NMSA405: topic 1 - space of sequences of real numbers
Exercise 1.1: For vectors $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ it is reasonable to define the L_{1}-distance (Manhattan distance, city-block distance) as $d(x, y)=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|$. For infinite sequences of real numbers $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$ and $y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$, does it make sense to define the following "distances"?

$$
d_{1}(x, y)=\sum_{j=1}^{\infty}\left|x_{j}-y_{j}\right|, \quad d_{2}(x, y)=\sum_{j=1}^{\infty} \frac{\left|x_{j}-y_{j}\right|}{2^{j}}, \quad d_{3}(x, y)=\sum_{j=1}^{\infty} \frac{\min \left\{\left|x_{j}-y_{j}\right|, 1\right\}}{2^{j}}
$$

Definition: (D 1.3) For sequences of real numbers $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$ and $y=\left(y_{1}, y_{2}, \ldots\right) \in$ $\mathbb{R}^{\mathbb{N}}$ we define

$$
d(x, y)=\sum_{j=1}^{\infty} \frac{\min \left\{\left|x_{j}-y_{j}\right|, 1\right\}}{2^{j}}
$$

Recall: What properties does a metric have?
Exercise 1.2: (P 1.2a) Show that d defines a metric on $\mathbb{R}^{\mathbb{N}}$.
Exercise 1.3: (P 1.2b) Let $x^{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots\right)$ be sequences of real numbers for $n \in \mathbb{N}$ and $x=\left(x_{1}, x_{2}, \ldots\right)$. Prove that

$$
d\left(x^{n}, x\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { if and only if }\left|x_{j}^{n}-x_{j}\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { for all } j \in \mathbb{N} .
$$

Recall: What is a complete separable metric space? What is a Cauchy sequence?
Exercise 1.4: (P 1.2c) Prove that $\left(\mathbb{R}^{\mathbb{N}}, d\right)$ is a complete separable metric space.
Definition: (D 1.5) Mapping $p: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ is called a finite permutation (of order n), if there is $n \in \mathbb{N}$ and a permutation $\left(k_{1}, \ldots, k_{n}\right)$ of the elements of the set $\{1, \ldots, n\}$ such that

$$
p\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)=\left(x_{k_{1}}, \ldots, x_{k_{n}}, x_{n+1}, \ldots\right), \quad\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}
$$

Recall: What properties does a homeomorphism have?
Exercise 1.5: (P 1.5a) Prove that any finite permutation p is a homeomorphism.
Definition: (D 1.6) Mapping $s: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ defined by

$$
s\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right), \quad\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}
$$

is called shift.
Recall: What properties does a continuous mapping have?
Exercise 1.6: (P 1.5b) Prove that the shift s is a continuous mapping.

Definition: (D 1.7) A set $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ is called terminal if the following implication holds: $x=\left(x_{1}, x_{2}, \ldots\right) \in T, y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: y_{k}=x_{k}$ for all $k \in \mathbb{N}$ except of finitely many $\Rightarrow y \in T$. We call $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ n-terminal if

$$
x=\left(x_{1}, x_{2}, \ldots\right) \in T, y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}: y_{k}=x_{k} \text { for } k>n \Rightarrow y \in T
$$

Exercise 1.7: Find examples of terminal and n-terminal sets of sequences.
Exercise 1.8: (P 1.5c) Prove that $T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ is n-terminal if and only if there is a $T_{n} \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $T=\mathbb{R}^{n} \times T_{n}$.

Definition: (D 1.8) We use a particular notation for the following systems of sets:

- n-symmetric sets: $\mathcal{S}_{n}=\left\{S \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): p(S)=S\right.$ for any finite permutation p of order $\left.n\right\}$,
- symmetric sets: $\mathcal{S}=\left\{S \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): p(S)=S\right.$ for any finite permutation $\left.p\right\}$,
- shift invariant sets: $\mathcal{I}=\left\{I \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): s^{-1} I=I\right\}$,
- n-terminal sets: $\mathcal{T}_{n}=\left\{T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)\right.$: T n-terminal $\}$,
- terminal sets: $\mathcal{T}=\left\{T \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right): T\right.$ terminal $\}$.

