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Dedicated to Professor Ivo Babuška on the occasion of his 80th

birthday

Abstract

The paper deals with the numerical analysis of a scalar nonstationary nonlinear
convection-diffusion equation. The space discretization is carried out by the dis-
continuous Galerkin finite element method (DGFEM), on general nonconforming
meshes formed by possibly nonconvex elements, with nonsymmetric treatment of
stabilization terms and interior and boundary penalty. The time discretization is
carried out by a semi-implicit Euler scheme, in which the diffusion and stabilization
terms are treated implicitly, whereas the nonlinear convective terms are treated ex-
plicitly. We derive a priori asymptotic error estimates in the discrete L∞(L2)–norm,
L2(H1)–seminorm and L∞(H1)–seminorm with respect to the mesh size h and time
step τ . Numerical examples demonstrate the accuracy of the method and manifest
the effect of nonconvexity of elements and nonconformity of the mesh.

Key words: nonlinear convection-diffusion equation, discontinuous Galerkin finite
element method, nonsymmetric treatment of stabilization terms – NIPG method,
interior and boundary penalty, semi-implicit scheme, a priori error estimates,
experimental order of convergence

⋆ This work is a part of the research project MSM 0021620839 financed by the
Ministry of Education of the Czech Republic and was partly supported by the
Grant No. 201/05/0005 of the Czech Grant Agency.
∗ Corresponding author.
Email addresses: dolejsi@karlin.mff.cuni.cz (V. Doleǰśı),

feist@karlin.mff.cuni.cz (M. Feistauer), jhozmi@volny.cz (J. Hozman).

Preprint submitted to Computer Methods in Applied Mechanics and Engineering6 November 2014



1 Introduction

The numerical solution of nonlinear conservation laws, convection-diffusion
problems and flow problems requires the application of efficient, robust and
accurate methods allowing to overcome various difficulties, as the precise cap-
turing and resolution of boundary layers, shock waves and contact disconti-
nuities. It is possible to say that nowadays in computational fluid dynamics
(CFD) two techniques compete: the finite volume (FV) schemes and stabilized
finite element methods (FEM). A survey of FV as well as FE approaches to
the numerical simulation of compressible flow can be found, e.g. in [23].

A natural generalization of the FV and FE techniques is the discontinuous
Galerkin finite element method (DGFEM), which appears to be very suitable
for problems with solutions containing discontinuities and/or steep gradients.
The DGFEM is based on piecewise polynomial but discontinuous approxima-
tions. It uses advantages of the FV as well as FE methods. Similarly as in the
finite volume method, the DGFEM uses discontinuous approximations and
boundary fluxes are evaluated with the aid of a numerical flux, which allows
a precise capturing of discontinuities and steep gradients. Similarly as in the
finite elements method, the DGFEM uses higher degree polynomial approxi-
mations of solutions, which produces an accurate resolution in regions, where
the solution is smooth.

There are several variants of the DGFEM for the solution of problems con-
taining diffusion terms. It is possible to use primitive variables or a mixed
method. The method can be stabilized with the aid of a symmetric or non-
symmetric treatment of diffusion terms, often combined with an interior and
boundary penalty. We consider here the nonsymmetric variant with the in-
terior and boundary penalty (denoted as NIPG method). This stabilization
technique was proposed in [3] and [5] and represents the generalization of the
boundary penalty by Babuška and Zlámal allowing to impose the Dirichlet
boundary condition in a weak sense instead of building it in the finite element
space (see [2]). The nonsymmetric variant was also investigated in [10], [8],
[9], [29] for elliptic and parabolic problems and in [19] and [20] for nonlinear
convection-diffusion problems. Although this approach does not give an opti-
mal order of convergence for elliptic problems, it leads to a coercive operator
for an arbitrary positive penalty coefficient. This property is important when
the DGFEM is applied to the system of the Navier-Stokes equations, where
the numerical analysis is rather complicated, see [16].

There is a number of works devoted to theory and applications of the DGFEM.
Let us mention, e.g., [1], [3], [5], [4], [7], [14], [15], [16], [19], [23], [24], [25],
[27], [29], [31]. For a survey of various discontinuous Galerkin techniques, see,
e. g. [12], [13].
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In [17] and [20] we carried out a discretization of a scalar nonstationary
convection-diffusion equation with nonlinear convective terms by the DGFEM
with respect to space variables (the method of lines) and derived a priori er-
ror estimates. The time discretization can be carried out by the (explicit)
Runge-Kutta methods, which are simple for implementation, but the result-
ing schemes are conditionally stable and the time step is drastically limited
by the CFL stability condition. In order to avoid this disadvantage, it seems
suitable to apply an implicit method, which allows us to use a much longer
time step. However, a fully implicit DGFEM leads to a large, strongly nonlin-
ear algebraic system, whose solution is rather complicated. This is the reason
that in the present paper, which is a continuation of [20], we propose a semi-
implicit scheme, which appears quite efficient and robust. The linear diffusion
and stabilization terms are treated implicitly, whereas the nonlinear convec-
tive terms explicitly. Similarly as in [20] we allow to use a nonconforming mesh
formed by nonconvex star-shaped polyhedral elements. In this paper we shall
be concerned with theoretical analysis of error estimates of the semi-implicit
method and present several numerical experiments verifying the theoretical
results. Also the effect of nonconvexity of elements and nonconformity of a
mesh will be treated in numerical experiments.

The contents of the paper is the following. In Section 2, the initial-boundary
value problem for a scalar nonlinear convection-diffusion equation is formu-
lated. In Section 3, we carry out the discretization of the problem by the semi-
implicit DGFEM and establish the existence and uniqueness of the numerical
solution. Section 4 contains some auxiliary results, namely assumptions on
the space discretization (allowing even nonconforming grids with nonconvex
star-shaped elements) and some important inequalities and estimates. These
results are used in Section 5, where error estimates in the discrete L∞(L2)–
norm, L2(H1)–seminorm and L∞(H1)–seminorm are proven. We obtain also
estimates of the error in the penalty terms. In Section 6 we present numerical
examples demonstrating the accuracy and robustness of the DGFEM. In Sec-
tion 7 we introduce some concluding remarks and formulate open problems.

2 Continuous problem

Let Ω ⊂ IRd (d = 2 or 3) be a bounded polyhedral domain and T > 0. (For
d = 2 under the concept of a polyhedral domain we mean a polygonal domain.)
We set QT = Ω× (0, T ). By Ω and ∂Ω we denote the closure and boundary of
Ω, respectively. Let us consider the following initial-boundary value problem:
Find u : QT → IR such that

3



∂u

∂t
+

d
∑

s=1

∂fs(u)

∂xs

= ε∆u+ g in QT , (1)

u
∣

∣

∣∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

We assume that the data satisfy the following conditions:

a) fs ∈ C1(IR), fs(0) = 0, s = 1, . . . , d, (4)

b) ε > 0,

c) g ∈ C([0, T ];L2(Ω)),

d) uD is the trace of some u∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(QT )

on ∂Ω× (0, T ),

e) u0 ∈ L2(Ω).

We use the standard notation for function spaces (see, e. g. [26]): Lp(Ω),
Lp(QT ) denote the Lebesgue spaces, W k,p(Ω), Hk(Ω) = W k,2(Ω) are the
Sobolev spaces, Lp(0, T ;X) is the Bochner space of functions p-integrable over
the interval (0, T ) with values in a Banach spaceX, C([0, T ];X) (C1([0, T ];X))
is the space of continuous (continuously differentiable) mappings of the inter-
val [0, T ] into X.

