Linear models of time series

MA(n): The moving average sequence of order n is defined by

$$
X_{t}=b_{0} Y_{t}+b_{1} Y_{t-1}+\cdots+b_{n} Y_{t-n}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$ and $b_{0}, b_{1}, \ldots, b_{n}$ are real- or complex-valued constants, $b_{0} \neq 0, b_{n} \neq 0$. It is a centered weakly stationary random sequence with the autocovariance function

$$
R_{X}(t)= \begin{cases}\sigma^{2}\left(b_{t} \overline{b_{0}}+\cdots+b_{n} \overline{b_{n-t}}\right) & \text { for } 0 \leq t \leq n \\ \sigma^{2}\left(b_{0} \overline{b_{|t|}}+\cdots+b_{n-|t|}^{\overline{b_{n}}}\right) & \text { for }-n \leq t \leq 0, \\ 0 & \text { for }|t|>n\end{cases}
$$

and the spectral density

$$
f_{X}(\lambda)=\frac{\sigma^{2}}{2 \pi}\left|\sum_{k=0}^{n} b_{k} \mathrm{e}^{-\mathrm{i} k \lambda}\right|^{2}, \quad \lambda \in[-\pi, \pi] .
$$

MA(∞): The causal linear process is a random sequence defined by

$$
\begin{equation*}
X_{t}=\sum_{j=0}^{\infty} c_{j} Y_{t-j}, \quad t \in \mathbb{Z}, \tag{1}
\end{equation*}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise and c_{0}, c_{1}, \ldots is a sequence of constants such that $\sum_{j=0}^{\infty}\left|c_{j}\right|<\infty$ (this condition implies the sum converges absolutely almost surely). $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is a centered weakly stationary random sequence with the autocovariance function

$$
R_{X}(t)= \begin{cases}\sigma^{2} \sum_{k=0}^{\infty} c_{k+t} \overline{c_{k}} & \text { for } t \geq 0, \tag{2}\\ \sigma^{2} \sum_{k=0}^{\infty} c_{k} \overline{c_{k+\mid}|t|} & \text { for } t \leq 0,\end{cases}
$$

and the spectral density

$$
f_{X}(\lambda)=\frac{\sigma^{2}}{2 \pi}\left|\sum_{k=0}^{\infty} c_{k} \mathrm{e}^{-\mathrm{i} k \lambda}\right|^{2}, \quad \lambda \in[-\pi, \pi] .
$$

$\mathbf{A R}(m)$: The autoregressive sequence of order m is defined by

$$
X_{t}+a_{1} X_{t-1}+\cdots+a_{m} X_{t-m}=Y_{t}, \quad t \in \mathbb{Z},
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise and a_{1}, \ldots, a_{m} are real-valued constants, $a_{m} \neq 0$. If all the roots of the polynomial $1+a_{1} z+\cdots+a_{m} z^{m}$ lie outside the unit circle in \mathbb{C} (which is equivalent to all the roots of $z^{m}+a_{1} z^{m-1}+\cdots+a_{m}$ lying inside the unit circle) then $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is a causal linear process (1) with coefficients c_{j} determined by

$$
\sum_{j=0}^{\infty} c_{j} z^{j}=\frac{1}{1+a_{1} z+\cdots+a_{m} z^{m}}, \quad|z| \leq 1 .
$$

We may also get the coefficients c_{j} by solving the equations derived by plugging-in (1) into the defining relation and by comparing the coefficients by the respective terms Y_{t-j} on both sides. The autocovariance function is given by (2) and the spectral density is

$$
f_{X}(\lambda)=\frac{\sigma^{2}}{2 \pi} \frac{1}{\left|1+a_{1} \mathrm{e}^{-\mathrm{i} \lambda}+\cdots+a_{m} \mathrm{e}^{-\mathrm{i} m \lambda}\right|^{2}}, \quad \lambda \in[-\pi, \pi] .
$$

The autocovariance function may be also computed by means of the Yule-Walker equations.