Exercise 1.9: Find examples of symmetric, n-symmetric and shift invariant sets of sequences.
Exercise 1.10: (P 1.5d)
a) Show that $\mathcal{S}_{n+1} \subset \mathcal{S}_{n}$ for all $n \in \mathbb{N}$ and $\mathcal{S}=\cap_{n=1}^{\infty} \mathcal{S}_{n}$.
b) Show that $\mathcal{T}_{n+1} \subset \mathcal{T}_{n}$ for all $n \in \mathbb{N}$ and $\mathcal{T}=\cap_{n=1}^{\infty} \mathcal{T}_{n}$.
c) Prove that $\mathcal{I} \subset \mathcal{T}_{n} \subset \mathcal{S}_{n}$ for all $n \in \mathbb{N}$ and hence $\mathcal{I} \subset \mathcal{T} \subset \mathcal{S}$.
d) Show that the previous inclusions are strict, i.e. the sets are not equal. Provide examples!
e) Extra exercise: Check that \mathcal{S}, \mathcal{I} and \mathcal{T} are σ-algebras.

Definition: (D 1.10) We call the set $B \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$ finite-dimensional if there are $n \in \mathbb{N}$ and $B_{n} \in$ $\mathcal{B}\left(\mathbb{R}^{n}\right)$ such that $B=B_{n} \times \mathbb{R}^{\mathbb{N}}$.

Recall: What properties does an algebra (system of sets) have?
Exercise 1.11: (P 1.6) Denote by \mathcal{A} the system of finite-dimensional sets from $\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$. Prove that \mathcal{A} is an algebra generating $\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$, i.e. it holds that $\sigma(\mathcal{A})=\mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)$.

NMSA405: topic 2 - random sequences

Definition: (D 1.13) Binary expansion of the number $x \in(0,1]$ is the sequence x_{1}, x_{2}, \ldots of zeroes and ones such that it contains infinitely many ones and

$$
x=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}} .
$$

Binary expansion of the number 0 is the sequence of zeroes.
Exercise 2.1: (P 1.14) Prove that if X is a random variable with uniform distribution on the interval $[0,1]$ and

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\infty} \frac{X_{k}(\omega)}{2^{k}} \tag{1}
\end{equation*}
$$

is its binary expansion then X_{1}, X_{2}, \ldots is a sequence of independent random variables with Bernoulli distribution with parameter $1 / 2$.
Conversely, consider a sequence of independent random variables with Bernoulli distribution with parameter $1 / 2$ and define X using the equation (1). Prove that X has uniform distribution on the interval $[0,1]$.

Exercise 2.2: Show that there is a random sequence W_{1}, W_{2}, \ldots such that its increments W_{1}, $W_{2}-W_{1}, W_{3}-W_{2}, \ldots$ are independent random variables with standard normal distribution. Determine the distribution of the vector $\left(W_{1}, \ldots, W_{n}\right)$.

Definition: (D 1.14) We call the random sequence $X=\left(X_{1}, X_{2}, \ldots\right)$

- iid if the random variables $X_{j}, j \in \mathbb{N}$, are independent and identically distributed,
- n-symmetric if the distributions of $\left(X_{1}, \ldots, X_{n}, X_{n+1}, \ldots\right)$ and ($X_{k_{1}}, \ldots, X_{k_{n}}, X_{n+1}, \ldots$) coincide for each finite permutation $\left(k_{1}, \ldots, k_{n}\right)$ of order $n \in \mathbb{N}$,
- symmetric if it is n-symmetric for each $n \in \mathbb{N}$,
- stationary if the distributions of $\left(X_{1}, \ldots, X_{n}, X_{n+1}, \ldots\right)$ and (X_{n+1}, X_{n+2}, \ldots) coincide for each $n \in \mathbb{N}$.

Exercise 2.3: Show that the following statements are equivalent:
a) random sequence $X=\left(X_{1}, X_{2}, \ldots\right)$ is stationary,
b) X and $s(X)$ have the same distribution,
c) random vectors $\left(X_{1}, \ldots, X_{n-1}\right)$ and $\left(X_{2}, \ldots, X_{n}\right)$ have the same distribution for each $n \in \mathbb{N}$.

Exercise 2.4: Prove the following assertions.
a) Each iid sequence is symmetric.
b) Each symmetric sequence is stationary.
c) Each $(n+1)$-symmetric sequence is n-symmetric for any $n \in \mathbb{N}$.
d) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an iid random sequence and $f: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ Borel-measurable mapping such that $f \circ s=s \circ f$ (f and the shift commute). Prove that in such a case $f(X)=\left(Y_{1}, Y_{2}, \ldots\right)$ is stationary. Does this assertion hold if we instead assumed only stationarity of X ?

