elliptic problem,
where the dependence CW=cp2, c>0 is employed (p denotes the polynomial degree
of approximation).

Figure 4 shows the histories of convergence to the steady-state solution (i.e., the depen-
dence of res(k) on k) for some interesting cases from Table 2.

Furthermore, it is interesting to observe the size of time steps adaptively chosen by the
BDF-DGFE method in a possible comparison with a fictitious explicit time discretization
method. Hence, we define the so-called cfl-value by

cfl(k)≡τkΛ(wk
h), k=1,.. . ,r, (6.3)

where Λ(·) is an approximation of the maximal eigenvalue of the ODE system (5.24)
given by

Λ(wk
h)≡max

(

min
K∈Th
Γ⊂∂K

|K|
rΓ(wk

h,n)|Γ| , min
K∈Th

|K|
Re

)

(6.4)
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Figure 4: Blasius problem, the histories of convergence for some computations from Table 2, (e.g., ’NIPG-
625.P3’ means the NIPG variant of DGFEM with CW =625 and P3 approximation)

where rΓ(wk
h,n) denotes the spectral radius of the matrix P(wk

h,n)|Γ given by (2.14) and
Re is the Reynolds number. Numerical experiments show that an explicit time scheme is
stable if cfl(k)≤1, see, e.g., [20, relation (70)] or [33].

Figure 5 (left) shows a typical dependence of the cfl(k) quantity on tk, k =0,.. . ,r. We
observe that the cfl-value exponentially increases for k = 1,2... ,. This indicates that the
semi-implicit BDF-DGFEM (5.37), a) - d) is practically unconditionally stable. Figure 5
(right) shows the corresponding numbers of GMRES iterations necessary to solve the
linear algebra problem (5.43) at each time step. We observed that the increasing size of
the time step τk requires higher number of iterations. However, if the numerical solution
is close to the steady state one then the number of GMRES iterations starts decreasing. It
is caused by the fact that the initial guess of the solution of problem (5.43) is very close to
the resulting solution.

Remark 6.1. The number of GMRES iterations is rather very high and hence the pre-
sented numerical scheme is not very efficient. It would be suitable to use a more efficient
linear algebra solver. A promising seems to be an application of the BiCGSTAB method
with an updating technique for the ILU(⋆) preconditioners. This approach was devel-
oped in [11], where an implicit finite volume discretization of an inviscid compressible
flow was considered. Our preliminary numerical experiments give significantly smaller
number of iterations.
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Figure 5: Blasius problem, a typical dependence of the cfl(k)-value (left) and the number of GMRES iterations
(right) on the number of time steps

6.1.2 Accuracy of the method

We compared the numerical solutions with the “theoretical” one, which can be obtained
from the well-known Blasius problem represented by an incompressible flow along a flat
plate. Therefore, we introduce the non-dimensional velocities in the stream-direction and
in the normal to stream direction by

v⋆
1 ≡

v1(η)

|v∞|
and v⋆

2 ≡
√

Rex
v2(η)

|v∞|
, (6.5)

respectively, where

η≡
√

Rex
x2

x1
, Rex ≡|v∞|Re x1, (6.6)

Re is the Reynolds number and v∞ is the free-stream velocity.
Figures 6 – 9 shows the velocity profiles v⋆

1 and v⋆
2 obtained by P1, P2 and P3 approxi-

mations on meshes B1 and B2 at x1=0.1, x1=0.3 and x1=0.5 in comparison with the exact
solution. We employed the NIPG technique with CW =25. The velocity profiles obtained
by the SIPG and IIPG variants are almost identical. We observed very accurate capturing
of the v⋆

1-profile and a reasonable capturing of the v⋆
2-profile. An increase of the accuracy

for an increasing degree of approximation and a decreasing mesh size is evident.
Moreover, Figure 10 shows the comparison of the computed skin friction coefficient

c f achieved by P1, P2 and P3 approximations on meshes B1 and B2 with the exact solution
given by the Blasius formula. We observed a good agreement with the Blasius solution.
However, P2 and P3 approximations give in fact the same value of c f at the first element
on the flat plate. Similar results were obtained in [6, Fig. 2] where the difference among
P1, P2 and P3 approximations on the first cell of the flat plate is almost negligible. We sup-
pose that it can be caused by the singularity of the solution at x1 =x2 =0 which decreases
the local order of accuracy of the DGFE method. This phenomenon was numerically
verified for a scalar nonlinear convection-diffusion equation in [26].
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Figure 6: Blasius problem, mesh B1, velocity profiles v⋆
1 = v⋆

