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1 Simulation study

The paper Dvořák and Prokešová [3] presents a comparison of empirical performance of the mo-
ment estimation methods for model fitting of spatial stationary Cox point processes. These me-
thods were introduced in the literature in the past few years as faster, simulation-free alternatives
to computationally prohibitive maximum likelihood estimation.

Direct comparison of the three estimators – minimum contrast estimation and composite and
Palm likelihood aproaches – is not available in the literature. The formulas for the asymptotic
variance of these estimators are complicated and depend on integrals with respect to the third
and fourth-order moment measures of the point processes in question. Thus, straightforward
comparison of the efficiency of these estimators is not possible.

To compare the empirical performance of the estimators we chose two different types of cluster
processes – the Thomas process and the log-Gaussian Cox process, see Examples 3.1 and 3.2 in [3].

To assess the performance of the estimators on middle-sized to large point patterns exhibiting
different degree of clustering we chose eight combinations of parameter values for the Thomas
process (κ = 25 or 50, µ = 4 or 6 and σ = 0.02 or 0.04, representing relatively strong and weak
clustering, respectively) and for the log-Gaussian Cox process (β = 10 or 20 representing relatively
strong and weak dependence, respectively, σ2 = 1 and µ calculated so that the intensity of the
process is 100, 150, 200 and 300 as in the case of the Thomas process).

For each process and each combination of parameters we generated 500 independent realizations
and re-estimated the parameters using the three moment estimation methods (i.e. using formulas
(2), (3) and (4) in [3]).

2 Parameter estimation – computational details

Realizations of the Thomas process and the log-Gaussian Cox process with appropriate parameters
in a unit square window W were simulated using the package spatstat for R (for reference see
[1]).

When simulating realizations of the log-Gaussian Cox process we need to use a finite repre-
sentation of the random field Z in the observation window W . We chose a regular grid of 25× 25
points and instead of the Gaussian random field Z we simulated a Gaussian random vector repre-
senting values of Z in the given lattice points. Then we approximated values of the random field
Z in W by the value in the nearest lattice point.

We used the minimum contrast method (MCE) with both the K-function (MCEK) and the
pair correlation function g (MCEg). The tuning parameters in the case of the K-function were
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chosen according to the recommendation in [2, Section 6.1.1]. The same values of parameters were
used for the g-function, i.e. c = 0.25, R = 0.25 and r equal to the minimum interpoint distance
observed in the given realization. The estimation was conducted by the functions provided by
spatstat.

The composite likelihood (CLE) and Palm likelihood (PLE) estimation methods have only one
tuning parameter, R, determining the maximum distance of pairs of points that will be taken
into account. The distance R has to be chosen carefully so that the variance of the estimators is
reduced but not much information about the interaction in the point pattern is lost. Since the
observation window W is a unit square we chose the values of R to be 0.1, 0.2 and 0.3, respectively.

To take into account the interpoint interactions when choosing the value of R we also consider
R = rdata, where rdata corresponds to a range of correlation. It is determined as the smallest r
for which ĝ(r) < 1 holds, where ĝ is a nonparametric estimate of the pair correlation function g.

For CLE and PLE we applied the inner region correction for the edge effects, see (3) and (4)
in [3]. It is straightforward and can be used for data observed in irregular windows. Other edge
corrections could be used as well, for example the torus correction could perform better in the
case of a rectangular window but it is difficult to use in practice for irregularly shaped windows.

The estimation for CLE and PLE was conducted in software Mathematica 7. Maximization
of the appropriate log-likelihood functions was performed using a combination of two methods.

First, derivatives of the log-likelihood function with respect to the unknown parameters were
calculated and a vector of parameter values was found for which all the derivatives were equal to
zero using a default Newton’s method.

Then, if the numerical method diverged (i.e. the estimate lies out of a generously long in-
terval containing the true value of the parameter), the parameters are estimated again by direct
maximization of the log-likelihood function using simulated annealing.