Exercise 2.5: Give an example of
a) a symmetric sequence which is not iid,
b) a stationary sequence which is not symmetric,
c) n-symmetric sequence which is not $(n+1)$-symmetric.

NMSA405: topic 3-0-1 laws, random walk

Theorem (Kolmogorov 0-1 law): Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence of independent random variables. Then $\mathbb{P}(X \in T)$ equals either 0 or 1 for any terminal set T.

Theorem (Hewitt-Savage 0-1 law): Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an iid random sequence. Then $\mathbb{P}(X \in S)$ equals either 0 or 1 for any symmetric set S.

Exercise 3.1: Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence of independent random variables. Show that the event

$$
\left[\sum_{n=1}^{\infty} X_{n}<\infty\right]
$$

occurs with probability 0 or 1 .
Definition: (D 2.5) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an iid random sequence. We call the sequence of partial sums $S_{n}=X_{1}+\cdots+X_{n}, n \in \mathbb{N}$ a random walk.

Exercise 3.2: Let $S=\left(S_{1}, S_{2}, \ldots\right)$ be a random walk. Consider the event

$$
A=\left[S_{n}=0 \text { for infinitely many } n\right] .
$$

Show that $\mathbb{P}(A)$ equals either 0 or 1 .
Exercise 3.3: The following variants of the limit behaviour of the random walk $S=\left(S_{1}, S_{2}, \ldots\right)$ are mutually exclusive:

- (i) $S_{n}=0$ a.s. for all $n \in \mathbb{N}$,
- (ii) $S_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty$,
- (iii) $S_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow}-\infty$,
- (iv) $-\infty=\lim \inf _{n \rightarrow \infty} S_{n}<\lim \sup _{n \rightarrow \infty} S_{n}=\infty$.

Prove that precisely one of these variants occurs with probability 1.

NMSA405: topic 4 - stopping times

Definition: Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence. The σ-algebra generated by the random vector $\left(X_{1}, \ldots, X_{n}\right)$ is $\sigma\left(X_{1}, \ldots, X_{n}\right)=\left\{\left[\left(X_{1}, \ldots, X_{n}\right) \in B_{n}\right], B_{n} \in \mathcal{B}^{n}\right\}$ and the σ algebra generated by the sequence X is $\sigma(X)=\left\{[X \in B], B \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}}\right)\right\}$.

Exercise 4.1: (P 2.1) Check that $\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\sigma(X)$ are σ-algebras. Prove that

$$
\sigma(X)=\sigma\left(\bigcup_{n=1}^{\infty} \sigma\left(X_{1}, \ldots, X_{n}\right)\right)
$$

Definition: (D 2.1) Let (Ω, \mathcal{F}) be a measurable space and $\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \cdots \subseteq \mathcal{F}$ a non-decreasing sequence of σ-algebras. We call $\left(\mathcal{F}_{n}\right)$ a filtration. Denote $\mathcal{F}_{\infty}=\sigma\left(\cup_{n=1}^{\infty} \mathcal{F}_{n}\right)$. We call the random sequence $X=\left(X_{1}, X_{2}, \ldots\right)$ adapted to the filtration $\left(\mathcal{F}_{n}\right)$, shortly \mathcal{F}_{n}-adapted if $\sigma\left(X_{1}, \ldots, X_{n}\right) \subseteq$ \mathcal{F}_{n} for all $n \in \mathbb{N}$. If $\sigma\left(X_{1}, \ldots, X_{n}\right)=\mathcal{F}_{n}$ for all $n \in \mathbb{N}$ we call $\left(\mathcal{F}_{n}\right)$ the canonical filtration of the sequence X.

Exercise 4.2: (P 2.2) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence and $S=\left(S_{1}, S_{2}, \ldots\right)$ the sequence of its partial sums: $S_{n}=X_{1}+\cdots+X_{n}, n \in \mathbb{N}$. Show that X and S have the same canonical filtration. Compare the canonical filtrations of the sequence X and the sequence $X^{2}=\left(X_{1}^{2}, X_{2}^{2}, \ldots\right)$.