The assumption that fs(0) = 0, s = 1, . . . , d, does not cause any loss of
generality, as can be seen from equation (1). The functions fs, called fluxes,
represent convective terms, ε > 0 is the diffusion coefficient.

We shall assume that problem (1) – (3) has a weak solution (cf. [20], Section
2), satisfying the regularity conditions

u ∈ L∞(0, T ;Hp+1(Ω)), (5)

∂u

∂t
∈ L∞(0, T ;Hp+1(Ω)),

∂2u

∂t2
∈ L∞(0, T ;L2(Ω)),

where an integer p ≥ 1 will denote a given degree of polynomial approxima-
tions. Such a solution satisfies problem (1) – (3) pointwise. Under (5),

u ∈ C([0, T ];Hp+1(Ω)),
∂u

∂t
∈ C([0, T ];L2(Ω)). (6)
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Fig. 1. Neighbouring elements Ki, Kj

3 Discretization of the problem

3.1 Triangulations

We use the same notation as in [20], Section 3.1. By Th (h > 0) we denote
a partition of the closure Ω of the domain Ω into a finite number of closed
d-dimensional star-shaped polyhedra K with mutually disjoint interiors. They
can be even nonconvex. All elements are numbered so that Th = {Ki}i∈I , where
I ⊂ Z+ = {0, 1, 2, . . .} is a suitable index set. We denote hK = diam(K), h =
maxK∈Th

hK , ρK – radius of the largest d-dimensional ball inscribed into K,
|K| – d-dimensional Lebesgue measure of K, Γij = Γji = ∂Ki∩∂Kj, provided
i 6= j and Ki, Kj ∈ Th contain a common nonempty open face. Then we call
Ki and Kj neighbours. (See Figure 1, showing a possible 2D situation.) The
boundary ∂Ω is formed by a finite number of faces Sj, j ∈ Ib ⊂ {−1,−2, . . .}
of elements Ki adjacent to ∂Ω. For i ∈ I we set

s(i)= {j ∈ I;Kj is a neighbour of Ki}, (7)

γ(i)= {j ∈ Ib;Sj is a face of Ki},
Γij =Sj for such Ki ∈ Th that Sj ⊂ ∂Ki, j ∈ Ib.

If we write S(i) = s(i) ∪ γ(i), then

∂Ki =
⋃

j∈S(i)

Γij, ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij. (8)

Furthermore, we use the following notation: nij = ((nij)1, . . . , (nij)d) – unit
outer normal to ∂Ki on the face Γij (see Figure 1), |Γij| – (d− 1)-dimensional
measure of Γij, d(Γij) = diam(Γij). We have
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nij =−nji (9)

|Ki| ≤hd
Ki

≤ hd,

d(Γij)≤hKi
≤ h.

Over the triangulation Th we define the so-called broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th} (10)

equipped with the norm

‖v‖Hk(Ω,Th) =





∑

K∈Th

‖v‖2Hk(K)





1/2

(11)

and the seminorm

|v|Hk(Ω,Th) =





∑

K∈Th

|v|2Hk(K)





1/2

. (12)

For v ∈ H1(Ω, Th), i ∈ I and j ∈ s(i) we denote

v|Γij
=the trace of v|Ki

on Γij, (13)

v|Γji
=the trace of v|Kj

on Γji,

〈v〉Γij
=

1

2

(

v|Γij
+ v|Γji

)

,

[v]Γij
= v|Γij

− v|Γji
.

In the discretization we shall use the nonsymmetric variant of the DG repre-
sentation of the diffusion terms, introduced by Oden, Baumann and Babuška,
combined with interior and boundary penalty. We speak of a NIPG variant
(see [28]). The convective terms are approximated with the aid of a numer-
ical flux. This is an important ingredient in the finite volume schemes and
allows to approximate convective terms in a natural way also in the frame-
work of the DGFEM. The interior and boundary penalty terms are used here
because of the following reasons. First, they stabilize the diffusion approxima-
tion and play an important role in the proof of the coercivity of the problem.
(It is well-known that for schemes without penalty terms the error estimates
can be proven only for elements of degree ≥ 2, see, e.g. [1], [3].) Second, the
penalty terms are necessary for the control of nonlinear convective terms in
the derivation of error estmates. See, e.g. estimates (38) – (40).
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In [20], Section 3, the DG space semidiscretization (method of lines) was in-
troduced. To this end, the following forms were defined: For u, v ∈ H2(Ω, Th)
we set

(u, v) =
∫

Ω

uvdx, (14)

ah(u, v) = ε
∑

i∈I











∫

Ki

∇u · ∇v dx

−
∑

j∈s(i)
j<i

∫

Γij

(

〈∇u〉 · nij[v]− 〈∇v〉 · nij [u]
)

dS

−
∑

j∈γ(i)

∫

Γij

(

(∇u · nij) v − (∇v · nij) u
)

dS











,

bh(u, v) =
∑

i∈I







∑

j∈s(i)

∫

Γij

H(u|Γij
, u|Γji

,nij) v|Γij
dS (15)

+
∑

j∈γ(i)

∫

Γij

H(u|Γij
, u|Γij

,nij) v|Γij
dS







−
∑

i∈I

∫

Ki

d
∑

s=1

fs(u)
∂v

∂xs

dx, u, v ∈ H1(Ω, Th), u ∈ L∞(Ω),

(16)

Jσ
h (u, v) =

∑

i∈I











∑

j∈s(i)

∫

Γij

σ[u] [v] dS +
∑

j∈γ(i)

∫

Γij

σuv dS











(17)

ℓh(v) (t) = (g(t), v) + ε
∑

i∈I

∑

j∈γ(i)

∫

Γij

(∇v · nij uD(t) + σuD(t) v) dS, (18)

representing the L2(Ω)-scalar product, diffusion terms, convective terms, in-
terior and boundary penalty and right-hand side. The function H is a numer-
ical flux (also called an approximate Riemann solver). The weight function
σ :

⋃

i∈I

⋃

j∈S(i) Γij → IR from the penalty terms is defined by

σ|Γij
=

1

d(Γij)
. (19)

If j ∈ γ(i), then Γij ⊂ ∂Ω and it is necessary to specify the meaning of
u|Γji

. Here we use the extrapolation, i.e. we set u|Γji
:= u|Γij

. (In practical
computations, usually more sophisticated boundary conditions depending on
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the behavious of u are used, see Section 6.) We assume that the numerical
flux has the following properties:

Assumptions (H)

(1) H(u, v,n) is defined in IR2 × S1, where S1 = {n ∈ IRd; |n| = 1}, and
Lipschitz-continuous with respect to u, v: there exists a constant C1 > 0
such that

|H(u, v,n)−H(u∗, v∗,n)| ≤ C1(|u− u∗|+ |v − v∗|), (20)

u, v, u∗, v∗ ∈ IR, n ∈ S1.