This procedure is motivated by the fact that the estimation using derivatives is fast but some-
what numerically unstable, while direct maximization is more computationally demanding but
in general less likely to diverge. The combination of these two methods was a good compromise
between the computational time and numerical stability.

For the minimum contrast methods and the composite likelihood method the value of the
non-identifiable parameter µ was estimated from the observed intensity of the point process as
described in Examples 3.1 and 3.2 in [3].

3 Results

Main results are summarized in Tables 1 to 4 for the Thomas process and the log-Gaussian Cox
process, respectively. They show results for two variants of MCE (based on K-function and pair
correlation function) and for CLE and PLE with different choices of the tuning parameter R.

The tables show relative mean biases of the estimators and relative mean squared errors (MSEs)
(by relative we mean divided by the true value of the estimated parameter or by its square for the
MSE). All the statistics were obtained from the middle 95 % of the estimates from 500 replications.

Neglecting the 5% of the most extreme estimates was motivated by the fact that in certain
situations the estimation methods can be numerically unstable, see Section 5.1 in [3]. If such a
situation was encountered in practice the estimates would easily be identified as unrealistic and
one would alter the parameters of the underlying optimization methods or opt for an alternative
estimation method. However, due to the extent of the computations involved, this was not possible
in this simulation study. Note that if all the estimates were used to calculate the statistics these
would be severly distorted by the numerical instability and hence completely uninformative for a
prospective researchers willing to find a method of choice for their particular dataset.

2



3.1 Thomas process

3.1.1 Parameter σ

Among the three parameters of the Thomas process model σ is the one estimated with most
accuracy by any of the compared methods. Particularly MCEg and CLE with R = 0.1 give very
precise estimates. From the two MCE methods MCEK is always worse than MCE g. PLE with
R = 0.1 (as well as CLE with R = 0.2) is comparable with MCEK for strong clustering. For weak
clustering PLE is inferior to the other methods.

The reason for this is the strong positive bias (around 25% for R = 0.1) of PLE in case of
weak clustering. PLE generally overestimates the parameter σ while MCE always underestimates
it. CLE with R = 0.1 is virtually unbiased for strong clustering and positively biased for weak
clustering. For strong clustering CLE with R = 0.1 generally showed the smallest variance followed
by MCEg, PLE and MCEK. For weak clustering variance of CLE and PLE with R = 0.1 becomes
larger and MCEg becomes the most stable estimator.

An important observation is the rapid deterioration of the quality of the CLE and PLE esti-
mates with increasing value of the tuning parameter R. Increase in the variability of the estimators
with growing R is to be expected, since with the employed inner region edge correction and with
growing R we lose growing percentage of the data. However, for CLE and R = 0.3 the estimator
of σ is not just bad, it is even numerically unstable, and in case of weak clustering and higher
intensity of the point process the same happens also for R = 0.2.

An explanation for this could be found in the exact form of the score equations for CLE - the
estimating functions as described in Example 3.1 in Section 4 of [3] have a steep step around the
correct value of the parameter σ and then become virtually constant (and nonzero). Thus for a
small number of observed pairs of points from X and a clustered point pattern (with few distant
pairs observed) the estimating equation can lead to a severe overestimation of the parameter σ.
Therefore it is extremely important when estimating the interaction parameters for processes with
weaker clustering by CLE or PLE to choose the tuning constant R not too large. Definitely not
larger than the range of correlation and reasonably small with respect to the size of the observation
window so that not too much data is lost by the edge correction.

3.1.2 Parameter κ

For the other interaction parameter κ estimated directly by all three methods the best estimates
are provided by PLE (with R = 0.1, for weak clustering also with R = 0.2) in the majority of
cases. The exception are processes with low intensity and strong clustering, i.e. with a few number
of tight well defined clusters in the observed point pattern – here MCEg gives better results. Like
with the other parameters the MCEK method is consistently worse than MCEg and the worst
results are generally provided by CLE (with R = 0.1).