Definition: (D 2.3) The mapping $T: \Omega \rightarrow \mathbb{N} \cup\{\infty\}$ is called a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$ provided that $[T \leq n] \in \mathcal{F}_{n}$ for all $n \in \mathbb{N}$. Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence. A stopping time $T: \Omega \rightarrow \mathbb{N} \cup\{\infty\}$ is called a stopping time of the sequence X if $[T \leq n] \in \sigma\left(X_{1}, \ldots, X_{n}\right)$ for all $n \in \mathbb{N}$.

Exercise 4.3: Show that T is a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$ if and only if the random sequence $X_{n}=\mathbf{1}\{T \leq n\}$ is \mathcal{F}_{n}-adapted.

Definition: (D 2.4) Let $\left(\mathcal{F}_{n}\right)$ be a filtration and T its stopping time. Then

$$
\mathcal{F}_{T}=\left\{F \in \mathcal{F}_{\infty}: F \cap[T \leq n] \in \mathcal{F}_{n} \text { for all } n \in \mathbb{N}\right\}
$$

is called the stopping time σ-algebra.
Exercise 4.4: Show that \mathcal{F}_{T} defines a σ-algebra.
Exercise 4.5: (P 2.3) Show that T is a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$ if and only if $[T=n] \in \mathcal{F}_{n}$ for all $n \in \mathbb{N}$. Further show that the following holds:

$$
\mathcal{F}_{T}=\left\{F \in \mathcal{F}_{\infty}: F \cap[T=n] \in \mathcal{F}_{n} \text { for all } n \in \mathbb{N}\right\}
$$

Exercise 4.6: Consider a fixed $n_{0} \in \mathbb{N}$ and $T=n_{0}$. Show that T is a stopping time with respect to any filtration $\left(\mathcal{F}_{n}\right)$ and determine the σ-algebra \mathcal{F}_{T}.

Definition: We define the mapping $X_{T}: \Omega \rightarrow \mathbb{R}$ as

$$
X_{T}(\omega)= \begin{cases}X_{T(\omega)}(\omega) & \text { pro } T(\omega)<\infty \\ 0 & \text { pro } T(\omega)=\infty\end{cases}
$$

Exercise 4.7: (P 2.4) Let S and T be stopping times with respect to the filtration $\left(\mathcal{F}_{n}\right)$ and let the sequence X be \mathcal{F}_{n}-adapted. Show that:

- a) T and X_{T} are \mathcal{F}_{T}-measurable random variables,
- b) $\min \{S, T\}, \max \{S, T\}$ and $S+T$ are stopping times with respect to the filtration $\left(\mathcal{F}_{n}\right)$,
- c) $\min \{T, n\}$ is a \mathcal{F}_{n}-measurable random variable for any $n \in \mathbb{N}$.

Exercise 4.8: Let T_{1}, T_{2}, \ldots be a sequence of stopping times with respect to the filtration $\left(\mathcal{F}_{n}\right)$. Show that $\sup _{n} T_{n}$ and $\inf _{n} T_{n}$ are also stopping times with respect to the filtration $\left(\mathcal{F}_{n}\right)$.

Exercise 4.9: (P 2.5a) Let T be a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$. Consider the mapping $\lambda: \Omega \rightarrow \mathbb{N} \cup\{\infty\}$ which is \mathcal{F}_{T}-measurable and fulfills $\lambda \geq T$. Show that λ is a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)$.

Exercise 4.10: (P 2.5b) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a random sequence and T its stopping time. For $B \in \mathcal{B}(\mathbb{R})$ we define $\lambda=\min \left\{k>T: X_{k} \in B\right\}$, i.e. the first hitting time of the set B by the sequence X after the time T. Show that λ is a stopping time of the sequence X.

Exercise 4.11: Let $\left(S_{1}, S_{2}, \ldots\right)$ be a symmetric simple random walk (with the step X_{n} taking on only the values 1 and -1 with equal probabilities). Determine whether the following random variables are stopping times of the sequence $X=\left(X_{1}, X_{2}, \ldots\right)$:

- a) $T_{N}=\max \left\{n \leq N: S_{n}=0\right\}$ for $N \in \mathbb{N}$,
- b) $\lambda=\min \left\{n: S_{n}=5\right\}$,
- c) $\nu=\min \left\{n: S_{n}<-3\right\}$,
- d) $\lambda+\nu, \min \{\lambda, \nu\}+1, \max \{\lambda, \nu\}, \max \{\lambda, \nu\}-1,2 \lambda-1, \lambda^{2}$.

