NMSA405: exercise 1 – space of sequences of real numbers

Definition 1.3: For sequences of real numbers $x = (x_1, x_2, ...) \in \mathbb{R}^{\mathbb{N}}$ and $y = (y_1, y_2, ...) \in \mathbb{R}^{\mathbb{N}}$ we define

$$d(x,y) = \sum_{j=1}^{\infty} \frac{\min\{|x_j - y_j|, 1\}}{2^j}.$$

Exercise 1.1: (Proposition 1.2)

- a) Show that d defines a metric on $\mathbb{R}^{\mathbb{N}}$.
- b) Let $x^n = (x_1^n, x_2^n, \dots)$ be sequences of real numbers for $n \in \mathbb{N}$ and $x = (x_1, x_2, \dots)$. Prove that

$$d(x^n, x) \underset{n \to \infty}{\longrightarrow} 0$$
 if and only if $|x_j^n - x_j| \underset{n \to \infty}{\longrightarrow} 0$ for all $j \in \mathbb{N}$.

c) Prove that $(\mathbb{R}^{\mathbb{N}}, d)$ is a complete separable metric space.

Definition 1.5: Mapping $p : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ is called *a finite permutation (of order n)*, if there is $n \in \mathbb{N}$ and a permutation (k_1, \ldots, k_n) of the elements of the set $\{1, \ldots, n\}$ such that

 $p(x_1, \dots, x_n, x_{n+1}, \dots) = (x_{k_1}, \dots, x_{k_n}, x_{n+1}, \dots), \quad (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}}.$

Exercise 1.2: (Proposition 1.5a) Prove that any finite permutation p is a homeomorphism.

Definition 1.6: Mapping $s : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ defined by

$$s(x_1, x_2, \dots) = (x_2, x_3, \dots), \quad (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}},$$

is called *shift*.

Exercise 1.3: (Proposition 1.5b) Prove that the shift s is a continuous mapping.

Definition 1.7: A set $T \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$ is called *terminal* if the following implication holds:

 $x = (x_1, x_2, \ldots) \in T, y = (y_1, y_2, \ldots) \in \mathbb{R}^{\mathbb{N}} : y_k = x_k$ for all $k \in \mathbb{N}$ except of finitely many $\Rightarrow y \in T$. We call $T \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$ *n-terminal* if

 $x = (x_1, x_2, \dots) \in T, y = (y_1, y_2, \dots) \in \mathbb{R}^{\mathbb{N}} : y_k = x_k \text{ for } k > n \Rightarrow y \in T.$

Exercise 1.4: (Proposition 1.5c) Prove that $T \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$ is *n*-terminal if and only if there is a $T_n \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$ such that $T = \mathbb{R}^n \times T_n$.

Definition 1.8: We use a particular notation for the following systems of sets:

- *n-symmetric sets*: $S_n = \{S \in \mathcal{B}(\mathbb{R}^N) : p(S) = S \text{ for any finite permutation } p \text{ of order } n\},\$
- symmetric sets: $S = \{S \in \mathcal{B}(\mathbb{R}^N) : p(S) = S \text{ for any finite permutation } p\},\$
- shift invariant sets: $\mathcal{I} = \{I \in \mathcal{B}(\mathbb{R}^{\mathbb{N}}) : s^{-1}I = I\},\$
- *n*-terminal sets: $\mathcal{T}_n = \{T \in \mathcal{B}(\mathbb{R}^N) : T \text{ n-terminal}\},\$
- terminal sets: $\mathcal{T} = \{T \in \mathcal{B}(\mathbb{R}^{\mathbb{N}}) : T \text{ terminal}\}.$

Exercise 1.5: (Proposition 1.5d)

- a) Show that $\mathcal{S}_{n+1} \subset \mathcal{S}_n$ for all $n \in \mathbb{N}$ and $\mathcal{S} = \bigcap_{n=1}^{\infty} \mathcal{S}_n$.
- b) Show that $\mathcal{T}_{n+1} \subset \mathcal{T}_n$ for all $n \in \mathbb{N}$ and $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{T}_n$.
- c) Check that \mathcal{S}, \mathcal{I} and \mathcal{T} are σ -algebras.
- d) Prove that $\mathcal{I} \subset \mathcal{T}_n \subset \mathcal{S}_n$ for all $n \in \mathbb{N}$ and hence $\mathcal{I} \subset \mathcal{T} \subset \mathcal{S}$.
- e) Show that the previous inclusions are strict, i.e. the sets are not equal. Give examples of invariant, symmetric and terminal sets.