ARMA (m, n) : This model is defined by the equation

$$
\begin{equation*}
X_{t}+a_{1} X_{t-1}+\cdots+a_{m} X_{t-m}=Y_{t}+b_{1} Y_{t-1}+\cdots+b_{n} Y_{t-n}, \quad t \in \mathbb{Z} \tag{3}
\end{equation*}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise and $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}$ are real-valued constants, $a_{m} \neq 0, b_{n} \neq 0$. Suppose that the polynomials $1+a_{1} z+\cdots+a_{m} z^{m}$ and $1+b_{1} z+\cdots+b_{n} z^{n}$ have no common roots and all the roots of the polynomial $1+a_{1} z+\cdots+a_{m} z^{m}$ are outside the unit circle. Then $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is a causal linear process (1) with coefficients c_{j} given by

$$
\sum_{j=0}^{\infty} c_{j} z^{j}=\frac{1+b_{1} z+\cdots+b_{n} z^{n}}{1+a_{1} z+\cdots+a_{m} z^{m}}, \quad|z| \leq 1
$$

We may also get the coefficients c_{j} by solving the equations derived by plugging-in (1) into the defining relation and by comparing the coefficients by the respective terms Y_{t-j} on both sides. The autocovariance function is given by (2) and the spectral density is

$$
f_{X}(\lambda)=\frac{\sigma^{2}}{2 \pi} \frac{\left|1+b_{1} \mathrm{e}^{-\mathrm{i} \lambda}+\cdots+b_{n} \mathrm{e}^{-\mathrm{i} n \lambda}\right|^{2}}{\left|1+a_{1} \mathrm{e}^{-\mathrm{i} \lambda}+\cdots+a_{m} \mathrm{e}^{-\mathrm{i} m \lambda}\right|^{2}}, \quad \lambda \in[-\pi, \pi] .
$$

The autocovariance function may be also computed by means of the Yule-Walker equations.

Definition 6.1: Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be a stationary $\operatorname{ARMA}(m, n)$ random sequence defined by (3). If there exists a sequence of constants $\left\{d_{j}, j \in \mathbb{N}_{0}\right\}$ such that $\sum_{j=0}^{\infty}\left|d_{j}\right|<\infty$ and

$$
Y_{t}=\sum_{j=0}^{\infty} d_{j} X_{t-j}, \quad t \in \mathbb{Z}
$$

then $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is called invertible (it has an $\operatorname{AR}(\infty)$ representation).

Theorem 6.1: Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be a stationary $\operatorname{ARMA}(m, n)$ random sequence. Let the polynomials $a(z)=1+a_{1} z+\cdots+a_{m} z^{m}$ and $b(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ have no common roots and the polynomial $b(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ have all the roots outside the unit circle. Then $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is invertible and the coefficients d_{j} are given by

$$
\sum_{j=0}^{\infty} d_{j} z^{j}=\frac{1+a_{1} z+\cdots+a_{m} z^{m}}{1+b_{1} z+\cdots+b_{n} z^{n}}, \quad|z| \leq 1
$$

Remark: We may obtain the coefficients d_{j} by solving the equations we get by plugging the equality $Y_{t}=\sum_{j=0}^{\infty} d_{j} X_{t-j}$ into the defining formula of the ARMA sequence and comparing the coefficients on both sides.

Exercise 6.1: Determine the autocovariance function and the spectral density of the sequence

$$
X_{t}=Y_{t}+\theta Y_{t-2}, \quad t \in \mathbb{Z}
$$

where $\theta \in \mathbb{C}$ a $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\operatorname{WN}\left(0, \sigma^{2}\right)$.

Exercise 6.4: Solve the Yule-Walker equations and determine the autocovariance function of the random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ defined by

$$
X_{t}-0.4 X_{t-1}+0.04 X_{t-2}=Y_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$.
Exercise 6.6: Let $\left\{X_{t}, t \in \mathbb{Z}\right\}$ be an $\operatorname{ARMA}(2,1)$ random sequence defined by

$$
\begin{equation*}
X_{t}-X_{t-1}+\frac{1}{4} X_{t-2}=Y_{t}+Y_{t-1}, \quad t \in \mathbb{Z}, \tag{4}
\end{equation*}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$. Determine the coefficients of the MA(∞) representation of X_{t} and compute its autocovariance function and spectral density. Is the process invertible?