NMSA405: topic 5 - symmetric simple random walk

Definition: (D 2.6) Let X_{1}, X_{2}, \ldots be an iid random sequence with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=$ $1 / 2$. We call the corresponding random walk $\left(S_{n}\right)$ the symmetric simple random walk.

Exercise 5.1: (P 2.9) (Reflection principle) Let $\left(S_{n}\right)$ be a symmetric simple random walk. Consider the stopping time T, the first hitting time of the set $\{a\}$ by the random walk for a given $a \in \mathbb{N}$. Denote

$$
S_{k}^{r}=2 S_{\min \{k, T\}}-S_{k}, \quad k \in \mathbb{N} .
$$

Then

$$
\left(S_{1}^{r}, S_{2}^{r}, \ldots\right) \stackrel{d}{=}\left(S_{1}, S_{2}, \ldots\right)
$$

Exercise 5.2: (P 2.10) (Maxima of the symmetric simple random walk) For a symmetric simple random walk $\left(S_{n}\right)$ denote $M_{n}=\max _{k=1, \ldots, n} S_{k}, n \in \mathbb{N}$. Consider the stopping time T, the first hitting time of the set $\{a\}$ by the random walk for a given $a \in \mathbb{N}$. Then

$$
\mathbb{P}(T \leq n)=\mathbb{P}\left(M_{n} \geq a\right)=2 \mathbb{P}\left(S_{n} \geq a\right)-\mathbb{P}\left(S_{n}=a\right) \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathbb{P}\left(M_{n} \geq a\right)=1
$$

NMSA405: topic 6 - martingales

Definition: (D 2.10) Let $\left\{\mathcal{F}_{n}\right\}$ be a filtration and let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a sequence of integrable random variables. We say that X is an \mathcal{F}_{n}-martingale if it is \mathcal{F}_{n}-adapted and $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$ a.s. for all $n \in \mathbb{N}$. If $\left\{\mathcal{F}_{n}\right\}$ is the canonical filtration of X, we call X simply a martingale and it satisfies $\mathbb{E}\left[X_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right]=X_{n}$ a.s. for all $n \in \mathbb{N}$. If the equality sign is replaced by \geq, X is called \mathcal{F}_{n}-submartingale or submartingale, respectively. If the equality sign is replaced by \leq, X is called \mathcal{F}_{n}-supermartingale or supermartingale, respectively.

Exercise 6.1: (P 2.18) Let $\left(X_{n}\right)$ be a sequence of independent integrable random variables. Denote $S_{n}=X_{1}+\ldots+X_{n}$ for $n \in \mathbb{N}$.

- c) If $\mathbb{E} X_{n}=1$ for all $n \in \mathbb{N}$ then $Z_{n}=\prod_{j=1}^{n} X_{j}$ is a martingale.
- d) If $\mathbb{P}\left(X_{n}=-1\right)=q$ and $\mathbb{P}\left(X_{n}=1\right)=p$ where $p \in(0,1)$ and $p+q=1$ then $Y_{n}=(q / p)^{S_{n}}$ is a martingale.

Exercise 6.2: Consider the probability space $\left([0,1], \mathcal{B}([0,1]),\left.\lambda\right|_{[0,1]}\right)$, a finite measure $\mu \ll \lambda$ on $([0,1], \mathcal{B}([0,1]))$ and an increasing sequence of sets $\left\{0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{k_{n}}^{n}=1\right\}$ such that

$$
\max _{k \in\left\{0,1, \ldots, k_{n}-1\right\}}\left|t_{k+1}^{n}-t_{k}^{n}\right| \rightarrow 0
$$

Denote $B_{k}^{n}=\left[t_{k}^{n}, t_{k+1}^{n}\right)$ and

$$
D_{n}(x)=\frac{\mu\left(B_{k}^{n}\right)}{\lambda\left(B_{k}^{n}\right)}, \quad x \in B_{k}^{n} .
$$

Show that $\left(D_{n}\right)$ is an $\left(\mathcal{F}_{n}\right)$-martingale where $\mathcal{F}_{n}=\sigma\left(B_{1}^{n}, \ldots, B_{k_{n}}^{n}\right)$. What is the a.s. limit of D_{n} for $n \rightarrow \infty$?

