NMSA405: exercise 5 - symmetric simple random walk

Definition 2.6: Let X_{1}, X_{2}, \ldots be an iid random sequence such that $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. We call the corresponding random walk $\left(S_{n}\right)$ the symmetric simple random walk.

Exercise 5.1: (Proposition 2.9) (Reflection principle) Let $\left(S_{n}\right)$ be a symmetric simple random walk. Consider the stopping time T, the first hitting time of the set $\{a\}$ by the random walk for a given $a \in \mathbb{N}$. Denote

$$
S_{k}^{r}=2 S_{\min \{k, T\}}-S_{k}, \quad k \in \mathbb{N} .
$$

Then

$$
\left(S_{1}^{r}, S_{2}^{r}, \ldots\right) \stackrel{d}{=}\left(S_{1}, S_{2}, \ldots\right)
$$

Exercise 5.2: (Proposition 2.10) (Maxima of the symmetric simple random walk) For a symmetric simple random walk $\left(S_{n}\right)$ denote $M_{n}=\max _{k=1, \ldots, n} S_{k}, n \in \mathbb{N}$. Consider the stopping time T, the first hitting time of the set $\{a\}$ by the random walk for a given $a \in \mathbb{N}$. Then

$$
\mathbb{P}(T \leq n)=\mathbb{P}\left(M_{n} \geq a\right)=2 \mathbb{P}\left(S_{n} \geq a\right)-\mathbb{P}\left(S_{n}=a\right) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} \geq a\right)=1
$$

NMSA405: exercise 6 - martingales

Exercise 6.1: (Proposition 2.18) Let $\left(X_{n}\right)$ be a sequence of independent integrable random variables. Denote $S_{n}=X_{1}+\ldots+X_{n}$ for $n \in \mathbb{N}$.

- c) If $\mathbb{E} X_{n}=1$ for all $n \in \mathbb{N}$ then $Z_{n}=\prod_{j=1}^{n} X_{j}$ is a martingale.
- d) If $\mathbb{P}\left(X_{n}=-1\right)=q$ and $\mathbb{P}\left(X_{n}=1\right)=p$ where $p \in(0,1)$ and $p+q=1$ then $Y_{n}=(q / p)^{S_{n}}$ is a martingale.

Exercise 6.2: Consider the probability space $\left([0,1], \mathcal{B}([0,1]),\left.\lambda\right|_{[0,1]}\right)$, a finite measure $\mu \ll \lambda$ on $([0,1], \mathcal{B}([0,1]))$ and an increasing sequence of sets $\left\{0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{k_{n}}^{n}=1\right\}$ such that

$$
\max _{k \in\left\{0,1, \ldots, k_{n}-1\right\}}\left|t_{k+1}^{n}-t_{k}^{n}\right| \rightarrow 0
$$

Denote $B_{k}^{n}=\left[t_{k}^{n}, t_{k+1}^{n}\right)$ and

$$
D_{n}(x)=\frac{\mu\left(B_{k}^{n}\right)}{\lambda\left(B_{k}^{n}\right)}, \quad x \in B_{k}^{n}
$$

Show that $\left(D_{n}\right)$ is an $\left(\mathcal{F}_{n}\right)$-martingale where $\mathcal{F}_{n}=\sigma\left(B_{1}^{n}, \ldots, B_{k_{n}}^{n}\right)$. What is the a.s. limit of D_{n} for $n \rightarrow \infty$?

Exercise 6.3: (Proposition 2.21) (Martingale differences of an L_{2}-martingale are orthogonal in L_{2}) Let $\left(M_{n}\right)$ be an L_{2}-martingale. Denote $D_{1}=M_{1}$ and $D_{n+1}=M_{n+1}-M_{n}$ for $n \in \mathbb{N}$. Then $\mathbb{E} D_{n} D_{m}=0$ for $m \neq n$, and hence $\mathbb{E} M_{n}^{2}=\sum_{j=1}^{n} \mathbb{E} D_{j}^{2}$ and var $M_{n}=\sum_{j=1}^{n} \operatorname{var} D_{j}$.

NMSA405: exercise 7 - martingales and Doob decomposition

Exercise 7.1: Let Y be an integrable random variable and let $\left(\mathcal{F}_{n}\right)$ be a filtration. Consider the sequence $X_{n}=\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right], n \in \mathbb{N}$, and show that $\left(X_{n}\right)$ is a \mathcal{F}_{n}-martingale.

Exercise 7.2: (Pólya urn model) Consider an urn which at time $n=0$ contains b black and w white balls, $b, w \in \mathbb{N}$. At each time $n \in \mathbb{N}$ we draw a ball from the urn at random, write down its color and put it back together with $\Delta \in \mathbb{N}$ new balls of the same color. Denote X_{n} the relative frequency of the white balls in the urn at time n (i.e. the ratio of the number of white balls to the number of all balls in the urn at the given time). Show that $\left(X_{n}\right)$ is a martingale. Consider also the case with $\Delta=0$ or $\Delta=-1$.