Exercise 6.10: The random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is defined by

$$
X_{t}-\frac{2}{15} X_{t-1}-\frac{1}{15} X_{t-2}=Y_{t}, \quad t \in \mathbb{Z},
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$. Express the random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ as a causal linear process and compute its autocovariance function and spectral density.
Exercise 6.15: The random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is defined by the equation

$$
X_{t}-(a+b) X_{t-1}+a b X_{t-2}=Y_{t}-a Y_{t-1}, \quad t \in \mathbb{Z},
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$ and $a \neq 0, b \neq 0$ are real constants. For which values of a, b is the process causal? For which values of a, b is the process invertible? Derive the causal $(\mathrm{MA}(\infty))$ and inverted $(\operatorname{AR}(\infty))$ representation. Compute the autocovariance function of $\left\{X_{t}, t \in \mathbb{Z}\right\}$.

Exercise 6.16: Consider the ARMA $(2,1)$ model defined by

$$
X_{t}-0.5 X_{t-1}+0.04 X_{t-2}=Y_{t}+0.25 Y_{t-1}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$. Determine the coefficients of the $\operatorname{AR}(\infty)$ representation.

Definition 6.2: Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a centered weakly stationary sequence. Let $\left\{c_{j}, j \in \mathbb{Z}\right\}$ be a sequence of (complex-valued) numbers such that $\sum_{j=-\infty}^{\infty}\left|c_{j}\right|<\infty$.
We say that a random sequence $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is obtained by filtration of the sequence $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ if

$$
X_{t}=\sum_{j=-\infty}^{\infty} c_{j} Y_{t-j}, \quad t \in \mathbb{Z}
$$

The sequence $\left\{c_{j}, j \in \mathbb{Z}\right\}$ is called time-invariant linear filter.
Provided that $c_{j}=0$ for all $j<0$, we say that the filter $\left\{c_{j}, j \in \mathbb{Z}\right\}$ is causal.

Theorem 6.2: Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a centered weakly stationary sequence with an autocovariance function R_{Y} and spectral density f_{Y} and let $\left\{c_{k}, k \in \mathbb{Z}\right\}$ be a linear filter such that $\sum_{k=-\infty}^{\infty}\left|c_{k}\right|<\infty$. Then $\left\{X_{t}, t \in \mathbb{Z}\right\}$, where $X_{t}=\sum_{k=-\infty}^{\infty} c_{k} Y_{t-k}$, is a centered weakly stationary sequence with the autocovariance function

$$
R_{X}(t)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_{j} \overline{c_{k}} R_{Y}(t-j+k), \quad t \in \mathbb{Z}
$$

and spectral density

$$
f_{X}(\lambda)=|\Psi(\lambda)|^{2} f_{Y}(\lambda), \quad \lambda \in[-\pi, \pi]
$$

where

$$
\Psi(\lambda)=\sum_{k=-\infty}^{\infty} c_{k} e^{-i k \lambda}, \quad \lambda \in[-\pi, \pi]
$$

is called the transfer function of the filter.

Exercise 6.18: Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a white noise $\mathrm{WN}\left(0, \sigma^{2}\right)$. Let it be transformed by a linear filter to $\left\{X_{t}, t \in \mathbb{Z}\right\}$ so that

$$
\begin{equation*}
X_{t}-2 X_{t-1}=Y_{t}, \quad t \in \mathbb{Z} \tag{5}
\end{equation*}
$$

holds. Determine the coefficients of the linear filter, the transfer function of the filter and compute the autocovariance function and the spectral density of $\left\{X_{t}, t \in \mathbb{Z}\right\}$.

Exercise 6.20: Consider a random sequence given by the formula

$$
X_{t}-\frac{1}{3} X_{t-1}=Y_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ is a centered real-valued white noise with positive finite variance σ^{2}. Let $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ be a process obtained by the filtration

$$
Z_{t}=X_{t}-\frac{1}{2} X_{t-1}, \quad t \in \mathbb{Z}
$$

Derive the transfer function of the filter and compute the spectral density of $\left\{Z_{t}, t \in \mathbb{Z}\right\}$. Compute the autocovariance function of $\left\{Z_{t}, t \in \mathbb{Z}\right\}$.