Exercise 6.3: Let Y be an integrable random variable and let $\left(\mathcal{F}_{n}\right)$ be a filtration. Consider the sequence $X_{n}=\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right], n \in \mathbb{N}$, and show that $\left(X_{n}\right)$ is a \mathcal{F}_{n}-martingale.

Exercise 6.4: (Pólya urn model) Consider an urn which at time $n=0$ contains b black and w white balls, $b, w \in \mathbb{N}$. At each time $n \in \mathbb{N}$ we draw a ball from the urn at random, write down its color and put it back together with $\Delta \in \mathbb{N}$ new balls of the same color. Denote X_{n} the relative frequency of the white balls in the urn at time n (i.e. the ratio of the number of white balls to the number of all balls in the urn at the given time). Show that $\left(X_{n}\right)$ is a martingale. Consider also the case with $\Delta=0$ or $\Delta=-1$.

Exercise 6.5: A deck of cards contains a black and b red cards. The deck has been shuffled randomly and we start drawing the cards from the top one after another. Denote X_{n} the relative number of black cards after drawing n cards where $n \in\{0, \ldots, a+b-1\}$. Let $X_{n}=X_{a+b-1}$ for $n \geq a+b$. Show that (X_{n}) is a martingale.

Exercise 6.6: Let $\left(X_{n}\right)$ be a sequence of random variables such that the probability density function $f_{n}: \mathbb{R}^{n} \rightarrow(0, \infty)$ of the random vector $\left(X_{1}, \ldots, X_{n}\right)$ is positive on \mathbb{R}^{n}. Suppose we are given a consistent system of probability density functions $\left(g_{n}\right)$, i.e. $g_{n}: \mathbb{R}^{n} \rightarrow[0, \infty)$ fulfills
$\int_{\mathbb{R}^{n}} g_{n}(x) \mathrm{d} x=1$ and $\int_{\mathbb{R}} g_{n+1}(x, y) \mathrm{d} y=g_{n}(x)$ for almost all $x \in \mathbb{R}^{n}$. We define the likelihood ratio

$$
S_{n}=\frac{g_{n}\left(X_{1}, \ldots, X_{n}\right)}{f_{n}\left(X_{1}, \ldots, X_{n}\right)}, \quad n \in \mathbb{N} .
$$

Show that $\left(S_{n}\right)$ is a martingale.
Exercise 6.7: Let $\left(\mathcal{F}_{n}\right)$ be a filtration on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\left(Q_{n}\right)$ a consistent system of \mathcal{F}_{n}-probability measures, i.e. $\left.Q_{n+1}\right|_{\mathcal{F}_{n}}=Q_{n}$ for $n \in \mathbb{N}$, such that $\left.Q_{n} \ll \mathbb{P}\right|_{\mathcal{F}_{n}}$. We define $X_{n}=\frac{\mathrm{d} Q_{n}}{\left.\mathrm{dP}\right|_{\mathcal{F}_{n}}}$. Show that $\left(X_{n}\right)$ is a \mathcal{F}_{n}-martingale.

Exercise 6.8: Let $X_{n}:(\Omega, \mathcal{F}) \rightarrow\left(S_{n}, \mathcal{S}_{n}\right), n \in \mathbb{N}$, be a sequence of random variables. Let \mathbb{P} be a probability measure on (Ω, \mathcal{F}) and $\left(\nu_{n}\right)$ a consistent system of probability distributions such that $\nu_{n} \ll P_{X_{1}, \ldots, X_{n}}=: \mu_{n}$. Similarly as above show that the likelihood ratio $T_{n}=\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \mu_{n}}\left(X_{1}, \ldots, X_{n}\right)$ between $H_{1}:\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}} \sim \nu_{n}$ and $H_{0}:\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}} \sim \mu_{n}$ is a $\sigma\left(X_{1}, \ldots, X_{n}\right)$-martingale under the null hypothesis H_{0}.

Exercise 6.9: Let $\left(X_{n}\right)$ be an iid random sequence. Let $\alpha \in \mathbb{R}$ be such that $\beta=\ln \mathbb{E} \mathrm{e}^{\alpha X_{1}} \in \mathbb{R}$. We define $Z_{n}=\exp \left\{\alpha S_{n}-\beta n\right\}$ where $S_{n}=X_{1}+\ldots+X_{n}$. Show that $\left(Z_{n}\right)$ is a martingale.