(2) H(u, v,n) is consistent:

H(u, u,n) =
d
∑

s=1

fs(u)ns, u ∈ IR, n = (n1, . . . , nd) ∈ S1. (21)

(3) H(u, v,n) is conservative:

H(u, v,n) = −H(v, u,−n), u, v ∈ IR, n ∈ S1. (22)

In virtue of (20) and (21), the functions fs, s = 1, . . . , d, are Lipschitz-
continuous with constant Lf = 2C1. From (4), a) and (21) we see that

H(0, 0,n) = 0 ∀n ∈ S1. (23)

As an example of a numerical flux satisfying the above assumptions we can use
the numerical flux from Section 6 or multidimensional variants of well-known
approximate Riemann solvers for conservation laws. Let us mention, e.g. the
numerical fluxes by Engquist–Osher and Lax–Friedrichs, see e.g., [21].

Now we define the space of discontinuous piecewise polynomial functions

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ P p(K) ∀K ∈ Th}, (24)

where P p(K) denotes the space of all polynomials on K of degree ≤ p, where
the integer p ≥ 1 is a given degree of approximation.

In [20] we showed that the exact solution u with property (5) satisfies the
identity

(

∂u

∂t
(t), vh

)

+ ah(u(t), vh) + bh(u(t), vh) + εJσ
h (u(t), vh) = ℓh(vh) (t) (25)

for all vh ∈ Sh and all t ∈ (0, T ).
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Now we are ready to introduce the fully discretized problem. To this end,
we consider a partition 0 = t0 < t1 < . . . of the time interval [0, T ], set
τk = tk+1 − tk for k = 0, 1, . . ., the exact solution u(tk) will be approximated
by an element uk ∈ Sh, as test functions v we shall use functions vh ∈ Sh and
the time derivative in (25) will be approximated by the backward difference.
In order to obtain a stable and efficient scheme, the forms ah, J

σ
h and ℓh will

be treated implicitly, whereas the nonlinear form bh will be treated explicitly.
In this way we arrive at the following method.

We define the approximate solution of problem (1) – (3) as functions uk
h, tk ∈

[0, T ], satisfying the conditions

a) uk+1
h ∈ Sh, (26)

b)

(

uk+1
h − uk

h

τk
, vh

)

+ ah(u
k+1
h , vh) + bh(u

k
h, vh)

+εJσ
h (u

k+1
h , vh) = ℓh(vh) (tk+1) ∀ vh ∈ Sh, ∀ tk+1 ∈ (0, T ],

c) u0
h = ΠL2

u0.

The function uk
h is called the approximate solution at time tk.

In (26), c), ΠL2
denotes the operator of L2-projection on the space Sh. This

means that ΠL2
v ∈ Sh and

(

ΠL2

v, ϕ
)

= (v, ϕ) ∀ϕ ∈ Sh. (27)

It is obvious that (ΠL2
v)|K ∈ P p(K) and for v ∈ L2(Ω) we have

(ΠL2

v, ϕ)L2(K) = (v, ϕ)L2(K) ∀ϕ ∈ P p(K), ∀K ∈ Th. (28)

For each tk+1 ∈ (0, T ] problem (26), a) – b) is equivalent to a system of linear
algebraic equations with a nonsymmetric, but positive definite matrix, which
can be solved by a suitable solver. This implies the following result.

Lemma 1 The discrete problem (26) a) – c) has a unique solution.

In what follows we shall be concerned with the analysis of method (26), a) – c).

4 Some auxiliary results

In this section we summarize some important results and properties which
have been proven in [19] and [20].
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4.1 Geometry of the mesh

Let us consider a system {Th}h∈(0,h0), h0 > 0, of partitions of the domain Ω,
i.e. Th = {Ki}i∈Ih , Ih ⊂ Z+. For the sake of simplicity, we shall write I instead
of Ih (h ∈ (0, h0)) and the dependence of index sets I, Ib, s(i), γ(i) and S(i)
on h will not be emphasized by the notation.

In what follows, by the symbol Ci, i = 1, 2, . . ., we shall denote constants
always independent of h and τ .

Let us assume that the system {Th}h∈(0,h0) has the following properties:

(A1) Each element K ∈ Th, h ∈ (0, h0), is a star-shaped domain with respect
to at least one point xK = (xK1, . . . , xKd) ∈ K◦, where K◦ is the interior
of K. We assume:
i) There exists a constant κ > 0 independent of K and h such that

maxx∈∂K |x− xK |
minx∈∂K |x− xK |

≤ κ ∀K ∈ Th, ∀h ∈ (0, h0). (29)

ii) The element K can be divided into a finite number of closed sim-
plexes:

K =
⋃

S∈S(K)

S. (30)

There exists a positive constant C2 independent of K, S and h such
that

hS

ρS
≤ C2 ∀S ∈ S(K) (shape regularity), (31)

where hS is the diameter of S, ρS is the radius of the largest d-dimen-
sional ball inscribed into S and, moreover,

1 ≤ hK

hS

≤ κ̃ < ∞ ∀S ∈ S(K), (32)

where κ̃ is a constant independent of K,S and h.
(A2) There exists a constant C3 > 0 such that

hKi
≤ C3 d(Γij), ∀i ∈ I, j ∈ S(i), h ∈ (0, h0). (33)

Let us note that these properties can be verified, e.g. in the case of dual finite
volumes constructed over a regular simplicial mesh.
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4.2 Some important inequalities and estimates

Under the above assumptions, the following estimates can be established:

‖v‖2L2(∂K) ≤ C4

(

‖v‖L2(K) |v|H1(K) + h−1
K ‖v‖2L2(K)

)

, (34)

∀K ∈ Th, v ∈ H1(K), h ∈ (0, h0)

(multiplicative trace inequality),

|v|H1(K) ≤ C5h
−1
K ‖v‖L2(K) ∀v ∈ P p(K), K ∈ Th (35)

(inverse inequality).

There exist a constants C6 > 0 independent of v and h and a linear mapping
Π : H1(K) → P p(K), p ≥ 0, such that

‖Πv − v‖L2(K) ≤C6h
p+1
K |v|Hp+1(K), (36)

|Πv − v|H1(K) ≤C6h
p
K |v|Hp+1(K),

|Πv − v|H2(K) ≤C6h
p−1
K |v|Hp+1(K),

for all v ∈ Hp+1(K), K ∈ Th and h ∈ (0, h0) (approximation properties of
Sh);

The operator Π is not the L2- projector ΠL2
on Sh introduced in (27). From

the construction of Π in [32] it follows that Πv = v for v ∈ Sh. Moreover,

‖v − ΠL2

v‖L2(K)≤‖v − Πv‖L2(K) ≤ C6h
p+1|v|Hp+1(K), (37)

∀v ∈ Hp(K), ∀K ∈ Th,

as follows from (36).

Under assumptions (4), a), Assumptions (H) and Assumptions (A1), (A2),
the form bh has the following properties.

|bh(u, v)− bh(ū, v)| (38)

≤C7

(

Jσ
h (v, v)

1/2 + |v|H1(Ω,Th)

)

×


‖u− ū‖L2(Ω) +

(

∑

i∈I

hKi
‖u− ū‖2L2(∂Ki)

)1/2


 ,

u, ū, v ∈ H1(Ω, Th),
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|bh(uh, vh)− bh(ūh, vh)| (39)

≤C8

(

Jσ
h (vh, vh)

1/2 + |vh|H1(Ω,Th)

)

‖uh − ūh‖L2(Ω),

uh, ūh, vh ∈ Sh,

|bh(u, vh)− bh(Πu, vh)| (40)

≤C9h
p+1

(

Jσ
h (vh, vh)

1/2 + |vh|H1(Ω,Th)

)

|u|Hp+1(Ω),

u ∈ Hp+1(Ω), vh ∈ Sh,

where Πu is the Sh-interpolant of u from (36).