Note that the good results of PLE (R = 0.1) are mainly caused by the comparatively small
variability of the estimates because all the PLE estimates with R = 0.1 have considerable negative
bias. The bias becomes lower for R = 0.2 and thus the best estimates for processes with low
intensity and weak interaction (i.e. a few loose clusters in the observation window) are obtained
by PLE with R = 0.2. This behaviour is again implied by the exact form of the estimating
functions used. Note that for CLE the situation is somewhat similar like for the parameter σ –
CLE with R = 0.1 provides nearly unbiased estimates, whereas with R = 0.2 we have considerable
positive bias and with R = 0.3 the estimates become useless. Nevertheless the variability of CLE
is generally higher than variability of the other estimators.

When comparing the MCEg and MCEK methods the main factor is also variability of the
estimators - the MCEg method is consistently less variable than MCEK (the same situation like
with the parameter σ).

3



3.1.3 Parameter µ

The last parameter µ is by all the methods determined by means of the observed number of points
of X and the values of the already estimated parameters. It is true not just for the MCE and CLE
where µ̂ = X(W )/(|W |κ̂) but also for the PLE method. Namely (5) in [3] is derived just from the
comparison of the expected and observed number N of pairs of points from X.

Thus it is natural that the quality of the estimates of µ for MCE and CLE follows the pat-
tern from estimation of κ with MCEg being better than MCEK and CLE providing even worse
estimates. The PLE estimator uses mean number of pairs of points from X which could provide
more exact estimates than just X(W ). On the other hand, the formula (5) in [3] includes both of
the parameters κ and σ and thus can be influenced more by the bad quality of those estimates.
The simulation study shows that in reality for weak clustering PLE (with R = 0.1) provides the
best estimates of µ – again mainly due to low variability of the estimates since they are negatively
biased. For strong clustering the estimates provided by MCE are better.

3.1.4 Procedure using rdata

The estimated values of rdata are for strong clustering concentrated around 0.1 as expected, with
a fair proportion being smaller than 0.1 (see Figure 1 for the histograms of rdata). For CLE the
estimates of σ using R = rdata are comparable with those obtained with R = 0.1; they have only
slightly larger bias and variance. The bias is nevertheless still very small (smaller than for MCE)
and the variance is only a bit larger than for MCEg. Overall, the procedure with rdata for CLE
estimation of σ provides very good estimates – better than for MCEK. Estimates of the other
interaction parameter κ by CLE with rdata are worse but comparable with estimates produced by
CLE with R = 0.1.

For PLE the estimates of the interaction parameters with R = rdata are also worse than for
fixed value R = 0.1. By closer inspection of the simulated data we see that particularly for the
parameter κ the cases with rdata < 0.1 produce significantly biased estimates.

For weak clustering the estimated value of rdata is scattered between 0.1 and 0.2 with a few
cases taking the value of 0.25 which was the upper bound for the estimated range of interaction
(since the estimate of g function is not very stable for values larger than 0.25). For estimation
of σ CLE with R = rdata has significantly larger bias and variance than with R = 0.1 and PLE
produces impractical estimates. For estimation of κ CLE with R = rdata produces sometimes
better estimates than with R = 0.1 but they are still worse that those produced by any other
method. PLE with R = rdata produces generally worse estimates of κ than with R = 0.1 but these
are typically still better than those produced by the other methods.

In conclusion we can say that the method using R = rdata is not superior to the fixed value
of the tuning parameter R = 0.1 for CLE and PLE. Partially it can be explained by the larger
variability caused by the changing value of R but very often also the bias of the estimators is
larger than with the fixed value of R = 0.1. The question of the ideal choice of R for a given point
process model and a given observation window is not a simple one. Even the amount of information
expressed by the mean number of observed pairs of points with distance ≤ R for a clustered point
process X need not be a monotone function of R (see [4, Section 3]). More sophisticated methods
of the adaptive choice of R must be used to produce a considerable improvement in the quality of
the estimates than just a simple choice R = range of interaction.