Exercise 6.10: Let (X_{n}) be a sequence of independent integrable random variables with zero mean. We define $M_{n}=\sum_{k=1}^{n} \prod_{i=1}^{k} X_{i}$ for $n \in \mathbb{N}$. Show that $\left(M_{n}\right)$ is a martingale.

NMSA405: topic 7 - Doob decomposition

Definition: (D 2.11) Let $\left\{\mathcal{F}_{n}\right\}$ be a filtration. The random sequence I_{1}, I_{2}, \ldots is \mathcal{F}_{n}-predictable if I_{n} is \mathcal{F}_{n-1}-measurable for all $n \in \mathbb{N}$, where we put $\mathcal{F}_{0}=\{\emptyset, \Omega\}$, i.e. I_{1} is a constant.

Theorem (Doob decomposition theorem): Let $\left\{S_{n}\right\}$ be an \mathcal{F}-submartingale. Then there exists an \mathcal{F}_{n}-martingale $\left\{M_{n}\right\}$ and a non-decreasing \mathcal{F}_{n}-predictable sequence $\left\{I_{n}\right\}$ so that $S_{n}=$ $M_{n}+I_{n}, n \in \mathbb{N}$. The summands M_{n} and I_{n} are a.s. uniquely determined under the additional condition $I_{1}=0$. The sequence $\left\{I_{n}\right\}$ is called the compensator of $\left\{S_{n}\right\}$.

Exercise 7.1: Let $\left(X_{n}\right)$ be an iid random sequence with $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=\sigma^{2} \in(0, \infty)$ and $\mathbb{E} \exp \left\{X_{1}\right\}=\gamma<\infty$. Consider the corresponding random walk $\left(S_{n}\right)$. Show that the following sequences are submartingales and determine their compensators:

- a) S_{n}^{2},
- b) $V_{n}=X_{1}^{2}+\ldots+X_{n}^{2}$,
- c) $\exp \left\{S_{n}\right\}$.

Exercise 7.2: Let $\left(X_{n}\right)$ be a \mathcal{F}_{n}-martingale such that $X_{n} \in L_{2}$. Show that

$$
I_{n}=\sum_{k=1}^{n} \operatorname{var}\left(X_{k} \mid \mathcal{F}_{k-1}\right)
$$

is the compensator of the sequence $Z_{n}=X_{n}^{2}$ where $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.

Theorem (Optional sampling theorem): Let X_{1}, X_{2}, \ldots be an \mathcal{F}_{n}-martingale and let $T_{1} \leq T_{2} \leq \ldots$ be a.s. finite \mathcal{F}_{n}-stopping times. If

$$
X_{T_{k}} \in L_{1} \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{\left[T_{k}>n\right]}\left|X_{n}\right| \mathrm{d} \mathbb{P}=0
$$

for all $k \in \mathbb{N}$, then $\left(X_{T_{1}}, X_{T_{2}}, \ldots\right)$ is an $\mathcal{F}_{T_{n}}$-martingale.
Exercise 8.1: Let $\left(X_{n}\right)$ be a sequence of iid random variables with $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=$ $1 / 2$ and let $S_{n}=\sum_{k=1}^{n} 2^{k-1} X_{k}, n \in \mathbb{N}$. Consider the first hitting time T of the sequence $\left(S_{n}\right)$ of the set $\{1\}$. Then for $\left(S_{n}\right)$ and T the optional sampling theorem does not hold. Show that $\mathbb{E} S_{1} \neq \mathbb{E} S_{T}$ and the condition $\lim _{n \rightarrow \infty} \int_{[T>n]}\left|S_{n}\right| \mathrm{d} \mathbb{P}=0$ is not fulfilled.

Exercise 8.2: (remark to the Theorem 3.5) Let $\left(X_{n}\right)$ be a \mathcal{F}_{n}-martingale and $T<\infty$ a.s. be a \mathcal{F}_{n}-stopping time. Show that the condition

$$
\exists 0<c<\infty: T>n \Longrightarrow\left|X_{n}\right| \leq c \quad \text { a.s. }
$$

does not imply the condition

$$
X_{T} \in L_{1} \quad \text { and } \quad \int_{[T>n]}\left|X_{n}\right| \mathrm{dP} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

from the Theorem 3.3.
Hint: Consider the sequence $X_{n}=\sum_{k=1}^{n} 3^{k} Y_{k}$ where $\left(Y_{k}\right)$ is a sequence of iid random variables with the uniform distribution on $\{-1,0,1\}$.

