NMSA405: exercise 8 - optional sampling theorem

Exercise 8.1: (Proposition 3.4) Under the assumptions of the Theorem 3.3 show that the condition

$$
X_{T}^{+} \in L_{1} \quad \text { and } \quad \int_{[T>n]} X_{n}^{+} \mathrm{dP} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

is equivalent to the uniform integrability of the sequence $\left(X_{T \wedge n}^{+}\right)$. Recall that $T<\infty$ almost surely.
Exercise 8.2: Let $\left(X_{n}\right)$ be a sequence of iid random variables with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$ and let $S_{n}=\sum_{k=1}^{n} 2^{k-1} X_{k}, n \in \mathbb{N}$. Consider the first hitting time T of the sequence $\left(S_{n}\right)$ of the set $\{1\}$. Then for $\left(S_{n}\right)$ and T the optional sampling theorem does not hold. Show that $\mathbb{E} S_{1} \neq \mathbb{E} S_{T}$ and the condition $\lim _{n \rightarrow \infty} \int_{[T>n]}\left|S_{n}\right| \mathrm{d} \mathbb{P}=0$ is not fulfilled.

Exercise 8.3: (remark to the Theorem 3.5) Let $\left(X_{n}\right)$ be a \mathcal{F}_{n}-martingale and $T<\infty$ a.s. be a $\mathcal{F}_{n^{-}}$ stopping time. Show that the condition

$$
\exists 0<c<\infty: T>n \Longrightarrow\left|X_{n}\right| \leq c \quad \text { a.s. }
$$

does not imply the condition

$$
X_{T} \in L_{1} \quad \text { and } \quad \int_{[T>n]}\left|X_{n}\right| \mathrm{dP} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

from the Theorem 3.3.
Hint: Consider the sequence $X_{n}=\sum_{k=1}^{n} 3^{k} Y_{k}$ where $\left(Y_{k}\right)$ is a sequence of iid random variables with the uniform distribution on $\{-1,0,1\}$.

NMSA405: exercise 9 - discrete and non-trivial random walk

Definition: Let $\left(X_{n}\right)$ be an iid random sequence such that $\mathbb{P}\left(X_{1}=1\right)=p$ and $\mathbb{P}\left(X_{1}=-1\right)=1-p$ where $p \in[0,1]$. We call the corresponding random walk $\left(S_{n}\right)$ a (simple) discrete random walk. If $p=1 / 2$ we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time $T^{B}=\min \left\{n \in \mathbb{N}: S_{n} \notin B\right\}$ defined as the first exit time of the discrete random walk S_{n} from the bounded set $B \in \mathcal{B}(\mathbb{R})$ and the stopping time $T_{a}=\min \{n \in \mathbb{N}$: $\left.S_{n}=a\right\}$ defined as the first hitting time of the random walk S_{n} of the set $\{a\}$ for $a \in \mathbb{Z}$. Show that

1. $T^{B}<\infty$ a.s.,
2. $T_{a}<\infty$ a.s. if $p=1 / 2$.

Exercise 9.2: Show that the discrete random walk fulfills
(i) $S_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty$ a.s. $\Longleftrightarrow p>1 / 2$,
(ii) $S_{n} \underset{n \rightarrow \infty}{\longrightarrow}-\infty$ a.s. $\Longleftrightarrow p<1 / 2$,
(iii) $\lim \sup _{n \rightarrow \infty} S_{n}=\infty$ a.s., $\liminf _{n \rightarrow \infty} S_{n}=-\infty$ a.s. $\Longleftrightarrow p=1 / 2$.

Exercise 9.3: Consider a discrete symmetric random walk $\left(S_{n}\right)$. For $a, b \in \mathbb{Z}, a<0, b>0$, we define $T_{a, b}=\min \left\{n \in \mathbb{N}: S_{n} \notin(a, b)\right\}$ as the first exit time of S_{n} from the interval (a, b). Show that in that case

$$
\mathbb{P}\left(S_{T_{a, b}}=a\right)=\frac{b}{b-a} \quad \text { and } \quad \mathbb{E} T_{a, b}=-a b
$$

Corollary: (i) $\mathbb{E} T^{B}<\infty$ for any bounded set $B \in \mathcal{B}(\mathbb{R}), \quad$ (ii) $\mathbb{E} T_{b}=\infty$ for any $b \in \mathbb{Z}, b \neq 0$.
Exercise 9.4: Let $\left(S_{n}\right)$ be a symmetric simple random walk and let $A<0<B$ be independent integrable random variables, independent of $\left(S_{n}\right)$. Denote $T=\min \left\{n \in \mathbb{N}: S_{n} \notin(A, B)\right\}$. Show that in that case

$$
\mathbb{P}\left(S_{T}=A\right)=\mathbb{E} \frac{B}{B-A} \quad \text { and } \quad \mathbb{E} T=-\mathbb{E} A \cdot \mathbb{E} B<\infty
$$

Definition: The random sequence $S_{n}=\sum_{k=1}^{n} X_{k}, n \in \mathbb{N}$, where $\left(X_{n}\right)$ is an iid random sequence and $\mathbb{P}\left(X_{1} \neq 0\right)>0$ is called a non-trivial random walk.

Theorem 3.10: Let T^{B} be the first exit time of the non-trivial random walk $\left(S_{n}\right)$ from the bounded set $B \in \mathcal{B}(\mathbb{R})$. Then $\mathbb{E}\left(T^{B}\right)^{r}<\infty$ for any $r \in \mathbb{N}$.
Idea of proof: There is $m \in \mathbb{N}$ such that $p=\mathbb{P}\left(\left|S_{m}\right|>d\right)>0$ where d is the diameter of the set $B \cup\{0\}$. Consider the stopping time $\tau=\inf \left\{k \in \mathbb{N}:\left|S_{m k}-S_{m(k-1)}\right|>d\right\}$. Then τ has a shifted geometrical distribution with parameter p and $T^{B} \leq m \tau$.

NMSA405: exercise 10 - convergence theorems

Exercise 10.1: Give an example of a martingale which converges to the random variable $X_{\infty} \in L_{1}$ almost surely but not in L_{1}.

Exercise 10.2: Let $\left(Y_{n}\right)$ be a sequence of independent random variables such that

$$
\mathbb{P}\left(Y_{n}=2^{n}-1\right)=2^{-n}, \quad \mathbb{P}\left(Y_{n}=-1\right)=1-2^{-n}, \quad n \in \mathbb{N}
$$

Check that $X_{n}=\sum_{k=1}^{n} Y_{k}$ is a martingale. Show that $X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }}-\infty$ and hence the assumptions of the martingale convergence theorems cannot be fulfilled.

Exercise 10.3: (martingale proof of the Kolmogorov 0-1 law) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a sequence of independent random variables and $F=[X \in T]$ where $T \in \mathcal{T}$ is a terminal set. Show that

$$
\forall n \in \mathbb{N} \quad \mathbb{E}\left[\mathbf{1}_{F} \mid \mathcal{F}_{n}\right]=\mathbb{P}(F) \quad \text { a.s. } \quad \text { and at the same time } \quad \mathbb{E}\left[\mathbf{1}_{F} \mid \mathcal{F}_{n}\right] \underset{n \rightarrow \infty}{\text { a.s. }} \mathbf{1}_{F} .
$$

From this conclude that $\mathbb{P}(F)$ is either 0 or 1 .