The proof of (34) can be found in [19], for (35), see [20]. As for (36), in the
case of a simplicial mesh standard results from the finite element method can
be employed (see, e. g. [11] or [6]). In our case, when general nonconvex star-
shaped elements are used, the approximation properties (36) are derived under
the above assumptions in [32]. Estimates (38) – (40) are established in [20],
Lemmas 5 and 8.

5 Error estimates

Now we shall analyze the error estimates of the approximate solution uk
h, k =

0, 1, . . . , obtained by method (26) under the assumption that the exact solution
u satisfies (5). For simplicity, we consider a uniform partition tk = kτ, k =
0, 1, . . . , r, of the time interval [0, T ] with time step τ = T/r, where r > 1 is
an integer.

Let Πuk be the Sh-interpolation of uk = u(tk) (k = 0, . . . , r) from (36). We set

ξk = uk
h − Πuk ∈ Sh, ηk = Πuk − uk ∈ Hp+1(Ω, Th). (41)

Then the error ekh = uk
h − uk can be expressed as

ekh = ξk + ηk, k = 0, . . . , r. (42)

Setting vh := ξk+1 in (26), b), we get

(

uk+1
h − uk

h, ξ
k+1

)

+ τ
(

ah(u
k+1
h , ξk+1) + bh(u

k
h, ξ

k+1) (43)

+εJσ
h (u

k+1
h , ξk+1)− ℓh(ξ

k+1) (tk+1)
)

= 0, tk, tk+1 ∈ [0, T ].

Moreover, setting t := tk+1 and vh := ξk+1 in (25), we obtain
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(

u′(tk+1), ξ
k+1

)

+ ah(u
k+1, ξk+1) + bh(u

k+1, ξk+1) (44)

+εJσ
h (u

k+1, ξk+1)− ℓh(ξ
k+1) (tk+1) = 0, tk, tk+1 ∈ [0, T ],

where u′ = ∂u/∂t.

Multiplying (44) by τ and subtracting from (43), we get

(

uk+1
h − uk

h, ξ
k+1

)

− τ
(

u′(tk+1), ξ
k+1

)

(45)

+τ
(

ah(u
k+1
h − uk+1, ξk+1) + bh(u

k
h, ξ

k+1)− bh(u
k+1, ξk+1)

+εJσ
h (u

k+1
h − uk+1, ξk+1)

)

= 0, k = 0, . . . , r − 1.

By (41) and (42), from (45) we have

(

ξk+1 − ξk, ξk+1
)

+ τ
(

ah(ξ
k+1, ξk+1) + εJσ

h (ξ
k+1, ξk+1)

)

(46)

= τ(u′(tk+1), ξ
k+1)− (uk+1 − uk, ξk+1)− (ηk+1 − ηk, ξk+1)

+τ
(

bh(u
k+1, ξk+1)− bh(u

k
h, ξ

k+1)− ah(η
k+1, ξk+1)

−εJσ
h (η

k+1, ξk+1)
)

.

In what follows, we estimate the individual terms on the right-hand side of
(46).

The Cauchy inequality implies that

Jσ
h (η

k, ξk)≤ (Jσ
h (η

k, ηk))1/2 (Jσ
h (ξ

k, ξk))1/2, k = 0, . . . , r. (47)

Lemma 2 Under assumptions (5), for tk, tk+1 ∈ [0, T ] we have

∣

∣

∣(uk+1
h − uk

h, ξ
k+1)− τ(u′(tk+1), ξ

k+1)
∣

∣

∣ ≤ C10τ
2‖ξk+1‖L2(Ω), (48)

‖uk+1 − uk‖L2(Ω) ≤ C11τ, (49)

|uk+1 − uk|H1(Ω) ≤ C12τ, (50)

|uk+1 − uk|Hp+1(Ω) ≤ C13τ, (51)

with C10, C11, C12 and C13 depending on u, but independent of k and τ .

PROOF.

i) By [18], Lemma 8, we have (48) with C10 = ‖u′′‖L∞(0,T ;L2(Ω)), u′′ =
∂2u/∂t2.
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ii) Since u′ ∈ L∞(0, T ;Hp+1(Ω)) ⊂ L∞(0, T ;L2(Ω)), we can write

‖uk+1 − uk‖L2(Ω) =

∥

∥

∥

∥

∥

∥

∥

tk+1
∫

tk

u′(t) dt

∥

∥

∥

∥

∥

∥

∥

L2(Ω)

≤ τ‖u′‖L∞(0,T ;L2(Ω)), (52)

which proves (49) with C11 = ‖u′‖L∞(0,T ;L2(Ω)).
iii) Since u′ ∈ L∞(0, T ;Hp+1(Ω)) ⊂ L∞(0, T ;H1(Ω)) and

∂

∂t

(

∂u

∂xl

)

=
∂

∂xl

(

∂u

∂t

)

, l = 1, . . . , d, (53)

in the sense of distributions, we obtain

|uk+1 − uk|H1(Ω) = ‖∇uk+1 −∇uk‖L2(Ω) (54)

=

∥

∥

∥

∥

∥

∥

∥

tk+1
∫

tk

∂

∂t
∇u(t) dt

∥

∥

∥

∥

∥

∥

∥

L2(Ω)

≤
tk+1
∫

tk

∥

∥

∥

∥

∥

∂

∂t
∇u(t)

∥

∥

∥

∥

∥

L2(Ω)

dt =

tk+1
∫

tk

‖∇u′(t) ‖L2(Ω) dt

=

tk+1
∫

tk

|u′(t) |H1(Ω) dt ≤ τ‖u′‖L∞(0,T ;H1(Ω)),

which is (50) with C12 = ‖u′‖L∞(0,T ;H1(Ω)).
iv) Using a similar argumentation as in (54), we derive (51) with C13 =

‖u′‖L∞(0,T ;Hp+1(Ω)).

Lemma 3 Under assumptions (5), for tk, tk+1 ∈ [0, T ] we have

|(ηk+1 − ηk, ξk+1)| ≤ C14τh
p+1‖ξk+1‖L2(Ω), (55)

with C14 = C14(u).

PROOF. The Cauchy inequality, relations (41), (36) and (51) imply that

|(ηk+1 − ηk, ξk+1)| ≤ ‖ηk+1 − ηk‖L2(Ω)‖ξk+1‖L2(Ω) (56)

= ‖Π(uk+1 − uk)−(uk+1 − uk)‖L2(Ω)‖ξk+1‖L2(Ω)

≤C6h
p+1|uk+1 − uk|Hp+1(Ω)‖ξk+1‖L2(Ω)

≤C6C13τh
p+1‖ξk+1‖L2(Ω),

14



which proves the lemma with C14 := C6C13.

Lemma 4 There exist constants C15 > 0 and C16 > 0 independent of u, h,
k, ξ and ε such that

|ah(ηk, ξk)| ≤C15εh
p|uk|Hp(Ω)

(

Jσ
h (ξ

k, ξk)1/2 + |ξk|H1(Ω,Th)

)

, (57)

Jσ
h (η

k, ηk)≤C16 h
2p|uk|2Hp(Ω), h ∈ (0, h0), tk ∈ [0, T ]. (58)

PROOF. See [20], Lemma 9.