3.1.5 Overall performance

In conclusion we can say that quality of all the compared estimators improves with higher in-
tensity of the process X and stronger interactions in the point process (i.e. tighter clusters).
Concerning minimum contrast estimation the version using pair correlation function always yields
better estimates than the version using the K-function. When using the CLE and PLE methods
for estimation of the interaction parameters it is important to use reasonably small values of the
tuning parameter R which provide reasonably good estimates. High values of R lead to numerical
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instability of the methods and impractical estimates – this is especially important for CLE, to a
lesser extent also for PLE.

To address the overall performance, the minimum contrast estimation using the pair correlation
function provides the best (in the sense of the relative MSE) estimates of the interaction parameters
although for point patterns with strong clustering when estimating σ CLE (with R = 0.1) yields
fully comparable and sometimes better quality estimates.

For point patterns with weak clustering PLE (with R = 0.2 and R = 0.1) yields the best
estimates of κ. However, this is due to the minimal variability of the PLE estimator which has a
serious negative bias in this case. The second best (according to MSE) estimator is MCEg which
has half-size bias (i.e. acceptable 10%).

Parameter µ is calculated from the intensity (of points or pairs of points) of X and as such it
depends on the quality of the other parameter estimates. The best values of MSE were achieved
for strong clustering by MCEg and for weak clustering by (again significantly biased) PLE.

3.2 Log-Gaussian Cox process

3.2.1 Parameter β

For the log-Gaussian Cox process from Example 3.2 β is the scale parameter of the covariance
function of the Gaussian driving field and the hardest one to estimate. Unlike in the case of
Thomas process for minimum contrast estimation MCEK showed always better performance than
MCEg. Nevertheless for stronger interaction (β = 10) the best results are obtained by CLE with
R = 0.1 which has both minimal bias and minimal variability. Also here (as in the case of Thomas
process) it is important to have reasonably small value of the tuning parameter R, i.e. R = 0.1.
For larger values of R the CLE (and also PLE) deteriorates fast and the estimates become useless.

Quality of the estimates of course improves with growing intensity λ; the growing amount of
information seems to be best used by CLE since for high intensity (λ = 300) CLE (with R = 0.1)
outperforms MCEK even in the case of weak dependence. CLE (with R = 0.1) generally slightly
underestimates β but the absolute value of bias is much smaller than for any other compared
estimator and this holds uniformly for any log-Gaussian Cox process considered in the study.
When the variability of this estimator becomes small enough (thanks to the sufficient amount
of data in the large λ case) it becomes superior to MCE estimation even in the case of weak
dependence.

To understand this results better it is good to note that the case β = 10 which we call stronger
interaction/dependence means that values of g(u)−1 (where g is the pair correlation function) are
significantly positive for a larger range of values u than for the case of β = 20. Thus the observed
point pattern of X for β = 10 is much more variable and may contain a few clusters (or sometimes
none if λ is low) with large scale and large number of points (like the one in the upper right
corner of the right panel in Figure 1 in [3]) whereas for β = 20 the observed point pattern is more
homogeneous with large number of smaller (both in terms of scale and number of points) clusters.
The large clusters from X with β = 10 make the estimation of the functional characteristics K
and g less stable than in the case of β = 20 or the Thomas process, which influences negatively
the quality of the MCE estimation. Obviously the CLE method is less influenced by occurrence
of these large clusters.

The same fact may explain higher efficiency of MCEK when compared with MCEg. Even in
the case of weaker dependence (β = 20) the clusters observed in X are highly variable in terms
of the number of points and there are always some with a fairly high number of points. In such a
situation the estimate of the K-function as a cumulative function is more stable than the estimate
of the g function (which corresponds to the density of K-function).

