NMSA405: exercise 1 - space of sequences of real numbers

Definition 1.3: For sequences of real numbers $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$ and $y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$ we define

$$
d(x, y)=\sum_{j=1}^{\infty} \frac{\min \left\{\left|x_{j}-y_{j}\right|, 1\right\}}{2^{j}}
$$

Exercise 1.1: (Proposition 1.2)

a) Show that d defines a metric on $\mathbb{R}^{\mathbb{N}}$.
b) Let $x^{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots\right)$ be sequences of real numbers for $n \in \mathbb{N}$ and $x=\left(x_{1}, x_{2}, \ldots\right)$. Prove that $d\left(x^{n}, x\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$ if and only if $\left|x_{j}^{n}-x_{j}\right| \underset{n \rightarrow \infty}{\longrightarrow} 0$ for all $j \in \mathbb{N}$.
c) Prove that $\left(\mathbb{R}^{\mathbb{N}}, d\right)$ is a complete separable metric space.

Definition 1.5: Mapping $p: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ is called a finite permutation (of order n), if there is $n \in \mathbb{N}$ and a permutation $\left(k_{1}, \ldots, k_{n}\right)$ of the elements of the set $\{1, \ldots, n\}$ such that

$$
p\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)=\left(x_{k_{1}}, \ldots, x_{k_{n}}, x_{n+1}, \ldots\right), \quad\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}
$$

Exercise 1.2: (Proposition 1.5a) Prove that any finite permutation p is a homeomorphism.
Definition 1.6: Mapping $s: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ defined by

$$
s\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right), \quad\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}
$$

is called shift.
Exercise 1.3: (Proposition 1.5b) Prove that the shift s is a continuous mapping.
Definition 1.7: A set $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ is called terminal if the following implication holds:
$x=\left(x_{1}, x_{2}, \ldots\right) \in T, y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: y_{k}=x_{k}$ for all $k \in \mathbb{N}$ except of finitely many $\Rightarrow y \in T$.
We call $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right) n$-terminal if

$$
x=\left(x_{1}, x_{2}, \ldots\right) \in T, y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: y_{k}=x_{k} \text { for } k>n \Rightarrow y \in T \text {. }
$$

Exercise 1.4: (Proposition 1.5c) Prove that $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ is n-terminal if and only if there is a $T_{n} \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $T=\mathbb{R}^{n} \times T_{n}$.

Definition 1.8: We use a particular notation for the following systems of sets:

- n-symmetric sets: $\mathcal{S}_{n}=\left\{S \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): p(S)=S\right.$ for any finite permutation p of order $\left.n\right\}$,
- symmetric sets: $\mathcal{S}=\left\{S \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): p(S)=S\right.$ for any finite permutation $\left.p\right\}$,
- shift invariant sets: $\mathcal{I}=\left\{I \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): s^{-1} I=I\right\}$,
- n-terminal sets: $\mathcal{T}_{n}=\left\{T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): T\right.$-terminal $\}$,
- terminal sets: $\mathcal{T}=\left\{T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): T\right.$ terminal $\}$.

Exercise 1.5: (Proposition 1.5d)
a) Show that $\mathcal{S}_{n+1} \subset \mathcal{S}_{n}$ for all $n \in \mathbb{N}$ and $\mathcal{S}=\cap_{n=1}^{\infty} \mathcal{S}_{n}$.
b) Show that $\mathcal{T}_{n+1} \subset \mathcal{T}_{n}$ for all $n \in \mathbb{N}$ and $\mathcal{T}=\cap_{n=1}^{\infty} \mathcal{T}_{n}$.
c) Check that \mathcal{S}, \mathcal{I} and \mathcal{T} are σ-algebras.
d) Prove that $\mathcal{I} \subset \mathcal{T}_{n} \subset \mathcal{S}_{n}$ for all $n \in \mathbb{N}$ and hence $\mathcal{I} \subset \mathcal{T} \subset \mathcal{S}$.
e) Show that the previous inclusions are strict, i.e. the sets are not equal. Give examples of invariant, symmetric and terminal sets.