Lemma 5 For h ∈ (0, h0), tk, tk+1 ∈ [0, T ] we have

∣

∣

∣bh(u
k+1, ξk+1)− bh(u

k
h, ξ

k+1)
∣

∣

∣ (59)

≤C17

(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

×
(

‖ξk‖L2(Ω) + hp+1 + τ
)

,

where C17 = C17(u) is independent of h,τ , k, ξ.

PROOF. We can write

bh(u
k+1, ξk+1)− bh(u

k
h, ξ

k+1) (60)

= bh(u
k+1, ξk+1)− bh(u

k, ξk+1) (=: Ψ1)

+ bh(u
k, ξk+1)− bh(Πu

k, ξk+1) (=: Ψ2)

+ bh(Πu
k, ξk+1)− bh(u

k
h, ξ

k+1) (=: Ψ3).

We estimate the individual terms in (60). In virtue of (38),

|Ψ1|≤C7

(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

(61)

×


‖uk+1 − uk‖L2(Ω) +

(

∑

i∈I

hKi
‖uk+1 − uk‖2L2(∂Ki)

)1/2


 .

Using (34), (49) and (50), we find that

∑

i∈I

hKi
‖uk+1 − uk‖2L2(∂Ki)

(62)

≤ C4

∑

i∈I

(

hKi
‖uk+1 − uk‖L2(Ki)|uk+1 − uk|H1(Ki)
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+‖uk+1 − uk‖2L2(Ki)

)

≤ C18τ
2,

where C18 := C4(C11C12h0 + C2
11). Then (61), (62) and (49) give

|Ψ1|≤C7

(

Jσ
h (ξ

k+1, ξk+1)1/2+ |ξk+1|H1(Ω,Th)

)

τ(
√

C18 + C11). (63)

Moreover, due to (5), we can set

C19 = ‖u‖L∞(0,T ;Hp+1(Ω)). (64)

From (40) and (39) we deduce that

|Ψ2| ≤C9h
p+1

(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

|uk|Hp+1(Ω), (65)

|Ψ3| ≤C8

(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

‖Πuk − uk
h‖L2(Ω).

By (60), (41), (63), (65) and (64),

∣

∣

∣bh(u
k+1, ξk+1)− bh(u

k
h, ξ

k+1)
∣

∣

∣ (66)

≤C17

(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

×
(

‖ξk‖L2(Ω) + hp+1 + τ)
)

,

with C17 := max(C8, C9C19, C7(C11 +
√
C18), which proves the lemma.

Now we shall formulate the main result.

Theorem 6 Let assumptions (4), a) - e), (H) and (A1)-(A2) from Section
4.1 be satisfied. Let u be the exact solution of the problem satisfying (5). Let
tk = kτ, k = 0, 1, . . . , r, τ = T/r, be a time partition of [0, T ] and let uk

h, k =
0, . . . , r, be the approximate solution defined by (26) and let τ ≤ 1/2. Let us
set

e = {ekh}rk=0 = {uk
h − uk}rk=0, (67)

‖e‖2h,τ,L∞(L2) = max
k=0,...,r

‖ekh‖2L2(Ω),

‖e‖2h,τ,L2(H1) = ετ
r
∑

k=0

(

|ekh|2H1(Ω,Th)
+ Jσ

h (e
k
h, e

k
h)
)

,

‖e‖2h,τ,L∞(H1) = ε max
k=0,...,r

(

|ekh|2H1(Ω,Th)
+ Jσ

h (e
k
h, e

k
h)
)

.
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Then there exist constants

C̃ = O (exp(2T (1 + C20/ε)))

and
Ĉ = O (exp(2T (1 + C20/ε)))

such that

‖e‖2h,τ,L∞(L2) ≤ C̃
(

h2p
(

ε+ h2 + h2/ε
)

+ τ 2 (1 + 1/ε)
)

, (68)

‖e‖2h,τ,L2(H1) ≤ Ĉ
(

h2p
(

ε+ h2 + h2/ε
)

+ τ 2 (1 + 1/ε)
)

, (69)

where C20 = 8C2
17.

Moreover, provided

h ≤ CIS τ (70)

with a constant CIS independent of h and τ , there exists a constant

C̄ = O (exp(2T (1 + C20/ε)))

such that

‖e‖2h,τ,L∞(H1) ≤ C̄
(

h2p−1
(

1 + ε+ h+ h/ε+ h2 + h2/ε+ h2/ε2
)

+τ
(

1 + 1/ε+ 1/ε2
))

(71)

PROOF. As in (41), we set ξk = uk
h−Πuk ∈ Sh, η

k = Πuk−uk, k = 0, . . . , r.
Then (42) holds: ekh = uk

h − uk = ξk + ηk. From (46) and the relations

ah(ξ
k+1, ξk+1) = ε|ξk+1|2H1(Ω,Th)

(72)

and

2(ξk+1 − ξk, ξk+1) = (‖ξk+1‖2L2(Ω) − ‖ξk‖2L2(Ω) + ‖ξk+1 − ξk‖2L2(Ω)), (73)

for k = 0, . . . , r − 1 we get

‖ξk+1‖2L2(Ω) − ‖ξk‖2L2(Ω) + ‖ξk+1 − ξk‖2L2(Ω) (74)

+2τ
(

ε|ξk+1|2H1(Ω,Th)
+ εJσ

h (ξ
k+1, ξk+1)

)

17



=2
(

τ(u′(tk+1), ξ
k+1)− (uk+1 − uk, ξk+1)−

(

ηk+1 − ηk, ξk+1
))

+2τ
(

bh(u
k+1, ξk+1)− bh(u

k
h, ξ

k+1)− ah(η
k+1, ξk+1)

−εJσ
h (η

k+1, ξk+1)
)

=: RHS.

With the aid of Lemmas 2 – 5 , inequality (47), notation (64) and C21 =
C19(C15 +

√
C16) we estimate the right-hand side RHS of (74):

|RHS| ≤ 2
(

C10τ
2 + C14τh

p+1
)

‖ξk+1‖L2(Ω) (75)

+2τ
(

Jσ
h (ξ

k+1, ξk+1)1/2 + |ξk+1|H1(Ω,Th)

)

×
(

C21εh
p + C17

(

hp+1 + τ + ‖ξk‖L2(Ω)

))

.

From Young’s inequality, under the notation C20 = 8C2
17 and

q(ε, h, τ) = 2h2p
(

C2
14h

2 + 4εC2
21 +

4

ε
C2

17h
2
)

+ τ 2
(

2C2
10 +

C20

ε

)

, (76)

it follows that

‖ξk+1‖2L2(Ω) − ‖ξk‖2L2(Ω) + τε
(

|ξk+1|2H1(Ω,Th)
+ Jσ

h (ξ
k+1, ξk+1)

)

≤ τ‖ξk+1‖2L2(Ω) + τ(1 + C20/ε)‖ξk‖2L2(Ω) + τq(ε, h, τ). (77)

Hence,

(1− τ)‖ξk+1‖2L2(Ω) + τε
(

|ξk+1|2H1(Ω,Th)
+ Jσ

h (ξ
k+1, ξk+1)

)

(78)

≤ (1 + τC20/ε)‖ξk‖2L2(Ω) + τq(ε, h, τ).