The performance of PLE is inferior to the other methods and for weak dependence (β = 20)
the estimator is unusable. For stronger dependence in the point pattern the performance for PLE
with R = 0.1 is comparable with the MCE methods, for larger values of R the estimator becomes
unusable again.

5



3.2.2 Parameter σ2

The other interaction parameter σ2 is best estimated by the MCE methods. The estimates are
only slightly biased and the variance is lower than for the other estimators. Note that the sign of
the bias depends on the value of β – for β = 10 (i.e. point patterns with a few large and heavy
clusters) σ2 is underestimated while for β = 20 it is overestimated by both MCEK and MCEg.
The performance of the two MCE methods is very similar.

Worse but still reasonable results are obtained for PLE with R = 0.1 and strong dependence
in the point pattern. In the case of weak dependence the PLE method needs higher intensity λ
of the point process to provide usable estimates. The worst results are provided by CLE. Both
CLE and PLE have considerable negative bias (larger for the case of strong dependence) but PLE
shows consistently lower variability than CLE which makes it superior.

As in the case of estimation of β both PLE and CLE perform reasonably well only with the
tuning parameter R = 0.1, for larger values both the bias and variability increase to impractical
values.

3.2.3 Parameter µ

The intensity parameter µ is the easiest one to estimate and it is estimated very well by any of the
compared methods. Remember that MCE and CLE estimate µ by the same formula (see Example
3.2 in Section 4 of [3]) which is influenced by the value of the estimated parameter σ2. Thus it
follows from the properties of the estimates of σ2 that the MCE estimates of µ has to be superior
to the CLE estimates and that MCEK and MCEg perform equally well. Note moreover that the
CLE estimates with R = 0.2, 0.3 are still very good even though the quality of the estimates of σ2

was not good at all. Since µ̂ is a linear function of σ̂2 the influence of the quality of the estimates
of interaction parameters on the estimate of the intensity parameter µ is much smaller than for
the Thomas process case.

Another interesting observation is that the efficiency of the PLE estimate which is determined
by formula (6) in [3] is worse than for the other methods and improves with larger value of the
tuning parameter R. The formula (6) in [3] uses the number of observed pairs of points with
distance smaller than R and provides negatively biased estimates – the smaller the value of R
the larger the bias of the estimates. Although the PLE estimates of µ are still fairly exact the
conclusion is that the intensity parameter µ is better estimated by the simpler formula using just
the observed number of points of the point process X.

3.2.4 Procedure using rdata

The procedure using R = rdata was even less successfull for the log-Gaussian Cox process than
for the Thomas process. This could be explained partially by a more uniform distribution of the
estimated values of rdata over the whole range between 0 and 0.25 (see Figure 2 for the histograms
of rdata). Moreover, when β = 10 we get quite often the estimate rdata = 0.25 and for such R
both CLE and PLE become impractical.

For PLE the use of data dependent R produces impractical estimates of β and estimates of σ2

with larger variance and for strong interaction also with larger bias than the procedure with fixed
R = 0.1.

For CLE the estimate of the interaction parameter β using R = rdata has in case of strong
dependence generally smaller bias than with fixed R = 0.1 but the variance is larger and in total
the estimate is worse than with fixed R = 0.1. Still it is superior to MCE. In case of weak
dependence the small bias is the same like with fixed R = 0.1 and in total larger variance makes
the estimate inferior to MCE. The estimate of σ2 by CLE with R = rdata is worse than the other
estimates and for small values of the intensity it is even impractical.
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3.2.5 Overall performance

The quality of all the compared estimators improves with higher intensity of the point process
X and in the majority of cases also with weaker dependence (i.e. larger value of the parameter
β). However, there is one important exception – the CLE with R = 0.1 provides more precise
estimates of β for processes with stronger dependence. And in this case CLE is much better than
the other estimation methods. A plausible explanation is that the score equations of CLE are
less influenced by the high variability of the observed point pattern (caused by the variability of
a few large and heavy clusters) than are the estimates of the functions K and g used for MCE.
For point processes with β = 20 and small enough intensity (λ < 300) the observed clusters in
the point pattern are more homogeneous and the MCEK becomes the best (in the sense of the
relative MSE) estimator of β followed by MCEg.