Definition 1.10: We call the set $B \in \mathcal{B}(\mathbb{R}^{\mathbb{N}})$ finite-dimensional if there are $n \in \mathbb{N}$ and $B_n \in \mathcal{B}(\mathbb{R}^n)$ such that $B = B_n \times \mathbb{R}^{\mathbb{N}}$.

Exercise 1.6: (Proposition 1.6) Denote by \mathcal{A} the system of finite-dimensional sets from $\mathcal{B}(\mathbb{R}^{\mathbb{N}})$. Prove that \mathcal{A} is an algebra generating $\mathcal{B}(\mathbb{R}^{\mathbb{N}})$, i.e. it holds that $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R}^{\mathbb{N}})$.

NMSA405: exercise 2 – random sequences

Definition 1.13: Binary expansion of the number $x \in (0, 1]$ is the sequence x_1, x_2, \ldots of zeroes and ones such that it contains infinitely many ones and

$$x = \sum_{k=1}^{\infty} \frac{x_k}{2^k}.$$

Binary expansion of the number 0 is the sequence of zeroes.

Exercise 2.1: (Proposition 1.14) Prove that if X is a random variable with uniform distribution on the interval [0, 1] and

$$X(\omega) = \sum_{k=1}^{\infty} \frac{X_k(\omega)}{2^k} \tag{1}$$

is its binary expansion then X_1, X_2, \ldots is a sequence of independent random variables with Bernoulli distribution with parameter 1/2.

Conversely, consider a sequence of independent random variables with Bernoulli distribution with parameter 1/2 and define X using the equation (1). Prove that X has uniform distribution on the interval [0, 1].

Exercise 2.2: Show that there is a random sequence W_1, W_2, \ldots such that its increments $W_1, W_2 - W_1, W_3 - W_2, \ldots$ are independent random variables with standard normal distribution. Determine the distribution of the vector (W_1, \ldots, W_n) .

Definition 1.14: We call the random sequence $X = (X_1, X_2, ...)$

- *iid* if the random variables $X_j, j \in \mathbb{N}$, are independent and identically distributed,
- *n-symmetric* if the distributions of $(X_1, \ldots, X_n, X_{n+1}, \ldots)$ and $(X_{k_1}, \ldots, X_{k_n}, X_{n+1}, \ldots)$ coincide for each finite permutation (k_1, \ldots, k_n) of order $n \in \mathbb{N}$,
- symmetric if it is n-symmetric for each $n \in \mathbb{N}$,
- stationary if the distributions of $(X_1, \ldots, X_n, X_{n+1}, \ldots)$ and $(X_{n+1}, X_{n+2}, \ldots)$ coincide for each $n \in \mathbb{N}$.

Exercise 2.3: Show that the following statements are equivalent:

- a) random sequence $X = (X_1, X_2, ...)$ is stationary,
- b) X and s(X) have the same distribution,
- c) random vectors (X_1, \ldots, X_{n-1}) and (X_2, \ldots, X_n) have the same distribution for each $n \in \mathbb{N}$.

Exercise 2.4: Prove the following assertions.

- a) Each iid sequence is symmetric.
- b) Each symmetric sequence is stationary.
- c) Each (n + 1)-symmetric sequence is *n*-symmetric for any $n \in \mathbb{N}$.
- d) Let $X = (X_1, X_2, ...)$ be an iid random sequence and $f : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ Borel-measurable mapping such that $f \circ s = s \circ f$ (f and the shift commute). Prove that in such a case $f(X) = (Y_1, Y_2, ...)$ is stationary. Does this assertion hold if we instead assumed only stationarity of X?

Exercise 2.5: Give an example of

- a) a symmetric sequence which is not iid,
- b) a stationary sequence which is not symmetric,
- c) *n*-symmetric sequence which is not (n + 1)-symmetric.