Moreover, the following inequalities are valid:

‖ξk + ηk‖2L2(Ω)≤ 2
(

‖ξk‖2L2(Ω) + ‖ηk‖2L2(Ω)

)

, (79)

|ξk + ηk|2H1(Ω,Th)
≤ 2

(

|ξk|2H1(Ω,Th)
+ |ηk|2H1(Ω,Th)

)

,

Jσ
h (ξ

k + ηk, ξk + ηk)≤ 2(Jσ
h (ξ

k, ξk) + Jσ
h (η

k, ηk).

Now we prove the error estimates (68) – (71).

i) By (78) (using assumption that 0 < τ ≤ 1/2),
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‖ξk+1‖2L2(Ω) ≤
1 + τC20/ε

1− τ
‖ξk‖2L2(Ω) +

τ

1− τ
q(ε, h, τ), (80)

k = 0, . . . , r − 1.

If we set

B =
1 + τC20/ε

1− τ
, (81)

then we derive from (80) by induction that

‖ξk‖2L2(Ω)≤Bk‖ξ0‖2L2(Ω) +
Bk − 1

B − 1

τ q(ε, h, τ)

1− τ
, (82)

k = 0, . . . , r.

By (81),

τ

(B − 1)(1− τ)
=

1

1 + C20/ε
≤ 1. (83)

As τ ≤ 1/2, then 1− τ ≥ 1/2 and

B ≤ 1 + 2τ(1 + C20/ε) ≤ exp(2τ(1 + C20/ε)). (84)

From (82) – (84) we have

‖ξk‖2L2(Ω) ≤ exp(2τk(1 + C20/ε))
(

‖ξ0‖2L2(Ω) + q(ε, h, τ)
)

. (85)

Further, (26) c), (27) and the Cauchy inequality imply that for each K ∈ Th,

‖ξ0‖2L2(K) = (ΠL2

u0 − Πu0, ξ0)L2(K) = (u0 − Πu0, ξ0)L2(K)

≤‖u0 − Πu0‖L2(K)‖ξ0‖L2(K). (86)

Thus, by (6), (36) and (64),

‖ξ0‖L2(K) ≤ ‖u0 − Πu0‖L2(K) ≤ C6h
p+1
K |u0|Hp+1(K), (87)

and

‖ξ0‖2L2(Ω) =
∑

i∈I

‖ξ0‖2L2(Ki)
≤ C2

6h
2(p+1)|u0|2Hp+1(Ω,Th)

≤ C22h
2(p+1), (88)
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where C22 = C2
6C

2
19. From (85) and (88) we get

‖ξk‖2L2(Ω) ≤ exp(2T (1 + C20/ε))
(

C22h
2(p+1) + q(ε, h, τ)

)

,

k = 0, . . . , r. (89)

Further, by (41), (36) and (64),

‖ηk‖2L2(Ω)≤C2
6h

2(p+1)|uk|2Hp+1(Ω) ≤ C2
6C

2
19h

2(p+1). (90)

Using (67), (79), (89) and (90), we find that

‖e‖2h,τ,L∞(L2) ≤ 2 max
k=0,...,r

(

‖ξk‖2L2(Ω) + ‖ηk‖2L2(Ω)

)

(91)

≤ 2 exp(2T (1 + C20/ε))
(

q(ε, h, τ) + C23h
2(p+1)

)

,

with C23 = C22 + C2
6C

2
19, which implies estimate (68).

ii) Now let as derive (69). Summing (77) over k = 0, . . . , r − 1, we get

‖ξr‖2L2(Ω) + τε
r−1
∑

k=0

(

|ξk+1|2H1(Ω,Th)
+ Jσ

h (ξ
k+1, ξk+1)

)

(92)

≤ τ(1 + C20/ε)
r−1
∑

k=0

(

‖ξk+1‖2L2(Ω) + ‖ξk‖2L2(Ω)

)

+Tq(ε, h, τ) + ‖ξ0‖2L2(Ω).

This, (88) and (89) imply that

τε
r
∑

k=1

(

|ξk|2H1(Ω,Th)
+ Jσ

h (ξ
k, ξk)

)

(93)

≤ 2T (1 + C20/ε) exp(2T (1 + C20/ε))
(

C22h
2(p+1) + 2q(ε, h, τ)

)

+C22h
2(p+1).

Moreover, as ξ0 ∈ Sh, we have from (35) and (87) the estimate

|ξ0|H1(Ki) ≤ C5h
−1
Ki
‖ξ0‖L2(Ki) ≤ C5C6h

p
Ki
|u0|Hp+1(Ki), i ∈ I, (94)

and, by (64),

|ξ0|2H1(Ω,Th)
=
∑

i∈I

|ξ0|2H1(Ki)
(95)
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≤ C2
5C

2
6h

2p|u0|2Hp+1(Ω,Th)
≤ C2

5C
2
6C

2
19h

2p.

Furthermore, in virtue of (17), (19), (33), (34), (87) and (94),

Jσ
h (ξ

0, ξ0)≤ 4
∑

i∈I

∑

j∈S(i)

∫

Γij

1

d(Γij)
|ξ0|Γij

|2 dS (96)

≤ 4C3

∑

i∈I

1

hKi

∫

∂Ki

|ξ0|2 dS

≤ 4C3 C4

∑

i∈I

1

hKi

(

‖ξ0‖L2(Ki)|ξ0|H1(Ki) + h−1
Ki
‖ξ0‖2L2(Ki)

)

≤ 8C3 C4 C
2
5

∑

i∈I

h2p
Ki
|u0|2Hp+1(Ki)

≤ 8C3 C4 C
2
5 h

2p|u0|2Hp+1(Ω,Th)

≤ 8C3 C4 C
2
5 C

2
19 h

2p.

Then (93), (95) and (96) give

τε
r
∑

k=0

(

|ξk|2H1(Ω,Th)
+ Jσ

h (ξ
k, ξk)

)

(97)

≤ 2T (1 + C20/ε) exp(2T (1 + C20/ε))
(

C22h
2(p+1) + 2q(ε, h, τ)

)

+h2p
(

C22h
2 + τεC24

)

,

where C24 = C2
5C

2
6C

2
19 + 8C3 C4C

2
5 C

2
19.

Taking into account (41), (36), (58) and (64), we obtain

τε
r
∑

k=0

(

|ηk|2H1(Ω,Th)
+ Jσ

h (η
k, ηk)

)

(98)

≤ τε

(

C2
6h

2p
r
∑

k=0

|uk|2Hp+1(Ω,Th)
+ C16 h

2p
r
∑

k=0

|uk|2Hp+1(Ω)

)

≤ εC25h
2p(T + τ),

where C25 = C2
19(C

2
6 + C16). Finally, using (67), (41), (79), (97) and (98), we

arrive at the estimate

‖e‖2h,τ,L2(H1) ≤ 2τε
r
∑

k=0

(

|ξk|2H1(Ω,Th)
+ Jσ

h (ξ
k, ξk) (99)

+|ηk|2H1(Ω,Th)
+ Jσ

h (η
k, ηk)

)

≤ 4T (1 + C20/ε) exp(2T (1 + C20/ε))
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×
(

2q(ε, h, τ) + h2p
(

C22h
2 + ε(C24 + C25)

))

.

Now, assertion (69) of the theorem follows from (76) and (99).

iii) Finally, let h ≤ τ . As τ ≤ 1/2, (78) implies that

ε
(

|ξk+1|2H1(Ω,Th)
+ Jσ

h (ξ
k+1, ξk+1)

)

(100)

≤
(

1

τ
+

C20

ε

)

‖ξk‖2L2(Ω) + q(ε, h, τ).