Exercise 7.3: A deck of cards contains a black and b red cards. The deck has been shuffled randomly and we start drawing the cards from the top one after another. Denote X_{n} the relative number of black cards after drawing n cards where $n \in\{0, \ldots, a+b-1\}$. Let $X_{n}=X_{a+b-1}$ for $n \geq a+b$. Show that $\left(X_{n}\right)$ is a martingale.

Exercise 7.4: Let $\left(X_{n}\right)$ be a sequence of random variables such that the probability density function $f_{n}: \mathbb{R}^{n} \rightarrow(0, \infty)$ of the random vector $\left(X_{1}, \ldots, X_{n}\right)$ is positive on \mathbb{R}^{n}. Suppose we are given a consistent system of probability density functions $\left(g_{n}\right)$, i.e. $g_{n}: \mathbb{R}^{n} \rightarrow[0, \infty)$ fulfills $\int_{\mathbb{R}^{n}} g_{n}(x) \mathrm{d} x=1$ and $\int_{\mathbb{R}} g_{n+1}(x, y) \mathrm{d} y=g_{n}(x)$ for almost all $x \in \mathbb{R}^{n}$. We define the likelihood ratio

$$
S_{n}=\frac{g_{n}\left(X_{1}, \ldots, X_{n}\right)}{f_{n}\left(X_{1}, \ldots, X_{n}\right)}, \quad n \in \mathbb{N}
$$

Show that $\left(S_{n}\right)$ is a martingale.
Exercise 7.5: Let $\left(\mathcal{F}_{n}\right)$ be a filtration on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\left(Q_{n}\right)$ a consistent system of \mathcal{F}_{n}-probability measures, i.e. $\left.Q_{n+1}\right|_{\mathcal{F}_{n}}=Q_{n}$ for $n \in \mathbb{N}$, such that $\left.Q_{n} \ll \mathbb{P}\right|_{\mathcal{F}_{n}}$. We define $X_{n}=\frac{\mathrm{d} Q_{n}}{\left.\mathrm{dP}\right|_{\mathcal{F}_{n}}}$. Show that $\left(X_{n}\right)$ is a \mathcal{F}_{n}-martingale.

Exercise 7.6: Let $X_{n}:(\Omega, \mathcal{F}) \rightarrow\left(S_{n}, \mathcal{S}_{n}\right), n \in \mathbb{N}$, be a sequence of random variables. Let \mathbb{P} be a probability measure on (Ω, \mathcal{F}) and $\left(\nu_{n}\right)$ a consistent system of probability distributions such that $\nu_{n} \ll P_{X_{1}, \ldots, X_{n}}=: \mu_{n}$. Similarly as above show that the likelihood ratio $T_{n}=\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \mu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ between $H_{1}:\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}} \sim \nu_{n}$ and $H_{0}:\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}} \sim \mu_{n}$ is a $\sigma\left(X_{1}, \ldots, X_{n}\right)$-martingale under the null hypothesis H_{0}.

Exercise 7.7: Let $\left(X_{n}\right)$ be an iid random sequence. Let $\alpha \in \mathbb{R}$ be such that $\beta=\ln \mathbb{E} \mathrm{e}^{\alpha X_{1}} \in \mathbb{R}$. We define $Z_{n}=\exp \left\{\alpha S_{n}-\beta n\right\}$ where $S_{n}=X_{1}+\ldots+X_{n}$. Show that $\left(Z_{n}\right)$ is a martingale.

Exercise 7.8: Let $\left(X_{n}\right)$ be a sequence of independent integrable random variables with zero mean. We define $M_{n}=\sum_{k=1}^{n} \prod_{i=1}^{k} X_{i}$ for $n \in \mathbb{N}$. Show that $\left(M_{n}\right)$ is a martingale.

Exercise 7.9: Let $\left(X_{n}\right)$ be an iid random sequence with $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=\sigma^{2} \in(0, \infty)$ and $\mathbb{E} \exp \left\{X_{1}\right\}=$ $\gamma<\infty$. Consider the corresponding random walk $\left(S_{n}\right)$. Show that the following sequences are submartingales and determine their compensators:

- a) S_{n}^{2},
- b) $V_{n}=X_{1}^{2}+\ldots+X_{n}^{2}$,
- c) $\exp \left\{S_{n}\right\}$.

Exercise 7.10: Let $\left(X_{n}\right)$ be a \mathcal{F}_{n}-martingale such that $X_{n} \in L_{2}$. Show that

$$
I_{n}=\sum_{k=1}^{n} \operatorname{var}\left(X_{k} \mid \mathcal{F}_{k-1}\right)
$$

is the compensator of the sequence $Z_{n}=X_{n}^{2}$ where $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.