1(η) for P1, P2 and P3 approximations at x1 =0.1,
x1 =0.3 and x1 =0.5 in comparison with the exact solution (dotted lines)
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Figure 7: Blasius problem, mesh B1, velocity profiles v⋆
2 = v⋆

2(η) for P1, P2 and P3 approximations at x1 =0.1,
x1 =0.3 and x1 =0.5 in comparison with the exact solution (dotted lines)
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Figure 8: Blasius problem, mesh B2, velocity profiles v⋆
1 = v⋆

1(η) for P1, P2 and P3 approximations at x1 =0.1,
x1 =0.3 and x1 =0.5 in comparison with the exact solution (dotted lines)
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Figure 9: Blasius problem, mesh B2, velocity profiles v⋆
2 = v⋆

2(η) for P1, P2 and P3 approximations at x1 =0.1,
x1 =0.3 and x1 =0.5 in comparison with the exact solution (dotted lines)
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Figure 10: Blasius problem, skin friction coefficient computed on meshes B1 and B2 by P1 (’P 1’), P2 (’P 2’)
and P3 (’P 3’) approximation in comparison with the Blasius formula (’exact’), distributions along the whole
plate (left), their details around the leading edge (right)

6.2 Steady-state flow around NACA0012 profile

In Section 6.1, we studied the influence of the value of the penalty parameter CW intro-
duced in (5.10) to the stability of the NIPG, IIPG and SIPG variants of the BDF-DGFE
method (5.37). We do not observed any essential influence of CW to, e.g., the velocity
profiles. Nevertheless, the influence of CW to the numerical solution should be investi-
gated by a quantitative characteristic of the flow. Hence, we consider a flow around the
profile NACA0012 at the free stream Mach number M=0.5, the angle of attack α=0◦ and
Reynolds number Re=5000. The walls of the profile are adiabatic. The Reynolds number
is near to the upper limit for the steady laminar flow. A characteristic feature of this flow
problem is the separation of the flow occurring near to the trailing edge.

We carried out computations on a set of six successively generated grids N1 – N6 from
[1]. Figure 11 shows these grids around the NACA profile and their zooms around the
trailing and leading edges. The numbers of elements (=#Th) and mesh sizes (=1/

√
#Th)

of grids N1 – N6 are shown in Table 3 (top). We investigated a “convergence” of the drag
coefficient cD for “h→0” for the NIPG variant with several choices of CW. (We observed
the same behaviour as well as for the IIPG and SIPG techniques.) The values of cD are
presented in Table 3 and also visualised in Figure 12. We easily observe a non-negligible
dependence of cD on CW on coarser grids but for increasing number of elements #Th the
influence of CW to cD decreases and cD converges to an asymptotic value. All values
of cD obtained on the finest employed meshes differ of 0.00113 (≈ 2% of the value cD)
for P1 approximation, 0.00027 (≈0.5%) for P2 approximation and 0.00024 (≈0.5%) for P3

approximation.
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Figure 11: Computational grids N1 – N6 around the NACA0012 profile (left) with details around the leading
(middle) and trailing edges (right)
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mesh N1 N2 N3 N4 N5 N6

#Th 1148 2262 4216 8482 17888 40440
1/

√
#Th 2.95E-02 2.10E-02 1.54E-02 1.09E-02 7.48E-03 4.97E-03

Pk CW N1 N2 N3 N4 N5 N6

P1 1 0.03322 0.04913 0.05288 0.05429 0.05470 0.05492
P1 5 0.04289 0.04945 0.05150 0.05356 0.05459 0.05488
P1 25 0.04692 0.04749 0.04910 0.05203 0.05379 0.05448
P1 250 0.04157 0.04217 0.04605 0.05093 0.05271 0.05379

P2 1 0.05538 0.05548 0.05489 0.05482 0.05486 –
P2 5 0.05431 0.05423 0.05436 0.05467 0.05473 –
P2 25 0.05167 0.05199 0.05373 0.05458 0.05473 –
P2 250 0.04796 0.05137 0.05337 0.05428 0.05459 –

P3 1 0.05939 0.05599 0.05500 0.05492 – –
P3 5 0.05783 0.05523 0.05467 0.05468 – –
P3 25 0.05475 0.05393 0.05374 0.05471 – –
P3 250 0.05178 0.05232 0.05477 0.05480 – –

Table 3: NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), numbers of elements (= #Th) and mesh sizes
(=1/