Definition 1.10: We call the set $B \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ finite-dimensional if there are $n \in \mathbb{N}$ and $B_{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ such that $B=B_{n} \times \mathbb{R}^{\mathbb{N}}$.

Exercise 1.6: (Proposition 1.6) Denote by \mathcal{A} the system of finite-dimensional sets from $\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$. Prove that \mathcal{A} is an algebra generating $\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$, i.e. it holds that $\sigma(\mathcal{A})=\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$.

NMSA405: exercise 2 - random sequences

Definition 1.13: Binary expansion of the number $x \in(0,1]$ is the sequence x_{1}, x_{2}, \ldots of zeroes and ones such that it contains infinitely many ones and

$$
x=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}} .
$$

Binary expansion of the number 0 is the sequence of zeroes.
Exercise 2.1: (Proposition 1.14) Prove that if X is a random variable with uniform distribution on the interval $[0,1]$ and

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\infty} \frac{X_{k}(\omega)}{2^{k}} \tag{1}
\end{equation*}
$$

is its binary expansion then X_{1}, X_{2}, \ldots is a sequence of independent random variables with Bernoulli distribution with parameter $1 / 2$.
Conversely, consider a sequence of independent random variables with Bernoulli distribution with parameter $1 / 2$ and define X using the equation (1). Prove that X has uniform distribution on the interval $[0,1]$.

Exercise 2.2: Show that there is a random sequence W_{1}, W_{2}, \ldots such that its increments $W_{1}, W_{2}-$ $W_{1}, W_{3}-W_{2}, \ldots$ are independent random variables with standard normal distribution. Determine the distribution of the vector $\left(W_{1}, \ldots, W_{n}\right)$.

Definition 1.14: We call the random sequence $X=\left(X_{1}, X_{2}, \ldots\right)$

- iid if the random variables $X_{j}, j \in \mathbb{N}$, are independent and identically distributed,
- n-symmetric if the distributions of $\left(X_{1}, \ldots, X_{n}, X_{n+1}, \ldots\right)$ and ($X_{k_{1}}, \ldots, X_{k_{n}}, X_{n+1}, \ldots$) coincide for each finite permutation $\left(k_{1}, \ldots, k_{n}\right)$ of order $n \in \mathbb{N}$,
- symmetric if it is n-symmetric for each $n \in \mathbb{N}$,
- stationary if the distributions of $\left(X_{1}, \ldots, X_{n}, X_{n+1}, \ldots\right)$ and $\left(X_{n+1}, X_{n+2}, \ldots\right)$ coincide for each $n \in \mathbb{N}$.

Exercise 2.3: Show that the following statements are equivalent:
a) random sequence $X=\left(X_{1}, X_{2}, \ldots\right)$ is stationary,
b) X and $s(X)$ have the same distribution,
c) random vectors $\left(X_{1}, \ldots, X_{n-1}\right)$ and $\left(X_{2}, \ldots, X_{n}\right)$ have the same distribution for each $n \in \mathbb{N}$.

Exercise 2.4: Prove the following assertions.
a) Each iid sequence is symmetric.
b) Each symmetric sequence is stationary.
c) Each $(n+1)$-symmetric sequence is n-symmetric for any $n \in \mathbb{N}$.
d) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an iid random sequence and $f: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ Borel-measurable mapping such that $f \circ s=s \circ f\left(f\right.$ and the shift commute). Prove that in such a case $f(X)=\left(Y_{1}, Y_{2}, \ldots\right)$ is stationary. Does this assertion hold if we instead assumed only stationarity of X ?

Exercise 2.5: Give an example of
a) a symmetric sequence which is not iid,
b) a stationary sequence which is not symmetric,
c) n-symmetric sequence which is not $(n+1)$-symmetric.