The parameter σ2 is best estimated by the minimum contrast methods, which show very similar
performance, followed by PLE with R = 0.1. Like in the other cases small value of the tuning
parameter R is crucial for estimation of the interaction parameters by both PLE and CLE; for
larger R = 0.2, 0.3 both the bias and variability of the PLE and CLE become too large.

Estimators of the intensity parameter µ are very precise for any of the compared methods. The
important conclusion from the simulation study is that for log-Gaussian Cox processes a simple
estimate by means of the observed (first order) intensity of the point process is superior to the
more complicated estimate provided by PLE which uses the observed intensity of pairs of points
from X.

References

[1] A.J. Baddeley and R. Turner: Spatstat: an R package for analyzing spatial point patterns.
J. Stat. Softw. 12 (2005), 1–42.

[2] P.J. Diggle: Statistical Analysis of Spatial Point Patterns. 2nd edition. Oxford University
Press, New York 2003.

[3] J. Dvořák and M. Prokešová: Moment estimation methods for stationary spatial Cox pro-
cesses – a comparison. Accepted to Kybernetika (2012).
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Figure 1: Histograms of estimated values of rdata – Thomas process.
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Figure 2: Histograms of estimated values of rdata – log-Gaussian Cox process, σ2 = 1 in all cases.
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MCE CLE PLE
κ µ σ K pcf .1 .2 .3 rdata .1 .2 .3 rdata

κ̂ 25 4 .02 .103 .070 -.013 .271 .917 -.097 -.143 .083 .161 -.260
.04 .148 .159 .098 .196 .987 -.087 -.331 -.178 .042 -.107

6 .02 .093 .041 -.001 .309 .807 -.118 -.115 .145 .189 -.215
.04 .149 .141 .039 .209 .835 -.010 -.355 -.138 .074 -.122

50 4 .02 .076 .048 .090 .343 1.05 .028 -.129 .036 .110 -.148
.04 .107 .129 .148 .260 .732 -.039 -.283 -.156 .0222 -.109

6 .02 .060 .022 .071 .318 .818 .004 -.122 .115 .139 -.157
.04 .109 .102 .064 .405 1.02 .075 -.293 -.133 .024 -.087

µ̂ 25 4 .02 -.074 -.067 .101 -.145 -.303 .386 -.416 -.431 -.375 -.365
.04 -.094 -.117 .098 .022 -.187 .896 -.252 -.272 -.289 -.272

6 .02 -.071 -.047 .067 -.170 -.317 .270 -.432 -.456 -.393 -.395
.04 -.095 -.106 .040 -.095 -.241 .138 -.256 -.292 -.276 -.254

50 4 .02 -.061 -.056 -.073 -.217 -.339 .025 -.394 -.399 -.319 -.370
.04 -.065 -.096 -.075 -.144 -.233 .141 -.257 -.251 -.232 -.268

6 .02 -.054 -.038 -.057 -.199 -.338 -.002 -.405 -.434 -.344 -.378
.04 -.068 -.076 -.035 -.230 -.260 -.011 -.257 -.274 -.254 -.266

σ̂ 25 4 .02 -.044 -.029 .009 -.034 -.019 .028 .068 .023 .086 .118
.04 -.064 -.067 .077 .208 34.7 .188 .287 .494 1.27 1.22

6 .02 -.048 -.029 .000 -.043 -.028 .027 .044 -.004 .053 .077
.04 -.058 -.056 .065 .130 29.2 .136 .202 .343 1.44 1.20

