NMSA409, topic 9: Prediction

Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be a random sequence. $H_{-\infty}^{n}=\mathcal{H}\left\{\ldots, X_{n-1}, X_{n}\right\}$ denotes the Hilbert space generated by the random variables $\left\{X_{t}, t \leq n\right\}$, i.e. by the history of the process $\left\{X_{t}, t \in \mathbb{Z}\right\}$ up to time n.
Prediction $\widehat{X}_{n+h}(n)$ of X_{n+h} (where $h \in \mathbb{N}$) based on the infinite history X_{n}, X_{n-1}, \ldots is the orthogonal projection of the random variable X_{n+h} into the space $H_{-\infty}^{n}$. We denote $\widehat{X}_{n+h}(n)=P_{H_{-\infty}^{n}}\left(X_{n+h}\right)$.

Concerning the prediction based on the finite history we denote $H_{1}^{n}=\mathcal{H}\left\{X_{1}, \ldots, X_{n}\right\}$ the Hilbert space generated by the random variables X_{1}, \ldots, X_{n}.
The best linear prediction of X_{n+h} (for $h \in \mathbb{N}$) is the orthogonal projection into the space H_{1}^{n}, i.e. $\widehat{X}_{n+h}(n)=\sum_{j=1}^{n} c_{j} X_{j} \in H_{1}^{n}$ such that $X_{n+h}-\widehat{X}_{n+h}(n) \perp H_{1}^{n}$.

Prediction error (residual variance) is defined as $\mathbb{E}\left|X_{n+h}-\widehat{X}_{n+h}(n)\right|^{2}$.
Exercise 9.1: Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be a random sequence given by the equation

$$
X_{t}-\frac{1}{2} X_{t-1}+\frac{1}{16} X_{t-2}=Y_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $W N\left(0, \sigma^{2}\right)$. Suppose we know the history of the process up to the time $t=100$. Compute the predictions $\widehat{X_{101}}(100), \widehat{X_{102}}(100)$ and $\widehat{X_{103}}(100)$ and the respective prediction errors for $\widehat{X_{101}}(100)$ and $\widehat{X_{102}}(100)$.

Exercise 9.2: Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be a random sequence given by the equation

$$
X_{t}=Y_{t}-0.5 Y_{t-1}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma^{2}\right)$. Determine $\widehat{X}_{4}, \widehat{X}_{5}$ based on the observations X_{1}, X_{2}, X_{3} and compute the prediction error.

Exercise 9.3: Consider a stationary $\operatorname{AR}(1)$ process $\left\{X_{t}, t \in \mathbb{Z}\right\}$ defined by the equation

$$
X_{t}+\frac{1}{3} X_{t-1}=Y_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise. Predict the values of X_{k+1} for $k \in \mathbb{N}$ if you have observed the values $X_{0}=X_{1}=1$. Compute the prediction error.

Exercise 9.4: Consider a stationary $\operatorname{AR}(2)$ process $\left\{X_{t}, t \in \mathbb{Z}\right\}$ defined by the equation

$$
X_{t}+\frac{1}{3} X_{t-1}+\frac{1}{3} X_{t-2}=Y_{t}, \quad t \in \mathbb{Z},
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise. Assume that you have observed the values of the process
a) $X_{0}=X_{1}=1$,
b) $X_{0}=1$.

Predict the values of X_{k+1} for $k \in \mathbb{N}$ and compute the prediction error.
Exercise 9.5: Consider a stationary $\operatorname{ARMA}(1,1)$ process $\left\{X_{t}, t \in \mathbb{Z}\right\}$ given by the equation

$$
X_{t}+\frac{1}{3} X_{t-1}=Y_{t}-Y_{t-1}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise. Predict the values of X_{k+1} for $k \in \mathbb{N}$ if you have observed the values $X_{0}=-1, X_{1}=2$.

Exercise 9 .6: We know the values $X_{1}=5.9, X_{2}=4.9, X_{3}=2.2, X_{4}=2.0, X_{5}=4.9$ of the process

$$
\left(X_{t}-4\right)-0.8\left(X_{t-1}-4\right)=Y_{t}, \quad t \in \mathbb{Z},
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a centered white noise with the variance $\sigma^{2}=0.7$. Find the prediction of X_{6} and X_{7}. Compute the respective prediction errors.