NMSA405: topic 9 - random walks

Definition: Let $\left(X_{n}\right)$ be an iid random sequence such that $\mathbb{P}\left(X_{1}=1\right)=p$ and $\mathbb{P}\left(X_{1}=-1\right)=$ $1-p$ where $p \in[0,1]$. We call the corresponding random walk $\left(S_{n}\right)$ a (simple) discrete random walk. If $p=1 / 2$ we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time $T^{B}=\min \left\{n \in \mathbb{N}: S_{n} \notin B\right\}$ defined as the first exit time of the discrete random walk S_{n} from the bounded set $B \in \mathcal{B}(\mathbb{R})$ and the stopping time $T_{a}=\min \left\{n \in \mathbb{N}: S_{n}=a\right\}$ defined as the first hitting time of the random walk S_{n} of the set $\{a\}$ for $a \in \mathbb{Z}$. Show that

1. $T^{B}<\infty$ a.s.,
2. $T_{a}<\infty$ a.s. if $p=1 / 2$.

Exercise 9.2: Show that the discrete random walk fulfills
(i) $S_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty$ a.s. $\Longleftrightarrow p>1 / 2$,
(ii) $S_{n} \underset{n \rightarrow \infty}{\longrightarrow}-\infty$ a.s. $\Longleftrightarrow p<1 / 2$,

Exercise 9.3: Consider a discrete symmetric random walk $\left(S_{n}\right)$. For $a, b \in \mathbb{Z}, a<0, b>0$, we define $T_{a, b}=\min \left\{n \in \mathbb{N}: S_{n} \notin(a, b)\right\}$ as the first exit time of S_{n} from the interval (a, b). Show that in that case

$$
\mathbb{P}\left(S_{T_{a, b}}=a\right)=\frac{b}{b-a} \quad \text { and } \quad \mathbb{E} T_{a, b}=-a b .
$$

Corollary:

(i) $\mathbb{E} T^{B}<\infty$ for any bounded set $B \in \mathcal{B}(\mathbb{R})$,
(ii) $\mathbb{E} T_{b}=\infty$ for any $b \in \mathbb{Z}, b \neq 0$.

Exercise 9.4: Let $\left(S_{n}\right)$ be a symmetric simple random walk and let $A<0<B$ be independent integrable random variables, independent of $\left(S_{n}\right)$. Denote $T=\min \left\{n \in \mathbb{N}: S_{n} \notin(A, B)\right\}$. Show that in that case

$$
\mathbb{P}\left(S_{T}=A\right)=\mathbb{E} \frac{B}{B-A} \quad \text { and } \quad \mathbb{E} T=-\mathbb{E} A \cdot \mathbb{E} B<\infty
$$

NMSA405: topic 10 - convergence theorems

Exercise 10.1: Give an example of a martingale which converges to the random variable $X_{\infty} \in L_{1}$ almost surely but not in L_{1}.

Exercise 10.2: Let $\left(Y_{n}\right)$ be a sequence of independent random variables such that

$$
\mathbb{P}\left(Y_{n}=2^{n}-1\right)=2^{-n}, \quad \mathbb{P}\left(Y_{n}=-1\right)=1-2^{-n}, \quad n \in \mathbb{N} .
$$

Check that $X_{n}=\sum_{k=1}^{n} Y_{k}$ is a martingale. Show that $X_{n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }}-\infty$ and hence the assumptions of the martingale convergence theorems cannot be fulfilled.

Exercise 10.3: (martingale proof of the Kolmogorov 0-1 law) Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be a sequence of independent random variables and $F=[X \in T]$ where $T \in \mathcal{T}$ is a terminal set. Show that

$$
\forall n \in \mathbb{N} \quad \mathbb{E}\left[\mathbf{1}_{F} \mid \mathcal{F}_{n}\right]=\mathbb{P}(F) \quad \text { a.s. } \quad \text { and at the same time } \quad \mathbb{E}\left[\mathbf{1}_{F} \mid \mathcal{F}_{n}\right] \underset{n \rightarrow \infty}{\text { a.s. }} \mathbf{1}_{F} .
$$

From this conclude that $\mathbb{P}(F)$ is either 0 or 1 .

