Spectral decomposition of the autocovariance function

Theorem 4.1: A complex function R(t), $t \in \mathbb{Z}$, is an autocovariance function of a weakly stationary random sequence if and only if

$$R(t) = \int_{-\pi}^{\pi} e^{it\lambda} dF(\lambda), \ t \in \mathbb{Z},$$
(1)

where F is a bounded right-continuous non-decreasing function on $[-\pi, \pi]$ such that $F(-\pi) = 0$.

The function F is determined uniquely and it is called the *spectral distribution function of a random sequence*. If F is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R} we call its density f the *spectral density*. It follows that $F(\lambda) = \int_{-\pi}^{\lambda} f(x) \, \mathrm{d}x$, f = F' and

$$R(t) = \int_{-\pi}^{\pi} e^{it\lambda} f(\lambda) \,d\lambda, \ t \in \mathbb{Z}.$$
 (2)

If F is piecewise constant with jumps at points $\lambda_i \in (-\pi, \pi]$ of the magnitudes $a_i > 0$ then

$$R(t) = \sum_{i} a_i e^{it\lambda_i}, \ t \in \mathbb{Z}.$$

Theorem 4.2: A complex function R(t), $t \in \mathbb{R}$, is an autocovariance function of a centered weakly stationary L_2 -continuous stochastic process if and only if

$$R(t) = \int_{-\infty}^{\infty} e^{it\lambda} dF(\lambda), \ t \in \mathbb{R},$$

where F is a right-continuous non-decreasing function such that $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = R(0) < \infty$.

The function F is determined uniquely and it is called the *spectral distribution function of* an L_2 -continuous stochastic process. If F is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R} we call its density f the *spectral density*. It follows that $F(\lambda) = \int_{-\infty}^{\lambda} f(x) dx$, f = F' and

$$R(t) = \int_{-\infty}^{\infty} e^{it\lambda} f(\lambda) d\lambda, \ t \in \mathbb{R}.$$
 (3)

If F is piecewise constant with jumps at points $\lambda_i \in \mathbb{R}$ of the magnitudes $a_i > 0$ then

$$R(t) = \sum_{i} a_i e^{it\lambda_i}, \ t \in \mathbb{R}.$$

Theorem 4.3: Let $\{X_t, t \in \mathbb{Z}\}$ be a weakly stationary sequence with the autocovariance function R(t) such that $\sum_{t=-\infty}^{\infty} |R(t)| < \infty$. Then the spectral density of the sequence $\{X_t, t \in \mathbb{Z}\}$ exists and is given by

$$f(\lambda) = \frac{1}{2\pi} \sum_{t=-\infty}^{\infty} e^{-it\lambda} R(t), \ \lambda \in [-\pi, \pi].$$
 (4)

Theorem 4.4: Let $\{X_t, t \in \mathbb{R}\}$ be a centered weakly stationary L_2 -continuous process with the autocovariance function R(t) such that $\int_{-\infty}^{\infty} |R(t)| dt < \infty$. Then the spectral density of the process $\{X_t, t \in \mathbb{R}\}$ exists and is given by

$$f(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it\lambda} R(t) dt, \ \lambda \in \mathbb{R}.$$
 (5)

Exercise 4.3 alt: Determine the autocovariance function of the centered weakly stationary process $\{X_t, t \in \mathbb{R}\}$ with the spectral distribution function

$$F_X(\lambda) = \begin{cases} 0, & \lambda \le -b, \\ (\lambda + b)a, & -b \le \lambda < b, \\ 3ab, & \lambda \ge b, \end{cases}$$

where a > 0 and b > 0 are constants.

Exercise 4.6: Let $\{X_t, t \in \mathbb{R}\}$ be a centered weakly stationary process with the autocovariance function

$$R_X(t) = \cos t, \quad t \in \mathbb{R}.$$

Determine the spectral distribution function of the process.

Exercise 4.7: Determine the spectral density of the weakly stationary sequence $\{X_t, t \in \mathbb{Z}\}$ with the autocovariance function

$$R_X(t) = \begin{cases} \frac{16}{15} \cdot \frac{1}{2^{|t|}} & \text{for even values of } t, \\ 0 & \text{for odd values of } t. \end{cases}$$

Exercise 4.8: Let $\{X_t, t \in \mathbb{R}\}$ be a centered weakly stationary process with the autocovariance function

$$R_X(t) = \exp{\kappa(e^{it} - 1)}, \quad t \in \mathbb{R},$$

where $\kappa > 0$. Determine the spectral distribution function of the process.

Exercise 4.9: Let $\{X_t, t \in \mathbb{R}\}$ be a centered weakly stationary process with the autocovariance function

$$R_X(t) = \frac{1}{1 - \mathrm{i}t}, \quad t \in \mathbb{R}.$$

Determine the spectral density of the process.

Exercise 4.13: Consider a real-valued centered random variable Y with finite positive variance σ^2 and a random sequence defined as $X_t = (-1)^t Y$, $t \in \mathbb{Z}$. Decide whether the spectral density of this sequence exists. If it does, find a formula for it.

Exercise 4.14: The elementary process $\{X_t, t \in \mathbb{R}\}$ is defined as $X_t = Y e^{\mathrm{i}\omega t}, t \in \mathbb{R}$, where $\omega \in \mathbb{R}$ is a constant and Y is a (complex) random variable such that $\mathbb{E}Y = 0$ and $\mathbb{E}|Y|^2 = \sigma^2 < \infty$. Discuss the stationarity of the process $\{X_t, t \in \mathbb{R}\}$ and determine its spectral density.

Exercise 4.15: Let $\{N_t, t \geq 0\}$ be a Poisson process with the intensity $\lambda > 0$ and let A be a real-valued random variable with zero mean and variance 1, independent of the process $\{N_t, t \geq 0\}$. Define $X_t = A(-1)^{N_t}$, $t \geq 0$. Determine the spectral distribution function and the spectral density (if it exists) of the process $\{X_t, t \geq 0\}$.