Using (89), we obtain

ε
(

|ξk+1|2H1(Ω,Th)
+ Jσ

h (ξ
k+1, ξk+1)

)

(101)

≤
(

1

τ
+

C20

ε

)

exp(2T (1 + C20/ε))
(

C22h
2(p+1) + q(ε, h, τ)

)

+q(ε, h, τ).

Hence, in virtue of (41), (36), (58) and (64),

ε
(

|ηk|2H1(Ω,Th)
+ Jσ

h (η
k, ηk)

)

≤ εC25h
2p, (102)

where C25 = C2
19(C

2
6 + C16). Now, according to (67), (41), (79), (101) and

(102) we arrive at

‖e‖2h,τ,L∞(H1) ≤ max
k=0,...,r

2ε
(

|ξk|2H1(Ω,Th)
+ Jσ

h (ξ
k, ξk) (103)

+|ηk|2H1(Ω,Th)
+ Jσ

h (η
k, ηk)

)

≤ 2(ε+ τC20) exp(2T (1 + C20/ε))

×
(

C22h
2(p+1) + q(ε, h, τ)

ετ
+ q(ε, h, τ) + C25h

2p

)

.

Finally, this, (76) and assumption (70) yield (71).

Remark 7 Estimate (68) implies that

‖u− uh‖L∞(0,T ;L2(Ω)) = O(hp + τ) for h → 0 + . (104)

Comparing this result with the approximation property (36) implying that

‖u− Πu‖L∞(0,T ;L2(Ω)) = O(hp+1), (105)
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we see that the error estimate (68) is suboptimal with respect to h. There
is a question, whether this estimate can be improved. Numerical experiments
carried out in [17] indicate that the actual order of convergence in the L∞(L2)-
norm in the case of odd degree of approximation (in [17] p = 1 and p = 3) is
better than the theoretically derived estimate. (Similar experimental results can
be found in [27] and [25] for stationary elliptic problems without convection.)
In the next section we shall present numerical experiments with piecewise lin-
ear elements (p = 1) on noncomforming meshes with nonconvex elements.

It is clear that estimates (68) – (71) cannot be used for ε → 0+, because they
blow up exponentially with respect to 1/ε. This is a consequence of the appli-
cation of Young’s inequality and Gronwall’s lemma, necessary for overcoming
the nonlinearity of the convective terms. This nonlinearity represents a serious
obstacle for obtaining a uniform error estimate with respect to ε → 0+, as in
[24].

Estimate (71) in L∞(H1)-norm has been obtained under assumption (70), i.e.
h ≤ CIS τ . This nonstandard “inverse stability condition” also appears in [30]
and [22].

Remark 8 Estimates (68) – (71) were derived without any restriction on the
time step τ . It is possible to show that for a fixed ε > 0 the semi-implicit
scheme is unconditionally stable. However, there is a natural question what
happens, when ε → 0 and in the limit we obtain an explicit scheme for a
nonlinear conservation law. Its stability requires the use of a CFL condition
limiting the length of the time. Our results are not in contradiction with this
fact, because, due to Remark 7, the error estimate blows up and the scheme
may loose the unconditional stability for ε → 0. (This is also confirmed by
numerical experiments in Section 6.3.)

6 Numerical experiments

In this section we shall verify the theoretical error estimates, presented in the
previous section for general grids having properties (A1) and (A2). Namely, we
consider nonconforming meshes containing triangular and nonconvex quadri-
lateral elements constructed by the following algorithm:

(1) We start from a vertically oriented structured triangular grid, see Figure
2, a).

(2) We aplly a vertical shift to some vertices, which creates a triangular mesh
with handing nodes, shown in Figure 2, b).

(3) We apply a horizontal shift to some vertices, which creates nonconvex
quadrilaterals in Figure 2, c).

23



vertical movement horizontal movement

a)                                       b)                                     c)

Fig. 2. Algorithm generating grids with nonconvex quadrilateral elements

This algorithm allows us to construct meshes with a prescribed constant C3

from (33), characterizing the nonconformity of the mesh. Figure 3 shows grids
with different numbers #Th of elements and different values of C3.

These types of grids are artificial and not used in practice, of course. We only
want to demonstrate that our scheme is robust with respect to rather rough
meshes. Numerical calculations on conforming triangular meshes were carried
out in [20] and [17]. On the other hand, it is possible to meet grids with
nonconvex elements, if the DGFEM is considered as a generalization of the
so-called dual finite volumes (see, e.g. [22]). One can also meet such meshes
in the process of a mesh generation, particularly in 3D.

We solve the 2D viscous Burgers equation

∂u

∂t
+ u

∂u

∂x1

+ u
∂u

∂x2

= ε∆u+ g in Ω× (0, T ), (106)

where Ω = (−1, 1)2, T = 1, equipped with the boundary condition (2) and the
initial condition (3). In the definition (15) of the form bh we use the numerical
flux

H(u1, u2,n) =















∑2
s=1 fs(u1)ns, if A > 0

∑2
s=1 fs(u2)ns, if A ≤ 0

, (107)

where

A =
2
∑

s=1

f ′

s(ū)ns, ū =
1

2
(u1 + u2) and n = (n1, n2). (108)
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Fig. 3. Examples of grids formed by triangular and nonconvex quadrilateral elements
with different numbers #Th of elements and different values of C3
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One can see that H satisfies conditions (21) and (22) and is Lipschitz-continu-
ous on any bounded subset of IR2. For boundary edges Γij, j ∈ γ(i), in
the definition of the convective form bh, we use the treatment of boundary
conditions based on upwinding. This means that the second term in (15) is
replaced by

∑

j∈γ(i)

∫

Γij

H(u|Γij
, u|Γji

,nij) v|Γij
dS, (109)

where

u|Γji
=











u|Γij
, if

∑2
s=1 f

′

s(u|Γij
)(nij)s ≥ 0,

uD|Γij
, otherwise.

, (110)

Here (nij)s is the s-th component of outer normal nij to ∂Ω on Γij and uD|Γij

is the restriction of the function uD from the boundary condition (2) on Γij.

All computations were carried out with piecwise linear elements and a con-
stant time step τ > 0. Volume integrals over elements K ∈ Th are evaluated in
such a way that these elements are divided into triangles and then a quadra-
ture formula exact for polynomials of degree ≤ 6 is applied. Line integrals are
computed with the aid of a formula exact for polynomials of degree ≤ 7.

6.1 Convergence with respect to τ

First, we verify experimentally the convergence of the method in L2(Ω)-norm
with respect to the time step τ → 0+. In order to restrain the discretization
errors with respect to h, we use a fine mesh with 4095 triangles and C3 = 2.094.