50 4 .02 -.037 -.035 -.006 -.043 -.105 .012 .102 .046 .112 .114
.04 -.031 -.044 .108 34.6 199 7.90 .279 1.08 3.26 2.61

6 .02 -.028 -.027 .001 -.045 -.086 .021 .096 .014 .052 .106
.04 -.044 -.047 .093 25.2 160 .238 .233 .849 3.55 2.41

Table 1: Summary of simulation results (bias) – Thomas process.
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MCE CLE PLE
κ µ σ K pcf .1 .2 .3 rdata .1 .2 .3 rdata

κ̂ 25 4 .02 .125 .073 .207 .364 3.08 .244 .108 .186 .225 .233
.04 .270 .217 .429 .576 5.67 .321 .170 .085 .192 .186

6 .02 .111 .066 .192 .435 2.00 .193 .079 .220 .246 .214
.04 .256 .198 .244 .396 3.11 .258 .158 .062 .226 .143

50 4 .02 .105 .065 .148 .420 2.99 .202 .052 .066 .111 .114
.04 .220 .172 .288 .392 3.22 .209 .090 .043 .139 .109

6 .02 .091 .052 .097 .304 1.65 .111 .039 .100 .099 .109
.04 .189 .148 .184 .562 4.48 .268 .093 .039 .145 .150

µ̂ 25 4 .02 .075 .044 .266 .142 .250 1.38 .192 .225 .185 .166
.04 .144 .116 .582 .435 .410 42.0 .076 .112 .159 .133

6 .02 .066 .040 .198 .138 .245 .540 .202 .238 .200 .178
.04 .133 .107 .280 .196 .313 .434 .074 .118 .166 .123

50 4 .02 .067 .039 .082 .121 .236 .193 .167 .180 .132 .156
.04 .144 .106 .178 .158 .195 .385 .070 .075 .106 .114

6 .02 .055 .031 .062 .101 .200 .108 .173 .211 .140 .160
.04 .130 .103 .133 .151 .219 .179 .071 .088 .133 .125

σ̂ 25 4 .02 .035 .014 .016 .032 .094 .023 .031 .045 .135 .051
.04 .050 .034 .061 .317 1·104 .168 .211 .764 6.85 5.47

6 .02 .027 .011 .010 .026 .072 .015 .018 .032 .087 .026
.04 .037 .024 .030 .139 9·103 .100 .062 .261 8.74 5.93

50 4 .02 .028 .012 .010 .022 .049 .015 .034 .031 .113 .034
.04 .045 .029 .060 2·104 1·105 5·103 .128 3.22 24.1 33.9

6 .02 .022 .009 .006 .018 .036 .011 .026 .026 .055 .027
.04 .035 .023 .036 2·104 1·105 .332 .077 2.45 32.6 16.8

Table 2: Summary of simulation results (MSE) – Thomas process.

11



MCE CLE PLE
λ β K pcf .1 .2 .3 rdata .1 .2 .3 rdata

β̂ 100 10 .281 .498 -.070 .190 .645 .087 -.221 1.76 2.44 .747
20 .146 .216 .090 .380 .401 .095 .527 1.80 4.41 .359

150 10 .252 .348 -.105 .169 .476 -.006 -.188 2.10 3.45 .999
20 .118 .181 -.009 .413 .361 -.028 .485 1.75 5.63 .527

200 10 .265 .388 -.146 .245 .618 .020 -.255 2.13 3.17 1.02
20 .140 .195 -.023 .480 .336 .023 .609 1.95 3.31 .682

300 10 .259 .360 -.143 -.036 .258 -.062 -.224 1.51 2.25 .847
20 .140 .180 -.051 .437 .272 .092 .417 .798 .629 .484

µ̂ 100 10 -.001 -.006 .026 .047 .064 -.018 -.146 -.052 -.016 -.111
20 -.005 -.006 .017 .042 .068 -.067 -.094 -.079 -.005 -.147