√
#Th) of grids N1 – N6 and the corresponding values of the drag coefficient cD computed by the NIPG

variant of the BDF-DGFE method for different values of CW

Finally, we carried out additional computations on an adaptively refined grid A1 (ob-
tained by the anisotropic adaptation technique [18], [19]) having 2 600 elements, see Fig-
ure 13 (top). Table 4 shows a comparison of the pressure (cD,p) and viscous parts (cD,v) of
the drag coefficient (cD) obtained by P1, P2 and P3 approximations on grid A1 with refer-
ence values from [48], [6] and our previous results [20]. Figure 14 show the corresponding
distributions of the skin friction coefficient in comparison with an “exact” solution obtain
by an “overkill” computation.The isolines of the Mach number are shown in Figure 15.
We observe an increase of accuracy for increasing polynomial degree of approximation.

6.3 Unsteady flow around NACA0012 profile

The last example represents a flow around the profile NACA 0012 at the free stream Mach
number M=0.85, the angle of attack α=0◦ and Reynolds number Re=10000. The walls
of the profile are adiabatic. This flow regime leads to an unsteady solution and hence
a sufficient accuracy with respect to time is required (on the contrary to the previous
steady-steady examples).

The computations were carried out on the an adaptively refined grid A2 having 3 206
elements, see Figure 13 (bottom). Figure 16 shows a dependence of the drag (cD) and lift
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Figure 12: NACA 0012 profile (M=0.5, α=0◦, Re=5000), visualization of results from Table 3, the dependencies
of the drag coefficient cD on mesh size (=1/

√
#Th) obtained by the NIPG variant of the BDF-DGFE method

for different values of CW and P1, P2 and P3 approximations on meshes N1 – N6 (left) and its detail on meshes
N3 – N6 (right)
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Figure 13: Adaptively refined grids A1 and A2 around the NACA0012 profile (left) with details around the
leading (middle) and trailing edges (right)
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method #Th DOF cD,p cD,v cD

BDF-DGM – P1 2 600 31 200 0.02441 0.02894 0.05335
BDF-DGM – P2 2 600 62 400 0.02241 0.03173 0.05414
BDF-DGM – P3 2 600 104 000 0.02279 0.03216 0.05495

[20] – P1 6 792 81 504 0.02309 0.03113 0.05422
[48] – P0 32 768 131 072 0.02256 0.03301 0.05557
[48] – P0 131 072 524 288 0.02235 0.03299 0.05534
[6] – P1 2 048 24 576 0.01963 0.03051 0.05014
[6] – P2 2 048 49 152 0.01991 0.03361 0.05352
[6] – P3 2 048 81 920 0.02208 0.03303 0.05511

Table 4: NACA 0012 profile (M=0.5, α=0◦, Re=5000), values of cD,p, cD,v and cD obtained by the BDF-DGFE

method on mesh A1 in the comparison with our former results [20], finite volume computations from [48] and
discontinuous Galerkin solutions obtained by piecewise linear (P1), quadratic (P2) and cubic approximations (P3)
in [6]
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Figure 14: NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), distribution of the skin friction coefficient (left)
with a detail around leading edge (right) obtained by piecewise linear (CF P1), quadratic (CF P2) and cu-
bic approximations (CF P3) on mesh A1 in comparison with “an exact” solution obtained by an “overkill”
computation
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Figure 15: NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), isolines of the Mach number (left) with details
around the leading (middle) and trailing edges (right) computed by P1, P2 and P3 approximations



36

(cL) coefficients on time obtained by the BDF-DGFE method with piecewise linear (P1),
quadratic (P2) and cubic (P3) polynomial approximation in space and the third order in
time. A characteristic development of oscillations of cL are observed, see, e.g., [47]. More-
over, Figure 17 shows a propagation of the lift coefficient obtained with the BDF-DGFE
methods with the second and third order accuracy with respect to time in a compari-
son with reference solution (obtained by an “overkill” computation with respect to time).
Figure 18 shows the density distribution at six time instants within one period of the lift
coefficient obtained the piecewise cubic polynomial approximation with respect to space
and third order of accuracy with respect to time.

7 Conclusion

We carried out a numerical solution of the compressible Navier-Stokes equations by a
combination of the discontinuous Galerkin finite element method and the backward dif-
ference formulae scheme (BDF-DGFE method). This scheme is sufficiently stable, have a
high order of approximation with respect to space and time coordinates and at each time
step we solve a linear algebraic problem. Presented numerical examples of steady as well
as unsteady flows give promising results.

There are several open problems connected with the use of the BDF-DGFE method to
the Navier-Stokes equations:

• an optimization of the method with respect to the computational time, particularly,
the choice of the size of time step, type of linear algebra solver and its stopping
criterion,

• a use of a hp-adaptation approach based on suitable a posteriori error analysis.