We define the function g and the initial and boundary conditions in such a
way that the exact solution has the form

u(x1, x2, t) =
e10t − 1

e10 − 1
û(x1, x2), (111)

where

û(x1, x2)= (1− x2
1)

2(1− x2
2)

2 (112)

and ε = 0.1. The solution u is equal to zero at t = 0 and converges exponentialy
to û for t → 1. The function û vanishes on the boundary ∂Ω, see Figure 4.
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Fig. 4. Exact solution (111) at t = 1

The computations were carried out with 6 different time steps τl, see Table 1.
The computational error is evaluated at time T = 1 in L2(Ω)–norm, i.e. we
set

eτ ≡‖uτ (·, T )− u(·, T )‖L2(Ω), (113)

where u(·, T ) is the exact solution given by (111) – (112) at time T and uτ (·, T )
is the numerical solution at time T obtained by scheme (26), a)–c) with time
step τ . We suppose that the error behaves according to the formula

eτ ≈ Dτα, (114)

where D > 0 is a constant independent of τ and α is the order of accuracy of
the method in L2(Ω)-norm. We define the local experimental order of conver-
gence by

αl =
log

(

eτl/eτl−1

)

log (τl/τl−1)
, l = 2, . . . , 6. (115)

The global experimental order of convergence ᾱ is obtained by the least squares
method. Table 1 shows the errors eτ , the values of αl for l = 2, . . . , 6 and ᾱ.

6.2 Convergence with respect to h

Now we verify numerically the convergence of errors in L2(Ω)-norm with re-
spect to the mesh size h → 0+. In order to overkill the discretization errors
with respect to τ , we use the time step τ = 10−4. Numerical experiments
indicate that this choice is sufficient. Smaller τ does not cause any further
decrease of computational errors.
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Table 1
Time steps τl, l = 1, . . . , 6, computational error eτ , values of αl, l = 2, . . . , 6, and ᾱ

L2(Ω)–norm

l τl eτ αl

1 5.000E-03 2.0182E-02 -

2 2.500E-03 1.0156E-02 0.991

3 1.250E-03 5.1311E-03 0.985

4 6.250E-04 2.6506E-03 0.953

5 3.125E-04 1.3780E-03 0.944

6 1.563E-04 7.2245E-04 0.932

global order ᾱ 0.961

We define the function g and the initial and boundary conditions in such a
way that the exact solution has the form

u(x1, x2, t) =

(

1− e−t

2

)

û(x1, x2), (116)

where û is given by (112) and ε = 0.1.

We solve the problem in consideration with the aid of piecewise linear elements.
The computations were carried out on 6 grids Thl

, l = 1, . . . , 6, having different
number of elements and different parameter C3, see Table 2. Some of the
meshes are shown in Figure 3.

The computational error of the solution is evaluated at time T = 1 in L2(Ω)–
norm:

eh ≡‖uh(·, T )− u(·, T )‖L2(Ω), (117)

where u(·, T ) is the exact solution of equation (106) given by (116) and (112)
at time T and uh(·, T ) is the numerical solution at time T obtained by scheme
(26), a)–c). We suppose that the error behaves according to the formula

eh ≈ Dhα, (118)

where h = maxK∈Th
hK , D > 0 is a constant independent of h and α is the

order of accuracy of the method. We define the local experimental order of
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convergence by

αl =
log

(

ehl
/ehl−1

)

log (hl/hl−1)
, l = 2, . . . , 6, (119)

where hl = maxK∈Thl
hK , l = 1, . . . , 6. The global experimental order of con-

vergence ᾱ is obtained by the least squares method.

Table 2 shows the computational error eh and experimental order of con-
vergence. Moreover, Table 3 shows the error eh obtained on meshes with 528
elements and different values of the parameter C3. We see that the dependence
of the error on C3 is not important.

Table 2
Error eh and experimental order of convergence for grids with C3 = 2.094 and
C3 = 8.375

C3 = 2.094 C3 = 8.375

l #Thl
hl eh αl eh αl

1 136 4.334E-01 1.9775E-02 - 1.5393E-02 -

2 253 3.152E-01 1.0404E-02 2.017 7.9873E-03 2.060

3 528 2.167E-01 4.9109E-03 2.004 3.6525E-03 2.088

4 1081 1.508E-01 2.3905E-03 1.986 1.7223E-03 2.073

5 2080 1.084E-01 1.2450E-03 1.976 8.8145E-04 2.029

6 4095 7.705E-02 6.1307E-04 2.075 4.3596E-04 2.062

α 2.005 2.064

Table 3
Dependence of the computational error eh on the value of C3 for #Th = 528

l C3 eh

1 2.094 4.9109E-03

2 4.188 3.8514E-03

3 8.375 3.6525E-03

4 16.106 3.6403E-03

5 29.911 3.6550E-03

6 52.344 3.6676E-03

Figure 5 shows the numerical solution obtained on grids with #Th = 136,
253, 1081 and C3 = 2.094, 8.375. We observe here the convergence of the
approximate solution to the exact solution for h → 0.
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Fig. 5. Numerical solution on grids with nonconvex quadrilateral elements with
different numbers of elements #Th and different values of C3

6.3 Stability of the scheme for ε → 0

In virtue of Remark 8, we solve the problem from Section 6.1 with decreas-
ing diffusion coefficient ε and investigate the stability behaviour of the semi-
implicit scheme (26), a)–c). We use a fixed triangular grid having 1056 ele-
ments (h = 6.37 · 10−2) and carry out the computation with different time
steps τ and different diffusion coefficients ε. Table 4 shows the computational
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error eτ = ‖uh(·, T ) − u(·, T )‖L2(Ω) (T = 1) in depedence on τ and ε. We see
that for a fixed τ the error increases with a decreasing ε, which corresponds
to the obtained theoretical error estimate. On the basis of this experiment
we can conclude that for a decreasing ε the unconditional stability becomes
weaker and weaker and in the limit for ε → 0 we get a conditionally stable
method.

Table 4
Error eτ in dependence on τ and ε

ε

τ 0.0001 0.001 0.01 0.1

0.01250000 divergence divergence 0.0349157 0.0018731

0.00937500 divergence 0.0613545 0.0251048 0.0016094

0.00867187 0.0644484 0.0571331 0.0229959 0.0015743

0.00625000 0.0499788 0.0409237 0.0158801 0.0015312

0.00312500 0.0253018 0.0197805 0.0074850 0.0016554

0.00156250 0.0122522 0.0096823 0.0039342 0.0017804

0.00078125 0.0066870 0.0055137 0.0027518 0.0018550

0.00039125 0.0051225 0.0043855 0.0025410 0.0018949

7 Conclusion

We have presented an efficient numerical method for the solution of nonsta-
tionary nonlinear convection-diffusion problems, which is based on the space
discretization by the discontinuous Galerkin finite element method and a
semi-implicit time discretization and applied on nonstandard, nonconform-
ing meshes. We have derived a priori error estimates of order O(hp + τ)
in L∞(0, T ;L2(Ω))–norm , L2(0, T ;H1(Ω))–seminorm and L∞(0, T ;H1(Ω))–
seminorm. The presented numerical examples indicate a better behaviour of
the experimental L∞(L2)–order of convergence for piecewise linear approxi-
mations, in spite nonconforming meshes with nonconvex elements are used.
The obtained results confirm that the DGFEM is a powerful and reliable
method for the numerical solution of nonstationary nonlinear convection-
diffusion problems, which is sufficiently accurate and robust even on unstruc-
tured nonconforming meshes with nonconvex elements and hanging nodes.

There are several items for the future work:

– derivation of optimal error estimates,
– avoiding the blow up behaviour of estimates with respect to ε → 0+,
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– development of efficient a posteriori error estimates,
– increase of accuracy in the time discretization,
– stability analysis of the method for ε → 0+,
– development of DGFE schemes for the numerical simulation of compressible
flow with a wide range of Reynolds and Mach numbers.
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