150 10 -.001 -.002 .021 .044 .067 .039 -.126 -.043 -.003 -.068
20 -.003 -.005 .017 .035 .061 -.018 -.088 -.074 -.008 -.102

200 10 .003 .001 .021 .043 .066 .037 -.129 -.043 -.005 -.060
20 -.003 -.006 .018 .034 .054 .006 -.081 -.068 -.014 -.099

300 10 .000 -.003 .019 .041 .061 .037 -.115 -.043 -.013 -.050
20 -.006 -.008 .012 .027 .059 .014 -.086 -.062 -.011 -.082

σ̂2 100 10 -.065 -.016 -.311 -.559 -.688 .032 -.218 -.467 -.570 -.357
20 .050 .059 -.140 -.357 -.603 .536 -.295 -.269 -.525 -.122

150 10 -.069 -.049 -.267 -.513 -.703 -.403 -.201 -.457 -.573 -.381
20 .038 .047 -.159 -.331 -.605 .162 -.218 -.223 -.493 -.173

200 10 -.077 -.050 -.252 -.524 -.750 -.472 -.157 -.434 -.549 -.395
20 .009 .035 -.185 -.390 -.609 -.092 -.216 -.260 -.443 -.158

300 10 -.046 -.023 -.241 -.535 -.722 -.509 -.160 -.384 -.484 -.375
20 .043 .072 -.131 -.336 -.668 -.196 -.131 -.212 -.422 -.129

Table 3: Summary of simulation results (bias) – log-Gaussian Cox process, σ2 = 1 in all cases.
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MCE CLE PLE
λ β K pcf .1 .2 .3 rdata .1 .2 .3 rdata

β̂ 100 10 .538 .825 .112 .756 2.16 .649 .513 7.59 11.0 3.35
20 .309 .357 .428 .983 .798 .576 2.14 8.67 51.5 2.21

150 10 .323 .380 .087 .793 1.53 .283 .435 10.2 25.4 4.79
20 .165 .188 .245 1.08 .702 .296 1.54 9.07 117 2.12

200 10 .267 .366 .106 1.46 2.19 .272 .340 10.8 20.8 5.36
20 .155 .163 .188 .950 .547 .278 1.78 9.49 34.6 2.60

300 10 .235 .299 .085 .206 .566 .089 .268 6.12 14.0 3.57
20 .124 .132 .091 .631 .394 .220 1.13 2.10 2.00 1.24

µ̂ 100 10 .005 .005 .007 .008 .012 .054 .038 .012 .011 .041
20 .004 .004 .008 .010 .012 .066 .016 .016 .009 .055

150 10 .003 .003 .004 .007 .010 .009 .028 .008 .007 .017
20 .002 .002 .004 .006 .009 .026 .013 .011 .006 .019

200 10 .003 .003 .004 .007 .009 .008 .028 .007 .006 .015
20 .001 .001 .003 .005 .007 .010 .011 .009 .004 .016

300 10 .002 .002 .003 .006 .007 .006 .021 .006 .005 .009
20 .001 .001 .002 .003 .006 .003 .011 .006 .003 .011

σ̂2 100 10 .146 .151 .380 .548 .774 2.90 .184 .436 .623 .430
20 .196 .198 .476 .561 .756 4.16 .294 .519 .714 .529

150 10 .089 .086 .275 .512 .772 .495 .171 .417 .613 .361
20 .108 .101 .314 .453 .709 1.89 .202 .372 .616 .299

200 10 .082 .077 .241 .507 .758 .505 .132 .365 .553 .341
20 .087 .088 .253 .431 .659 .783 .196 .332 .472 .249

300 10 .060 .058 .184 .485 .736 .480 .132 .267 .450 .285
20 .064 .063 .136 .354 .688 .233 .121 .226 .402 .138

Table 4: Summary of simulation results (MSE) – log-Gaussian Cox process, σ2 = 1 in all cases.
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