The work in progress is the implementation of the three-dimensional variant of the BDF-
DGFE method.

Appendix

The matrices Ks,k ≡ {K
(m,n)
s,k }d+2

m,n=1, s,k = 1,.. . ,d introduced by (2.15) have (for d = 3) the
following form:

K1,1 =












0 0 0 0 0

− 4
3

w2

Re w2
1

4
3

1
Re w1

0 0 0

− w3

Re w2
1

0 1
Re w1

0 0

− w4

Re w2
1

0 0 1
Re w1

0

K
(5,1)
1,1

1
Re (

4
3 −

γ
Pr )

w2

w2
1

1
Re (1− γ

Pr )
w3

w2
1

1
Re (1− γ

Pr )
w4

w2
1

γ
Re Pr

1
w1












, (7.1)
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Figure 16: NACA 0012 profile (M=0.85, α=0◦, Re=10000), dependence of the drag (up) and lift (middle and
detail down) coefficients on time computed by the BDF-DGFE method with piecewise linear (P1), quadratic
(P2) and cubic (P3) approximation in space and third order in time
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computed by the BDF-DGFE method with the second (up) and third (down) order of accuracy with respect to
time in comparison with the reference solution

with K
(5,1)
1,1 =− 1

Re w3
1

(
4
3 w2

2+w2
3+w2

4

)
+ γ

Re Pr

(

−w5

w2
1
+

w2
2+w2

3+w2
4

w3
1

)

,

K2,2 =












0 0 0 0 0

− w2

Re w2
1

1
Re w1

0 0 0

− 4
3

w3

Re w2
1

0 4
3

1
Re w1

0 0

− w4

Re w2
1

0 0 1
Re w1

0

K
(5,1)
2,2

1
Re (1− γ

Pr )
w2

w2
1

1
Re (

4
3 −

γ
Pr )

w3

w2
1

1
Re (1− γ

Pr )
w4

w2
1

γ
Re Pr

1
w1












, (7.2)

with K
(5,1)
2,2 =− 1

Re w3
1

(
w2

2+
4
3 w2

3+w2
4

)
+ γ

Re Pr

(

−w5

w2
1

+
w2

2+w2
3+w2

4

w3
1

)

,

K3,3 =












0 0 0 0 0

− w2

Re w2
1

1
Re w1

0 0 0

− w3

Re w2
1

0 1
Re w1

0 0

− 4
3

w4

Re w2
1

0 0 4
3

1
Re w1

0

K
(5,1)
3,3

1
Re (1− γ

Pr )
w2

w2
1

1
Re (1− γ

Pr )
w3

w2
1

1
Re (

4
3−

γ
Pr )

w4

w2
1

γ
Re Pr

1
w1












, (7.3)

with K
(5,1)
3,3 =− 1

Re w3
1

(
w2

2+w2
3+

4
3 w2

4

)
+ γ

Re Pr

(

−w5

w2
1
+

w2
2+w2

3+w2
4

w3
1

)

,



39

Figure 18: NACA 0012 profile (M =0.85, α=0◦, Re =10000), P3-approximation in space, third order in time,
Mach number distribution at 6 time instants within one period of the lift coefficient oscillations
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(7.6)
For d = 2, the form of Ks,k, s,k = 1,2 can be easily derived from (7.1) – (7.6 by remov-
ing fourth rows and columns of matrices Ks,k, symbolically putting w4 := 0 and finally
“renaming” w5 by w4. See also, e.g., [35, Section 4.3] or [39] where the explicit forms of
Ks,k, s,k=1,2 for d=2 are given.

The matrices Ds,k ≡
{

D
(m,n)
s,k

}d+2

m,n=1
, k = 0,1,.. . ,d, s = 1,.. .,d introduced by (2.21) are

given by
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For d = 2, the form of Ds,0, s = 1,2 can be easily derived from (7.7) – (7.9 by remov-
ing fourth rows and columns of matrices Ds,0, symbolically putting w4 := 0 and finally
“renaming” w5 by w4.

The matrix elements of Ds,k, s,k=1,.. . ,d are defined by

D
(m,n)
s,k =

{

K
(m,n)
s,k for n=2,.. .,d+2

0 for n=1
, m=1,.. . ,d+2, s,k=1,.. . ,d, (7.10)

where K
(m,n)
s,k m,n = 1,.. .,d+2 are elements of matrices Ks,k, s,k = 1,.. .,d given by (7.1) –

(7.6).
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